亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

//sites.google.com/view/ift6268-a2020/schedule

近年來,表示學習取得了很大的進展。大多數都是以所謂的自監督表示學習的形式。在本課程中,我們將對什么是自我監督的學習方法有一個相當廣泛的解釋,并在適當的時候包括一些無監督學習方法和監督學習方法。我們感興趣的方法,學習有意義的和有效的語義表示,而不(專門)依賴標簽數據。更具體地說,我們將對以下方法感興趣,如: 數據增廣任務,知識蒸餾,自蒸餾,迭代學習,對比方法 (DIM, CPC, MoCo, SimCLR等),BYOL,以及自監督方法的分析。

我們的目標是了解自監督學習方法是如何工作的,以及起作用的基本原理是什么。

這是一個關于這一主題的高級研討會課程,因此,我們將閱讀和討論大量的最近的和經典的論文。講座將主要由學生主導。我們假設了解了機器學習的基礎知識 (特別是深度學習——正如你在IFT6135中看到的那樣),我們還將探索自監督表示學習在廣泛領域的應用,包括自然語言處理、計算機視覺和強化學習。

在本課程中,我們將廣泛討論自監督學習(SSL),特別是深度學習。最近,深度學習在許多應用領域取得了大量令人印象深刻的經驗收益,其中最引人注目的是在目標識別和圖像和語音識別的檢測領域。

在本課程中,我們將探討表示學習領域的最新進展。通過學生領導研討會,我們將回顧最近的文獻,并著眼于建立

本課程所涵蓋的特定主題包括以下內容:

  • Engineering tasks for Computer Vision
  • Contrastive learning methods
  • Generative Methods
  • Bootstrap Your Own Latents (BYoL)
  • Self-distillation Methods
  • Self-training / Pseudo-labeling Methods
  • SSL for Natural Language Processing
  • Iterated Learning / Emergence of Compositional Structure
  • SSL for Video / Multi-modal data
  • The role of noise in representation learning
  • SSL for RL, control and planning
  • Analysis of Self-Supervised Methods
  • Theory of SSL
  • Unsupervised Domain Adaptation
付費5元查看完整內容

相關內容

自監督學習(self-supervised learning)可以被看作是機器學習的一種“理想狀態”,模型直接從無標簽數據中自行學習,無需標注數據。

本課程首先介紹了機器學習、安全、隱私、對抗性機器學習和博弈論等主題。然后從研究的角度,討論各個課題和相關工作的新穎性和潛在的拓展性。通過一系列的閱讀和項目,學生將了解不同的機器學習算法,并分析它們的實現和安全漏洞,并培養開展相關主題的研究項目的能力。

//aisecure.github.io/TEACHING/2020_fall.html

Evasion Attacks Against Machine Learning Models (Against Classifiers) Evasion Attacks Against Machine Learning Models (Non-traditional Attacks) Evasion Attacks Against Machine Learning Models (Against Detectors/Generative odels/RL) Evasion Attacks Against Machine Learning Models (Blackbox Attacks) Detection Against Adversarial Attacks Defenses Against Adversarial Attacks (Empirical) Defenses Against Adversarial Attacks (Theoretic) Poisoning Attacks Against Machine Learning Models

付費5元查看完整內容

來自MILA,Aaron Courville的《自監督表示學習綜述》, Introduction II - Overview of self-supervised representation learning?

付費5元查看完整內容

現代數據分析方法被期望處理大量的高維數據,這些數據被收集在不同的領域。這種數據的高維性帶來了許多挑戰,通常被稱為“維數災難”,這使得傳統的統計學習方法在分析時不切實際或無效。為了應對這些挑戰,人們投入了大量精力來開發幾何數據分析方法,這些方法對處理數據的固有幾何形狀進行建模和捕獲,而不是直接對它們的分布進行建模。在本課程中,我們將探討這些方法,并提供他們使用的模型和算法的分析研究。我們將從考慮監督學習開始,并從后驗和似然估計方法中區分基于幾何原則的分類器。接下來,我們將考慮聚類數據的無監督學習任務和基于密度估計的對比方法,這些方法依賴于度量空間或圖結構。最后,我們將考慮內在表示學習中更基本的任務,特別關注降維和流形學習,例如,使用擴散圖,tSNE和PHATE。如果時間允許,我們將包括與本課程相關的研究領域的客座演講,并討論圖形信號處理和幾何深度學習的最新發展。

目錄內容:

Topic 01 - Intoduction (incl. curse of dimensionality & overiew of data analysis tasks)

Topic 02 - Data Formalism ((incl. summary statistics, data types, preprocessing, and simple visualizations)

Topic 03 - Bayesian Classification (incl. decision boundaries, MLE, MAP, Bayes error rate, and Bayesian belief networks)

Topic 04 - Decision Trees (incl. random forests, random projections, and Johnson-Lindenstrauss lemma)

Topic 05 - Principal Component Analysis (incl. preprocessing & dimensionality reduction)

Topic 06 - Support Vector Machines (incl. the "kernel trick" & mercer kernels)

Topic 07 - Multidimensional Scaling (incl. spectral theorem & distance metrics)

Topic 08 - Density-based Clustering (incl. intro. to clustering & cluster eval. with RandIndex)

Topic 09 - Partitional Clustering (incl. lazy learners, kNN, voronoi partitions)

Topic 10 - Hierarchical Clustering (incl. large-scale & graph partitioning)

Topic 11 - Manifold Learning (incl. Isomap & LLE)

Topic 12 - Diffusion Maps

付費5元查看完整內容

本課程探索了生成式模型的各種現代技術。生成模型是一個活躍的研究領域: 我們在本課程中討論的大多數技術都是在過去10年發展起來的。本課程與當前的研究文獻緊密結合,并提供閱讀該領域最新發展的論文所需的背景。課程將集中于生成式建模技術的理論和數學基礎。作業將包括分析練習和計算練習。本課程專題旨在提供一個機會,讓你可以將這些想法應用到自己的研究中,或更深入地研究本課程所討論的主題之一。

  • 自回歸模型 Autoregressive Model
    • The NADE Framework
    • RNN/LSTM and Transformers
  • 變分自編碼器 Variational Autoencoders
    • The Gaussian VAE
    • ConvNets and ResNets
    • Posterior Collapse
    • Discrete VAEs
  • 生成式對抗網絡 Generative Adversarial Nets
    • f-GANs
    • Wasserstein GANs
    • Generative Sinkhorn Modeling
  • 生成流 Generative Flow
    • Autoregressive Flows
    • Invertible Networks
    • Neural Ordinary Differential Equations
  • 基于能量的模型 Energy-Based Models
    • Stein's Method and Score Matching
    • Langevin Dynamics and Diffusions

付費5元查看完整內容

來自UIUC的Transformers最新教程。

Transformer 架構 architecture Attention models Implementation details Transformer-based 語言模型 language models BERT GPT Other models

Transformer 視覺 Applications of Transformers in vision

付費5元查看完整內容

以深度神經網絡為代表的“深度學習”系統正越來越多地接管所有人工智能任務,從語言理解、語音和圖像識別,到機器翻譯、規劃,甚至是游戲和自動駕駛。因此,在許多高級學術機構中,深度學習的專業知識正從深奧的要求迅速轉變為強制性的先決條件,并成為工業就業市場的一大優勢。

在本課程中,我們將學習深度神經網絡的基礎知識,以及它們在各種人工智能任務中的應用。在本課程結束時,預計學生將對這門學科非常熟悉,并能夠將深度學習應用于各種任務。他們也將被定位去理解關于這個主題的許多當前的文獻,并通過進一步的學習來擴展他們的知識。

如果你只對課程感興趣,你可以在YouTube頻道上觀看。

//deeplearning.cs.cmu.edu/F20/

付費5元查看完整內容

強化學習理論(RL),重點是樣本復雜性分析。

  • Basics of MDPs and RL.
  • Sample complexity analyses of tabular RL.
  • Policy Gradient.
  • Off-policy evaluation.
  • State abstraction theory.
  • Sample complexity analyses of approximate dynamic programming.
  • PAC exploration theory (tabular).
  • PAC exploration theory (function approximation).
  • Partial observability and dynamical system modeling.

//nanjiang.cs.illinois.edu/cs598/

付費5元查看完整內容

【導讀】DeepMind開設了一系列深度學習課程。本次課講述了深度學習計算機視覺。

繼上一講之后,DeepMind研究科學家Viorica Patraucean介紹了圖像分類之外的經典計算機視覺任務(目標檢測、語義分割、光流估計),并描述了每種任務的最新模型以及標準基準。她討論了視頻處理任務的類似模型,如動作識別、跟蹤和相關挑戰。她特別提到了最近提高視頻處理效率的工作,包括使用強化學習的元素。接下來,她介紹了單模態和多模態(vision+audio, visio+language)自監督學習的各種設置,在這些設置中,大規模學習是有益的。最后,Viorica討論了視覺中的開放問題,以及計算機視覺研究在構建智能代理這一更廣泛目標中的作用。

付費5元查看完整內容

借助現代的高容量模型,大數據已經推動了機器學習的許多領域的革命,但標準方法——從標簽中進行監督學習,或從獎勵功能中進行強化學習——已經成為瓶頸。即使數據非常豐富,獲得明確指定模型必須做什么的標簽或獎勵也常常是棘手的。收集簡單的類別標簽進行分類對于數百萬計的示例來說是不可能的,結構化輸出(場景解釋、交互、演示)要糟糕得多,尤其是當數據分布是非平穩的時候。

自監督學習是一個很有前途的替代方法,其中開發的代理任務允許模型和代理在沒有明確監督的情況下學習,這有助于對感興趣的任務的下游性能。自監督學習的主要好處之一是提高數據效率:用較少的標記數據或較少的環境步驟(在強化學習/機器人技術中)實現可比較或更好的性能。

自監督學習(self-supervised learning, SSL)領域正在迅速發展,這些方法的性能逐漸接近完全監督方法。

付費5元查看完整內容
北京阿比特科技有限公司