戰術戰區(TBA)內的平臺和射彈數量急劇增加。友軍和敵軍的航空系統不僅在數量上不斷增加,而且大小不一,從微型無人機到大型飛機,它們的飛行速度也從非常慢到比聲音快許多倍。民用航線也在成倍增加,未來空中導航系統(FANS)將使航線更加靈活。空域是有限的資源。因此,當務之急是進行適當的控制,以實現高效運行、行動自由、安全和防止自相殘殺。空域管制(ASC)是指對不同用戶使用空域的管理。從軍事行動的角度來看,空域管制的目標是在不增加不適當限制的情況下,最大限度地提高作戰行動的效率,并將對任何部門能力的不利影響降至最低。空域管制、空中交通管制和地區防空部隊之間必須密切協調,以平衡風險和有效防空的要求。詳細的交戰程序提供了最大的靈活性和反應能力。
沖突期間,TBA地區的空中活動極為密集。友軍和敵軍的飛機都在過境。水平和垂直空域不僅被完全覆蓋,而且在時間和空間上的變化也是動態的。 大多數飛行是根據不斷變化的戰術形勢在很短時間內啟動的。有許多無人駕駛航空系統(UAS)。高速中遠程炮彈和各種導彈也占據著空域。地基防空武器處于緊急待命狀態,有些武器在靠近戰區前沿(FEBA)的偏遠地點運行。盡管在時間和空間上有一些限制和規定,但必須允許民用空中行動繼續進行。因此,需要更快地及時共享信息。必須明確指定機構進行直接和程序控制。
圖:阿卡什地對空導彈系統。
空天指揮和控制要求對各軍事要素執行的無數行動進行統一控制。它需要合格的人員、信息和支持結構來建立一個全面的作戰空間圖。其他戰場要素提供規劃資源。印度空軍(IAF)的戰術航空部隊與印度陸軍和海軍一起支持各軍種之間的協調。有幾種類型的控制可以單獨使用,也可以結合使用,以達到理想的作戰自主程度。控制可以是對飛行中的飛機或地對空武器單元進行近距離控制,在規定時間內與目標交戰/脫離接觸。控制也可以是程序性的。
履行空中管制職能的機構和個人包括防空控制中心、戰術空中作業中心(TAC)和空軍海上部隊(MEAF)。他們使用雷達和安全通信。指定的控制人員和協調人員,如戰術空中協調人員(機載)、突擊支援協調人員、前方空中控制人員(機載和地面)、空中交通控制人員、雷達控制人員、信息通信技術管理人員、飛機飛行領隊和地對空武器部隊。
最重要的是整合各要素。控制分為積極控制和程序控制。積極控制依賴于實時識別和跟蹤。它使用雷達、敵我識別(IFF)詢問器和接收器、信標、計算機、數字數據鏈和通信設備。所有這些設施都會受到攻擊和破壞。它們可能受到視線覆蓋、電子干擾和有限通信的限制。因此,它們需要備份程序來彌補部分或全部系統的故障。程序控制依賴于先前商定和頒布的命令和程序。這些命令和程序包括ASC措施、火力支援協調措施和防空控制措施。程序控制按空間和時間劃分空域,使用武器控制狀態來管理航空作業。它不易受到電子和物理攻擊的干擾,并能確保在不利環境條件下的連續作業。同時,它也可作為失去積極控制時的備用系統。通常,程序控制的實施是為了彌補積極控制的局限性。
重要資產或區域的防空通常圍繞同心層系統展開。 外層通常由配備有源電子掃描陣列(AESA)雷達的戰斗機和由AEW&C支持的反坦克導彈組合構成。 如果攻擊者能夠穿透這一層,下一層將由地對空導彈覆蓋,其中一些導彈的射程超過150公里。S-400 "Triumf "級導彈系列覆蓋不同的高度和射程帶,可摧毀400公里以內的目標。 其他短程導彈的射程約為30-50公里。 最后,還有近程武器系統(CIWS)、超短程反導系統(VSHORADS)導彈、便攜式導彈和每分鐘發射數千發炮彈的雷達控制高射炮。
圖:典型的分層防空
地基高、中功率監視雷達、系留氣球雷達、導彈捕獲和制導雷達、戰術戰場機動雷達和艦載雷達都是地面傳感器網絡的組成部分。這些雷達可探測不同級別的威脅。有些是可移動的。許多雷達是三維的或提供全景圖像。它們具有ECCM,可防止干擾。還有支持反彈道導彈作戰的超視距雷達。為了應對隱形飛機的威脅,各國正在開發超遠程L、UHF和VHF波長雷達。 空中交通管制(ATC)雷達和管制員在空域管理中發揮著重要作用。
機載早期預警和控制(AEW&C)系統是一種機載雷達糾察系統,旨在遠距離探測飛機、艦船和車輛,并通過指揮戰斗機和攻擊機打擊來執行戰區和空中交戰的指揮和控制。 由于其機動性,雖然會成為敵方戰斗機和導彈的攻擊目標,但更不容易遭到反擊。此外,還有大量的直升機AEW系統。
圖:Phalcon預警機。
空中管制點是在地面上為機組人員前往目標指定的路線。這些控制點必須易于從空中識別,并支持地面戰術計劃。這些計劃通過每日命令頒布。空中控制點可分別指定為進入/退出、途中、軌道/停靠、聯絡點、會合、出口控制、滲透、進入和返回。這些程序允許友軍飛機利用可預測的飛行路徑在整個TBA內安全移動。軍種間的航空作業可以通過協調高度來建立緩沖區。
火力支援協調措施允許指揮官開放戰斗空間區域以快速打擊目標或限制和控制火力。允許性火力支援有利于攻擊目標。限制性火力支援措施和禁火區可保障其自身空中平臺的安全。防空行動區及其上方空域是通常優先考慮友軍飛機或地對空武器進行防空作戰的區域。
防空識別區(ADIZ)由規定尺寸的空域組成,需要對空中飛行器進行隨時識別、定位和控制。通常,防空識別區設立在主權國家邊界或作戰區域內。它確保最大限度地減少防空行動和其他行動之間的相互干擾。它可能包括一個或多個防空區、ADIZ或火力傘。
圖:印度ADIZ
武器交戰區(WEZ)是通常由特定武器系統負責交戰的空域。這些區域包括戰斗機交戰區(FEZ)、各類導彈交戰區(MEZ)和聯合交戰區(JEZ)。WEZ的大小取決于特定武器系統的能力。當戰斗機相對于地基系統具有明顯的作戰優勢時,通常會宣布FEZ。地對空導彈系統不允許向FEZ內發射武器,除非目標被確認為敵對目標,由上級當局確認和/或指定,或為自衛而發射。在MEZ內,交戰責任通常由導彈承擔。MEZ分為高空MEZ和低空MEZ。在JEZ中,同時使用多種防空武器系統,需要正確區分友機、中立機和敵機。基地防空區(BADZ)是在空軍基地周圍建立的短程防空武器系統。重要區域是由防空部隊保衛的指定區域或設施。重要區域包括機場、指揮和控制系統、信號單位、GCI單位和其他一些指揮要素。發射控制(EMCON)管理電磁、聲波和其他發射器的使用,以優化指揮和控制能力。EMCON還有助于執行軍事欺騙計劃。
圖:武器交戰區
努力實現資產的分散控制,以便最大限度地靈活攻擊或反擊飛機和導彈威脅。集中控制是指控制機構指揮目標交戰。即使在集中控制期間,自衛權也從未被剝奪。在分散控制期間,控制機構進行監控,以防止同時攻擊同一敵對威脅。分散控制增加了在高密度環境中與敵機交戰的機會。
ASC機構之間必須密切協調。控制區域和功能必須明確。數據鏈通信使這一過程成為可能。及時、有針對性和融合的態勢感知至關重要。此外,還需要評估對手的能力和弱點。防空指揮官負責早期預警,發射戰備平臺(ORP)飛機或調用友軍機載AD飛機應對威脅。需要積極的空域控制。必須為防空反導(DCA)任務提供近距離控制、廣播、戰術或數據鏈控制,并為地對空武器部隊分配目標。預先計劃的空中支援行動和空中偵察任務也需要支持。操作人員應能夠識別電子戰行動,并使用主動和被動措施采取行動。
圖:典型的分層防空。
ASC由雷達、飛機轉發器、飛行數據處理系統、用于全自動系統的特殊軟件以及沖突警報和可能的矢量解決方案算法提供支持。區域穿透警報用于防止進入禁區。操作數據鏈(ODL)允許平臺和地面系統之間進行數字信息傳遞。屏幕內容記錄允許更好的重建和事后分析。
空域控制命令提供了空中任務周期協調措施的細節,包括火力支援協調措施、防空區域和空中交通區域以及其他空域信息。 作戰層面的空域沖突消除通常在空中作戰中心內進行。戰術層面的消除沖突由空管和雷達管制員負責。應對降級的C2環境。空中部分指揮官必須確保水面指揮官列出的關鍵資產得到保護。火力支援協調應允許指揮官快速打擊目標。空中和地面部隊必須使用相同的地理參考網格。 聯合網絡對各組成部分的整合至關重要。 在進入或撤出戰區時,與民用航空行動的協調非常重要。防止空中平臺/物體之間的碰撞是一項任務。
圖:戰術戰區。
在TBA中,雙方的空中力量都試圖與對手的地面部隊交戰。印度空軍將支持印度陸軍。也會有許多聯合或特別行動。印度武裝部隊之間的領域劃分明確。 陸軍負責水面協調,海軍負責海上協調,空軍負責空中協調。 國家防空由印度空軍負責。 陸軍和海軍整體資產的防空由其各自負責。 大的空中態勢圖由以色列空軍利用自己的雷達、民用雷達和其他軍種的雷達繪制。這種情況在戰術空中管制(TAC)一級提供給陸軍,在空軍海上部分(MEAF)一級提供給海軍。 所有空中活動的防空許可由以色列空軍負責。 在一小塊空域內的低空飛行的陸軍航空資產不需要任何許可,但必須以數字方式通報飛行信息。同樣,艦艇間的海軍直升機飛行也由海軍管理。 所有在ADIZ內的飛行都需要IAF防空許可。ADIZ以外的海軍飛行由海軍管理。印度空軍攻擊機和支援機在ADIZ外支援印度海軍的飛行由印度海軍協調。印度空軍下達的任何 "不開火 "命令都將是在小范圍內的短期命令,以便不妨礙陸軍/海軍的全面行動。印度空軍飛機通過TBA的低空航線通常是通過共同了解的點。 作為前方空中管制員(FAC)的以色列空軍機組人員也在戰術層面為ASC提供支持。 印度空軍和陸軍在軍團總部和司令部一級有一個接口,以解決日常問題并共同監測戰斗進展。 同樣,空軍人員也與印度海軍一起行動。
為執行上述任務,各級指揮部(軍/師/旅等)都有詳細的安排。空軍是空域的最大使用者,是ASC的最高控制者。允許或拒絕用戶使用空域的指令既有長期指令(高度帶、時間段、飛行/禁飛區等),也有適用于用戶某一時點的動態即時指令。IAF目前正在通過其綜合空中指揮與控制系統(IACCS)統一所有ASC功能。
圖:綜合空中指揮與控制系統(IACCS)。
通過空軍和民航總局(DGCA)之間詳細的制度化合作,ASC組織也將民航納入其范圍。下一代航空運輸系統(NAS)將改變目前的空域,并通過數據鏈傳輸GPS定位來縮短航線。在冷戰期間以及最近在沖突地區附近發生了多起客機被防空飛機和導彈擊中的事件。任何空域管理都必須確保民用飛機的安全。空中恐怖分子現在是一個真正的威脅。恐怖分子正在獲取攜帶武器的無人機或地對地導彈。 恐怖分子在選擇襲擊時間和地點方面具有優勢。 雖然對這種威脅的反應是常規的,但必須對防空程序進行調整,以便在短時間內應對可能出現的突襲飛機。
圖:在空中交通管制(ATC)的印度空軍。
當今的太空衛星支持各種光學、紅外(IR)和雷達傳感器,用于監視、測繪、通信、數據聯網、瞄準和導航。地面行動對太空的依賴程度已達到驚人的程度。 競爭對手將試圖摧毀這些系統。衛星數量與日俱增。 高超音速客機穿越近太空的日子已經不遠了。 太空和大氣層的分界線正在變薄。這為ASC增添了新的內容。以定向能激光或神風衛星為形式的太空武器化是可能的。地面AD和ASC利用衛星執行任務。
圖:天基資產
現在,所有行動都以網絡為中心,各平臺通過電子方式相互對話并共享關鍵數據。 態勢感知(SA)是通過網絡傳感器輸入來實現的。 每個軍種都有自己的安全專用網絡。 此外,還有用于共享共同領域信息的跨軍種網絡。 因此,網絡戰的一個主要部分將是攻擊對手的監視和控制系統,這將帶來災難性后果。網絡戰爭不需要龐大的軍隊。只需一名操作員用一臺簡單的電腦就能發動戰爭。 攻擊的時間和地點可以選擇。任何地面防空網絡和ASC要想取得成功,就必須抵御網絡攻擊。
圖:互聯互通和網絡威脅
無人機系統(UAS)的數量正在增加。它們現在承擔著各種作戰任務,是ASC面臨的新挑戰。它們全天候運行。有人駕駛飛行器和無人駕駛飛行器的聯合已經成為現實。印度武裝部隊正在大量引進無人機系統。任何ASC都必須考慮到無人機系統的運行。無人機系統的監管問題是另一個挑戰。印度民航部已經公布了新的2021年無人機自由化規則。無人機根據重量進行了分類。小型無人機在白天只能在目視視線范圍內飛行,高度在200英尺以下。 大型商用無人機將由民航總局根據國際民用航空組織(ICAO)的規定進行注冊,并分配一個唯一識別碼(UIN)。 將頒發無人機操作員許可證(UAOP)。 所有遠程飛行員必須接受必要的培訓。無人機必須配備RFID/SIM,具有返航選項和防撞燈。 機場和其他敏感區域附近的無人機操作限制將不時通知。
圖:無人機系統的滲透。
部分高速公路正在清理,以便在行動或緊急情況下降落。民用雷達和空管的聯網已經開始。 軍用飛機將獲得直接航線優先權。 行動期間,民用交通將受到高度波段限制。有許多軍民兩用機場。這些機場具有典型的運行特點。 軍用機場有特殊的安全問題。 此外,許多空軍基地的戰備平臺(ORP)上有全副武裝的飛機,可在短時間內起飛。戰損飛機的進場和著陸程序有很大不同。 民用停機坪可用于分散以色列空軍的資產。 ASC必須考慮到所有這些特殊性。
圖:軍民協調。
計算機系統現在可以完成許多通常需要人類智能的任務,如視覺感知、語音識別、決策和語言之間的翻譯。人工智能(AI)為ASC帶來了巨大的發展空間。智能機器系統可以解釋復雜的數據、感知環境并利用解決問題的技術采取適當的行動。人工智能將增強人類在ASC方面的決策能力,特別是在高空移動時,并將更具預測性,以避免潛在的危險事件。它將有助于做出 "去-不去 "的決定。 人工智能將緩解雷達和空中交通管制員目前的長期疲勞。它將極大地支持非常動態的ASC挑戰,并提供最大的操作自由度。
包括無人機群在內的載人和無人操作的混合將是ASC面臨的第一個重大挑戰。智能機載系統將通過高速數字數據鏈路與空中交通和戰斗機控制人員交換處理過的信息。 機載防撞和先進的交通顯示系統將大大提高飛行員和管制員的態勢感知能力。信息豐富的環境要求數據的完整性和安全性。 需要對原始數據進行篩選,使其充分傳播、顯示和使用。人機界面至關重要。必須平穩地轉換到新技術。TBA地區的空中交通和射彈密度將繼續增加。未來的空域將是 "動態 "的,但ASC將得到精確導航、高度測量和精確武器的支持。
無數的傳感器將幫助指揮官和管制員創建一個非常逼真的晝夜全天候態勢圖,以便更有效地管理空域。在地下掩體中利用數據顯示三維動態圖像將成為可能。人工智能將支持快速決策。它將提高操作自由度。在時間和空間上將最大限度地減少 "不開火 "命令。消除沖突將是自動和實時的。越來越多的空中平臺需要采用新技術,并配備適當的航空電子設備和數據鏈路。網絡將使控制中心安全并遠離戰爭迷霧。技術將使民用和軍用機組人員擁有更大的自由度,甚至可以實時選擇飛行路線和替代機場。下一代計劃將更加自動化和靈活,以適應廣泛的用戶。必須確保網絡安全。程序備份必須保持到位。技術發展非常迅速。任何新興國家都必須與時俱進。
軍事人員要在惡劣和不理想的條件下長期作戰,這些條件的特點是環境暴露嚴重、資源匱乏以及身心負擔沉重。在這些條件下長期執行軍事行動,會削弱本已有限的感知、認知和情感資源,而這些資源是維持執行任務相關任務所必需的。未來戰場上復雜的多領域作戰行動預計將進一步提高對軍事梯隊最低層的要求。這些需求的特點是,小分隊在補給有限、技術能力下降的艱苦環境中的作戰時間將越來越長。因此,必須確定新的訓練和技術方法,使軍事人員的表現得以持續、優化和/或提高。為實現這一目標,國際國防科學界、學術界和工業界的研究已開發出幾種前景看好的神經科學策略,包括神經調節和神經反饋技術。本最終報告總結了題為 "認知神經強化 "的北約 "人因與醫學 "小組活動的技術活動: Techniques and Technology (HFM-311))的技術活動,包括對五個參與國在認知神經強化研究和開發方面的最新進展的回顧: 加拿大、德國、荷蘭、英國和美國。該書介紹了六種神經調控技術,包括經顱磁刺激(TMS)、經顱聚焦超聲刺激(tFUS)、經顱電刺激(tES)、經皮周圍神經刺激(tPNS)、光生物調控(PBM)和顱腦電療刺激(CES)。會議考慮了三種神經反饋技術,包括使用腦電圖(EEG)、功能磁共振成像(fMRI)和功能近紅外光譜(fNIRS)監測大腦狀態,并通過機器學習和人工智能實現反饋回路。各參與國的代表總結了利用一種或多種神經調節和神經反饋技術提高作戰人員認知能力的基礎研究和應用研究。報告接著詳細介紹了認知神經強化固有的方法論挑戰,以及在這一領域開展研究、開發和工程的其他注意事項。報告最后討論了神經強化的未來發展方向,包括生物傳感、改進機械和預測建模及軟件工具、開發非侵入式深腦刺激、測試新出現的大腦和行為理論模型,以及開發閉環神經強化和人機協作方法。重點是在作戰人員選拔、訓練、行動和恢復的背景下,規劃、執行和解釋神經增強研發工作的相關概念和方法承諾與挑戰。
關鍵詞: 感知、認知、認知神經科學、神經增強、人類表現、認知表現、經顱磁刺激、經顱電刺激、經皮周圍神經刺激、經顱聚焦超聲、顱腦電療刺激、光生物調制、腦電圖、功能磁共振成像、機器學習、人工智能、生物傳感、人機協作、神經反饋
如果海軍陸戰隊要與近似對手競爭,海軍陸戰隊必須將人工智能(AI)作為一種決策支持系統(DSS),以加快規劃-決策-執行(PDE)周期,從而在認知、時間和致命性方面取得優勢。
信息系統和監視技術正在改變戰爭的特點,使較小的部隊也能分布和影響較大的區域。但是,目前的指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)以及機器人和自主系統(RAS)都是人力密集型系統,會產生大量數據,海軍陸戰隊必須迅速利用這些數據來提供可操作的情報。由于遠征高級基地行動(EABO)要求部隊規模小、分布廣、復原力強,必須迅速做出明智決策,才能在各種不斷發展和演變的威脅面前生存下來,因此這就存在問題。
使用數據分析和機器學習的人工智能處理、利用和傳播信息的速度比人類更快。配備了人工智能 DSS 的 EAB 指揮官將以比對手更快的速度做出更明智的決策。然而,在實現這一目標之前,目前還存在著巨大的障礙。海軍陸戰隊必須為 EABO 制定一個人工智能支持概念,并將其納入海軍作戰概念中,充分確定人工智能工作的優先次序和資源,并為企業數據管理提供資源,以最大限度地利用數據分析和機器學習來發現數據庫中的知識(KDD)。此外,海軍陸戰隊必須利用美國陸軍的人工智能實驗和概念開發來實現多域作戰(MDO)。最后,海軍陸戰隊應確定當前可通過狹義人工智能加以改進的技術和作戰領域。
指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)以及機器人和自主系統(RAS)技術的普及正在改變戰爭的特點,使較小的部隊能夠分布和影響更大的區域。然而,作戰期間收集的數據正在迅速超越人類的認知能力。早在 2013 年,美國國防部就指出:"ISR 收集和......收集的數據急劇增加。我們繼續發現,我們收集的數據往往超出了我們的處理、利用和傳播能力。我們還認識到,就戰術層面的分析人員數量而言,PED 的資源需求可能永遠都不夠"。
如果能迅速加以利用,C4ISR/RAS 數據將為指揮官提供戰勝敵人的信息優勢。但是,從這些來源獲取及時、可操作的情報需要大量人力,而且必須通過人工手段對數據進行快速處理、利用和傳播(PED)才能發揮作用。如果遠征軍要通過 C4ISR 與近鄰競爭并獲得競爭優勢,這對海軍陸戰隊來說是個問題。這些豐富的信息可以加快計劃-決策-執行(PDE)周期,但如果不加以管理,就會使領導者被信息淹沒,猶豫不決。必須采取相應措施,利用新技術實現數據自動化和管理。如果海軍陸戰隊要與近似對手競爭,海軍陸戰隊必須將人工智能(AI)作為決策支持系統(DSS),以加快 PDE 周期,從而在認知、時間和致命性方面取得優勢。
本文旨在證明,利用人工智能技術可加快指揮官在其環境中的觀察、定位、決策和行動能力。本文承認,但并不打算解決射頻通信、信息系統和組織變革中出現的技術問題的重大障礙。本文分為四個不同的部分。第一部分重點討論不斷變化的安全環境和新興技術帶來的挑戰,以及這些挑戰將如何影響指揮官。第二部分討論技術解決方案、決策模型,以及人工智能作為 DSS 如何為 EAB 指揮官創造認知、時間和致命優勢。第三部分將在未來沖突中,在 EAB 指揮官很可能面臨的假想作戰場景中說明這種系統的優勢。最后一部分重點討論了實施過程中遇到的障礙,并對今后的工作提出了建議。
自 2001 年以來,海軍陸戰隊在 "持久自由行動"(OEF)、"伊拉克自由行動"(OIF)和最近的 "堅定決心行動"(OIR)中重點打擊暴力極端組織(VEO)和反叛亂戰爭。美國武裝部隊所處的是一個寬松的環境,有利于技術優勢、不受限制的通信線路和所有領域的行動自由。隨著 2018 年《國防戰略》(NDS)和海軍陸戰隊第 38 任司令官《司令官規劃指南》(CPG)的出臺,這種模式發生了變化,《司令官規劃指南》將大國競爭重新定為國家國防的首要任務,并將海軍陸戰隊重新定為支持艦隊行動的海軍遠征待命部隊。
為了支持這一新的戰略方向,海軍陸戰隊開發了 "先進遠征作戰"(EABO),作為在有爭議環境中的瀕海作戰(LOCE)和分布式海上作戰(DMO)的一種使能能力。EABO 為聯合部隊海上分隊指揮官或艦隊指揮官提供支持,在反介入區域拒止(A2/AD)環境中提供兩棲部隊,以獲取、維持和推進海軍利益,作為控制海洋的綜合海上縱深防御。然而,EABO 對部隊提出了一些必須考慮的具體挑戰。這些挑戰包括在所有領域與近似對手的競爭、對新興技術的依賴、人員與能力之間的權衡,以及地理距離和分布式行動帶來的復雜性。總的主題是如何通過在關鍵點上集成人工智能技術來克服這些挑戰,從而增強指揮官的 PDE 循環。
如果情報驅動軍事行動,那么海軍陸戰隊就會出現問題。如前所述,數據收集的速度超過了戰術層面的處理、利用和傳播(PED)過程。數據本身是無用的,必須經過組織和背景化處理才有價值。根據認知層次模型(圖 1),數據和信息對形成共同理解至關重要。聯合情報流程通過規劃和指導、收集、處理和利用、分析和制作、傳播和整合以及評估和反饋這六個階段來實現這一目標。C4ISR/RAS 的擴散擴大了收集范圍,但 PED 卻沒有相應增加。除非采取措施實現信息管理自動化,否則指揮官將面臨信息超載和決策癱瘓的風險。
信息超載是指由于一個人無法處理大量數據或信息而導致的決策困難。 羅伯特-S-巴倫(Robert S. Baron)1986 年關于 "分心-沖突理論"(Distraction-Conflict Theory)的開創性研究表明 執行復雜任務的決策者幾乎沒有多余的認知能力。由于中斷而縮小注意力,很可能會導致信息線索的丟失,其中一些可能與完成任務有關。在這種情況下,學習成績很可能會下降。隨著分心/干擾的數量或強度增加,決策者的認知能力會被超越,工作表現會更加惡化。除了減少可能關注的線索數量外,更嚴重的干擾/中斷還可能促使決策者使用啟發式方法、走捷徑或選擇滿足型決策,從而降低決策準確性。
鑒于 Baron 的結論,C4ISR/RAS 將降低而不是提高戰術指揮官的決策能力。筆者在擔任海軍陸戰隊作戰實驗室(MCWL)科技處地面戰斗部(GCE)處長期間進行的研究證實了這一結論。2013 年,海軍陸戰隊作戰實驗室 (MCWL) 開展了戰術網絡傳感器套件 (TNS2) 有限技術評估 (LTA)。一個海軍陸戰隊步槍連及其下屬排配備了空中和地面機器人、地面傳感器以及戰術機器人控制器(TRC)。戰術機器人控制器使一名操作員能夠在白天或黑夜,在視線范圍外同時控制多輛戰車進行 ISR。MCWL 將這種 ISR 形式命名為多維 ISR(圖 2)。LTA顯示,使用TNS2的排級指揮官在防御、進攻和巡邏時都能迅速發現威脅,但LTA也發現了兩個重大問題:1.在軟件和機器人能夠自主分析和關聯傳感器輸入之前,海軍陸戰隊員仍需收集和整理ISR數據;2.在中高作戰壓力下... 在中度到高度的作戰壓力下......操作人員會超負荷工作......無法探測和識別目標,并普遍喪失態勢感知能力。
海軍陸戰隊情報監視和偵察--企業(MCISR-E)正在通過海軍陸戰隊情報中心(MIC)、海軍陸戰隊情報活動(MCIA)與戰斗支援機構(CSA)和國家情報界(IC)連接,納入預測分析流程,以解決這些問題。通過海軍陸戰隊情報活動(MCIA),MCISRE 解決了全動態視頻(FMV)聯合 PED 支持問題,并于 2017 年成立了全動態視頻聯合 PED 小組,該小組具有全面運作能力,每周 7 天提供 12 小時支持,費用由 14 名分析員和 3 名特派團指揮官承擔。
雖然這是朝著正確方向邁出的一步,但由于人力需求量大,這可能證明是不夠的。EAB 指揮官必須依靠地理位置相隔遙遠的上級總部提供的、通過有爭議的電磁頻譜傳輸的情報成品。海軍陸戰隊司令部的 MIX 16(海軍陸戰隊空地特遣部隊綜合演習)實驗結果證實了這一結論: "未來戰爭將在具有挑戰性的電磁環境中進行,分布在各地的部隊......從上級總部 "伸手回來 "獲取日常情報援助的能力可能有限,而且無法依賴"。此外,在戰術和作戰層面增加更多的分析人員會導致循環報告,這只會加劇信息超載問題。
根據《EABO 手冊》,EAB 必須 "產生大規模的優點,而沒有集中的弱點"。美國陸軍在 2016 年進行的實驗表明,較小的單位有可能分布并影響較大的區域(圖 3)。有人無人協同作戰概念(MUMT)認為,采用縱深傳感器、縱深效應和支援行動的部隊可實現戰斗力并擴大其影響范圍。
然而,DO 和 EABO 是零和博弈。C4ISR 和 RAS 技術可以讓部隊分布得更遠,但實驗表明,規模經濟會喪失。增加兵力將增加所有領域的需求。正如皮涅羅在 2017 年的一篇研究論文中總結的那樣:"當部隊分散時,就會失去指揮與控制、情報和火力等輔助功能的效率。"在后勤方面也是如此。這種 "DO 困境 "可以用以下經過修訂的 "三重約束范式 "來表示(圖 4)。隨著部隊的分散,一個領域的整合將削弱另一個領域的能力。如果 EAB 指揮官能在不增加 EAB 占地面積的情況下提高能力,就能重新獲得規模經濟效益。智能技術整合可以解決這一問題。
人工智能展示了解決 PED 問題和 EABO/DO 困境的最大潛力,同時為指揮官提供了對抗性超配。據審計總署稱,"人工智能可用于從多個地點收集大量數據和信息,描述系統正常運行的特征,并檢測異常情況,其速度比人類快得多"。由聯合規劃流程(JPP)提供信息的人工智能系統可以產生更快、更明智的 PDE 循環。如果海軍陸戰隊想要實現 EABO,就不能僅僅依靠人類。相反,未來的關鍵在于如何利用人工智能來增強人類的決策能力。
研究表明,人類的決策并不完美,在復雜和緊張的情況下會迅速退化。人類的決策在很大程度上是憑直覺做出的,并在進化過程中不斷優化,通過使用判斷啟發法(偏差)來防止認知超載。偏差是快速決策的捷徑,它根據以往的經驗和知識做出假設。36 偏差是一種快速決策的捷徑,它根據以往的經驗和知識做出假設。雖然這些決策已經過優化,但并沒有參考因啟發式方法而被否定的大量數據。由于這些決策都是基于以往的經驗和現有的知識,人們在面對混亂的新情況時可能毫無準備。如前文所述,這對 EAB 指揮官來說是個問題。決策支持系統可以提供幫助。
決策支持系統可以是一個人用來提高決策質量的任何方法。海軍陸戰隊營長利用其參謀人員和聯合規劃流程 (JPP) 提供專家判斷來提高決策質量,而商業部門也越來越依賴于決策支持系統和人工智能來處理大量數據。在本文中,決策支持系統被定義為 "幫助用戶進行判斷和選擇活動的基于計算機的交互式系統",也被稱為基于知識的系統,因為 "它們試圖將領域知識形式化,使其適合于機械化推理"。大多數 DSS 都采用西蒙的有限理性理論(Theory of Bounded Rationality)來建模,該理論承認人類在信息、時間和決策認知方面的局限性。西蒙提出了一個四步模型(圖 5),包括:1.觀察現實的智能;2.制定和衡量標準和備選方案的設計;3.評估備選方案和建議行動的選擇;以及 4.根據信息采取行動的實施。4. 執行,根據信息采取行動,最后反饋到第一步。
指揮官決策的兩個關鍵要素是選擇活動和推理。選擇活動,也稱為選項意識,是指在某種情況下對不同行動方案或備選方案的認識。選擇意識為指揮官提供了通往解決方案的不同途徑。能夠自主分析海量數據的 DSS 可能會揭示出以前不知道的選項。推理是一種邏輯思維能力。通過構建決策過程,數據支持系統可以不帶偏見和感情色彩地對數據得出結論。一些研究表明,在現實環境中,簡單的線性決策模型甚至優于該領域的專家。
DSS 有不同的類型,而類型決定了其性能和對人類增強的效用。智能決策支持系統(IDSS)是與作戰行動最相關的系統,因為它使用人工智能技術和計算機技術來模擬人類決策,以解決實時復雜環境中的一系列問題。在本文中,它將被稱為人工智能決策支持系統或 AI-DSS。它由一個數據庫管理系統(DBMS)、一個模型庫管理系統(MBMS)、一個知識庫和一個用戶界面組成,前者用于存儲檢索和分析數據,后者用于獲取結構化和非結構化數據的決策模型。人工智能-決策支持系統結合了人類構建問題結構的能力,以及通過統計分析和人工智能技術來支持復雜決策的系統,從而壓縮了 PED 流程(圖 6)。
約翰-博伊德上校(美國空軍退役)被譽為機動作戰條令及其相應心理過程模型的主要作者之一。通過對實驗性戰斗機的研究,他認識到 "錯配有助于一個人的成功和生存,以及敏捷性和節奏之間的關系,以及如何利用它們使對手的感知現實與實際現實相背離"。為了解釋這些不匹配,他提出了一個 PDE 循環,后來被稱為 OODA(觀察、定向、決定和行動)循環(圖 7)。博伊德認為,誰能通過歸納或演繹推理更快地執行這一過程,誰就能獲勝。通過將人工智能融入 OODA 循環,EABO 指揮官可以獲得對敵決策優勢。正如伯杰司令在其規劃指南中所說:"在任何規模的沖突環境中,我們必須比對手更快地做出并執行有效的軍事決策。
更好的信息和選擇有助于做出更迅速、更明智的決策,同時減輕認知負擔。EAB 部隊將面臨超音速和潛在的高超音速武器,這將使他們幾乎沒有時間做出充分知情的決策。EAB 指揮官將被迫利用大量有人和無人傳感器平臺感知威脅,并迅速確定行動方案。
人工智能輔助 OODA 循環(圖 8)直觀地描述了 EAB 指揮官如何借助人工智能技術做出決策。它將博伊德的 OODA 循環作為指揮官 PDE 循環的基礎。這反映出指揮官是決策過程的中心,也是情報和決策支持的主要消費者。下一層是國家情報總監辦公室(ODNI)的六步情報循環,用于將數據處理成情報。下一層是西蒙的有界理性模型,用于描述 AIDSS 如何嵌套在 EAB 指揮官的決策框架中。最后,使用狹義人工智能增強的外部代理被疊加以代表物理工具(如 RAS、武器系統、AI-DSS 和圖形用戶界面 (GUI))。在關鍵點集成狹義人工智能,以實現傳感器操作和利用、數據和情報的 PED 以及武器使用的自動化,從而減少人力并壓縮 PDE 周期時間,為指揮官創造可利用的優勢窗口。
由于 EAB 指揮官將在一個簡樸、分散和資源有限的環境中工作,他必須重新獲得在這些方面失去的效率,以超越對手。AI-OODA 循環將按以下方式解決問題。在執行任務前,指揮官進行任務分析/人員規劃流程,以確定指揮官的關鍵信息需求(CCIR)(優先情報需求(PIR)/友軍情報需求(FFIR))以及與上級總部意圖相關的任務(作戰空間的情報準備(IPB)、行動區域、任務、約束/限制等)。
在步驟 1. 觀察階段,指揮官收集有關作戰環境、敵我態勢和友軍態勢的數據,以驗證 IPB 中的基準假設并更新態勢感知。為此,將利用國防部云服務和配備計算機視覺和機器學習技術的無人系統提供的多源情報,自主分析環境,查找 CCIR。這些系統在收集和識別 CCIR 時,可根據威脅程度和排放控制(EMCON)狀態采取兩種行動方案:1. 從云和/或邊緣 AI 平臺(AI-DSS)分發/縮減信息;2. 限制通信并返回基地進行開發。從這一過程中收集到的數據將反饋到第二階段--定向,以確定其意義和相關性。
在步驟 2. 在第 2 步 "定向"階段,指揮官要對收集到的大量數據進行意義分析,以便做出適當的決策。隨著數據池的不斷擴大,第一步的輸出結果必須由人工進行處理,這將耗費大量的時間和資源。如果處理不當,指揮官就有可能因信息過載而無法確定行動方案。研究表明,在面臨信息超載等人類認知極限時,人們會使用次優的應對策略,從而導致認知偏差。第二步是當前流程中的瓶頸,也是人工智能輔助決策支持系統(AI-DSS)緩解信息過載和縮短 PDE 周期的理想場所。
AI-DSS 的優勢在于它可以自主地以數字方式整合來自無限量來源的數據,包括多源情報、RAS、鄰近邊緣 AI 節點、開放源數據以及最終基于國防部云的服務,以生成決策輔助工具、預測性威脅預報或響應行動方案。通過監控這些來源,人工智能可利用 KDD 推斷出模式和意義,以探測敵方意圖,并在人工智能-OODA 循環的第 4 步中利用 F2T2EA(發現、修復、跟蹤、瞄準、交戰、評估)的殺傷鏈模型做出反應。與計算機網絡防御(CND)中使用的技術類似,EABO 部隊可以探測敵人的行動,將敵人的殺傷鏈指標與防御者的行動方針聯系起來,并識別出將敵人的個別行動與更廣泛的戰役聯系起來的模式,從而建立起陸基情報驅動的 SLOC(海上交通線)防御(IDSD),以控制當地海域。現在,他的情報系統已獲得最佳數據,并輔以人工智能生成的行動方案 (COA),為第 3 步 "決定 "做好準備。
在步驟 3. “決定”步驟中,指揮官現在可以決定采取何種行動方案來實現預期結果。AI-DSS 可以推薦 COA、確定成功概率并建議后續行動或對手行動。通過圖形用戶界面,她的決定可以在整個梯隊中傳達,并傳遞給 RAS 平臺,從而在分布式作戰空間中形成一個綜合的有人無人團隊。
在步驟 4.“ 行動”中,指揮官正在執行任務,并利用反饋機制為其下一個決策周期提供信息,該決策周期已通過綜合通信、火力和指揮控制網絡進行了溝通,以確定可用和適當的武器系統。人工智能 OODA 循環將循環往復地進行下去,直到指揮官達到預期的最終狀態或情況不再需要采取戰術行動。通過利用人工智能作為 DSS,指揮官實現了以下目標:
1.融合--在梯隊中快速、持續、準確地整合來自所有領域、電磁頻譜(EMS)和信息環境的內部和外部能力;
2.優化 - 在正確的時間,以最有效和最高效的方式,向正確的目標提供效果的能力;
3.同步--將態勢感知、火力(致命和非致命)和機動結合起來進行滲透和利用的能力;以及
4.感知和行動速度--在沖突的各個階段都能識別和直觀地看到導致領域優勢和/或挑戰的條件,并采取相應行動;
確信所有數據點都以不偏不倚的方式加權,且周期速度快于敵方。
本節將通過一個小故事來解釋人工智能-OODA 循環系統在未來沖突中如何運作,從而將前面討論的主題結合起來。本節旨在從概念上向讀者概述如何使用該系統、它能解決哪些挑戰以及它能創造哪些機遇。
有幾個問題不是本文的主題,但卻是接受和開發 AI-DSS 的重大障礙。將精力和資源集中在這些領域將激發行業解決方案,并協助海軍陸戰隊制定必要的政策、程序和戰術,以實現這一概念,并使海軍陸戰隊與國防部的人工智能戰略保持一致。
第一個問題是 EABO 的人工智能支持概念。如果對問題沒有清晰的認識,海軍陸戰隊就無法在技術、培訓和實驗方面進行適當的投資。一個可以考慮的途徑是與美國陸軍合作。2019 年 8 月,陸軍未來司令部發布了《2019 年未來研究計劃--人工智能在多域作戰(MDO)中的應用》。MDO 是聯合部隊的一個概念,海軍陸戰隊可以輕松嵌套在遠征梯隊中。這項研究通過戰爭游戲得到加強,概述了在 A2/AD 環境中建立人工智能能力的要求、優勢/劣勢和作戰案例。
第二個問題是海軍陸戰隊人工智能的資源配置。國防部人工智能戰略的美國海軍陸戰隊附件在 MCWL 設立了人工智能利益共同體(COI)和人工智能處,以確定人工智能工作的優先順序和同步性,并制定海軍陸戰隊人工智能戰略。這是一個良好的開端,但還不足以滿足人工智能運作所需的資源。海軍陸戰隊必須利用美國陸軍在多域作戰中開展的人工智能工作的范圍和規模,加速技術成熟、實驗和部隊發展。軍事、戰爭和后勤部人工智能有限技術評估應重點關注人工智能-DSS 如何能夠實現、改進或完全修改與 ISR-Strike、C2、維持和部隊保護相關的任務執行。2020 年有機會與陸軍人工智能任務組 (A-AITF) 就其 20 財年人工智能操作化研究計劃開展合作。
第三個問題是企業數據管理。國防部在匯集數據并將其組合成可用的形式方面舉步維艱。為了解決這個問題,國防部數字化現代化戰略要求提供企業云數據服務,也稱為聯合企業防御基礎設施(JEDI)。司令還認識到海軍陸戰隊在數據收集、管理和利用方面的不足,以促進更好的決策。機器要進行 KDD,必須有大量可用的數據集。海軍陸戰隊必須以人工智能-DSS 和其他深度學習技術能夠利用的方式構建其數據,以獲得業務收益。
第四個問題是對人工智能技術的信任。根據美國政府問責局的說法,人工智能正在接近第三次浪潮,但并非沒有嚴重障礙: "第三波人工智能的一個重要部分將是開發不僅能夠適應新情況,而且能夠向用戶解釋這些決策背后原因的人工智能系統"。目前的深度學習方法具有強大的分析能力,但有時會產生不尋常的結果。要讓指揮官信任并在軍事行動中使用 AI-DSS,就必須具備解釋人工智能如何得出答案的能力。可解釋的人工智能是國防部和商業部門共同關注的問題,而商業部門正在牽頭研究可能的解決方案。53 可解釋的人工智能是國防部和商業部門都關注的問題,而商業部門正在引領可能的解決方案研究。了解為什么會做出好的或壞的決策,會讓人對技術產生信任,這對軍事行動至關重要。
第五個問題是邊緣計算,即 "將計算能力下推到數據源,而不是依賴集中式計算解決方案"。這是必要的,因為電磁頻譜將受到爭奪,機器將無法依賴一致的通信和基于云的計算。數據網絡架構將需要重組,以便變得更加分散,并可抵御災難性損失,每個邊緣設備都應能夠與相鄰節點進行網狀連接和通信。在實踐中,數據連接將根據威脅環境從完全連接到拒絕連接的滑動范圍進行。這樣,AI-DSS 就能對本地收集的數據進行快速、實時的 PED,為 EAB 指揮官的決策周期提供支持。此外,國防部必須在戰術邊緣提供基于云的服務,并采用 5G 數據傳輸速率,以機器速度和低延遲充分利用人工智能和 RAS。同樣,這也是與美國陸軍在多域作戰方面的合作領域。
第六個問題是,這在以前已經嘗試過。2002 年,美國國防部高級研究計劃局(DARPA)創建了 PAL(個性化學習助手)計劃,作為一種認知計算系統,它可以通過學習來協助用戶完成任務,從而做出更有效的軍事決策。其主要目標之一是減少對大量人員的需求,從而使決策更加分散,不易受到攻擊。PAL 的一些功能包括將多源數據融合為單一饋送,這些功能已過渡到蘋果 Siri 個人助理和美國陸軍的未來指揮所 (CPOF) 計劃。筆者無法獲得有關 PAL 計劃局限性的詳細信息,但陸軍認識到遠征決策支持系統的必要性,目前正在精簡 CPOF。指揮所計算環境(CPCE)將多個環境整合為一個單一的用戶界面,整體重量從 1200 磅減至 300 磅,主要用于移動作戰。這是朝著正確方向邁出的一步,也是陸軍和海軍陸戰隊的潛在合作領域。
最后,MCWL 應研究在 RAS、計算機視覺、機器學習和數據分析方面的狹窄人工智能領域,這些領域可立即應用于減少指揮官的認知負荷。
當前的 C4ISR/RAS 是勞動密集型的,會產生大量數據,必須迅速加以利用,才能為海軍部隊提供可操作的情報。使用數據分析和機器學習的人工智能可以比人類更快地處理、利用和傳播信息。配備了人工智能信息系統的 EAB 指揮官將以比對手更快的速度做出更明智的決策。然而,在實現這一目標之前,目前還存在著巨大的障礙。展望未來,海軍陸戰隊必須制定一個與海軍作戰概念相匹配的海軍陸戰隊作戰概念,對人工智能工作進行充分的優先排序和資源配置,對企業數據管理進行資源配置,以最大限度地利用數據分析和機器學習來發現數據庫中的知識(KDD),并利用美國陸軍的人工智能實驗和概念開發來實現多域作戰(MDO)。此外,海軍陸戰隊應確定當前可通過狹義人工智能加以改進的技術和作戰領域。
海軍陸戰隊不能再依賴過時的決策支持系統和信息管理方法來進行戰術決策。隨著友軍和敵軍利用技術獲取戰術利益,指揮官的信息負荷將繼續增加。人工智能決策支持系統可以解決這個問題。軍事指揮與控制發展計劃》(MCDP 6)指出了這一點的必要性:"無論時代或技術如何發展,有效的指揮與控制都將歸結為人們利用信息做出明智的決定和行動....,衡量指揮與控制有效性的最終標準始終如一:它能否幫助我們比敵人更快、更有效地采取行動?
指揮、控制、通信、計算機、情報、監視、偵察(C4ISR)是一個系統,有助于提高指揮官的態勢感知和決策能力,同時也有利于更好地進行作戰計劃和執行。數字化的信息和通信技術的快速發展使C4ISR組件和網絡能力有了相應的進步。
同時,現代沖突區從一個線性戰場轉變為一個跨越多個領域和維度的廣闊戰斗空間,這對戰爭的認知方面提出了更高要求。最近的戰役凸顯了技術領先的C4ISR在各級沖突中提供的優勢,現在人們對C4ISR能力對軍事理論的影響有了更大的接受度。決策者們正在尋求更加優化的傳感器幾何結構以提高覆蓋率,并通過安全、普及的通信網絡實現信息的實時流動,以實現信息優勢。先進的數字工具和數據處理能力正在被利用,這將有助于簡化決策過程,縮短OODA周期。
所有的現代軍事行動都涉及協作行動,戰斗力的協同應用決定了網絡化的C4ISR組件。然而,這些能力在傳統上是孤立開發的,以滿足特定領域或功能的需要。這些以服務為中心的封閉式架構阻礙了互操作性和聯合行動。雖然所有的遺留系統都需要通過適當的協議進行整合,但這些系統的未來發展模式將探索新興技術提供的機會,以實現整合或互操作的架構,并提高系統的能力。
美國是這一概念的最早實踐者,并通過持續的投資和創新保持了優勢。它正在認真地追求聯合全域指揮和控制(JADC2),包括新興技術及其應用,目的是實現和保持信息和決策優勢。在中國,信息優勢一直是其軍事理論的一個決定性因素,現在已經演變成 "智能化",特別強調探索人工智能(AI)和量子計算以增強C4ISR能力。俄羅斯和烏克蘭的C4ISR都在研究、評估和討論其功效。在全球范圍內,對C4ISR系統能力提升的投資正呈現出上升趨勢。
近年來,印度在傳感器多樣化和規模化、提高系統間的互操作性和實現網絡中心化方面的工作也得到了加強。信息技術的內在力量正在被利用來提供未來的、創新的解決方案。通過政府和私營企業的參與,最近在2022年7月推出了75種基于人工智能的產品和技術,其中15種與C4ISR有關。Atmanirbharta的工作不僅將激勵國內工業,而且還將確保系統的穩健性和彈性。最重要的是,系統將得到及時的升級,沒有任何合同上的復雜性。
本期雜志在繼續尋求解決與國家安全和聯合作戰有關的問題時,全面涵蓋了與技術密集型軍事C4ISR系統有關的各個方面。
無人系統,無論是遙控操作還是不同程度的自主操作,已經成為國防庫存的一部分,除了用于情報、監視和偵察(ISR)之外,還迅速成為作戰部隊的重要組成部分。無人駕駛飛行器(UAVs)具有數天的續航能力和洲際范圍的打擊能力,正在重新定義戰爭理論和作戰戰術。海軍和地面部隊將成為無人系統的新領地,而這一領地至今仍由無人機主導。真正的轉折點將是人類和自主無人系統的合作,無論是在任何戰斗空間。另一個領域將是空中、地面和海軍異質無人系統的合作,并迅速形成業務自主團隊。重要的是要認識到,無論是基于確定性模型還是人工智能的算法計算,都不能取代人類對手頭關鍵信息的戰術判斷。所謂的態勢感知可以由經驗豐富的戰場指揮官來理解,而不是由實驗室訓練的自主系統來理解。在復雜的情況下,特別是在識別朋友和敵人、誘餌以及確定目標的優先次序方面,團隊合作將是一個挑戰。自主系統將需要學會節約能源和彈藥,并具備應對不利情況的生存技能。另一個重要的領域將是開發 "天生自主 "的平臺,其性能將超過所有的載人平臺,特別是大型平臺。本質上,人類注意力持續時間的限制和生物的必要性是國防系統設計者的主要挑戰。無人自主系統(UAS)克服了這些限制,同時放棄了人類獨特的敏銳性和啟發式知識。緊湊的可能性、承擔風險的能力和巨大的耐力和范圍,以及最重要的是,可以部署的數量超過了每一個方面。無人戰場系統領域仍處于起步階段,具有先驅者的優勢,因此將永遠決定領導者的地位。該領域屬于那些敢于和不畏懼未知和不確定因素的人。這個領域的創新的簡單規則是快速失敗和快速發展。
機器人的第一個應用是在核反應堆中裝載和收回燃料棒,這是一項危險的任務,絕對需要使用機械手和夾持器遠程完成。由于對柔性制造工廠的需要,工業機器人大舉進入生產線。由于機器人具有適應新任務的靈活性,應用機器人完成重復以及危險的任務已成為該行業的一種常態。這些系統的遠程操作,無論有無電線,都已經被業界掌握。在第二次世界大戰期間,德國人使用了歌利亞履帶式地雷。埃弗雷特很好地記錄了這個遠程操作系統和其他無人系統的發展。歌利亞 "的基本思想是用小而便宜的東西殺死大東西;即使在今天,這也是所有無人系統的主要思想,廣泛地說,它是用更少的錢實現更多的東西。任何未來的國防規劃都無法想象會遺漏無人系統。傳統的防御技術一直依賴于傳感器、推進器、制導、軍備等核心技術的進步,并在此基礎上發展壯大。毫無疑問,這些核心技術的研究將以同樣的強度繼續下去,然而,使用無人平臺的創新將為部隊提供前所未有的力量。事實上,今天的無人系統所使用的技術很早就有了,是創新的動力和新的信心水平在推動著新的增長。
日本特種部隊的神風特攻隊飛行員在一次自殺任務中展示了飛行器的殺傷力,突出了這樣一個事實:如果飛行員遠程操作飛機,冒險的能力會成倍增加。然而,無人駕駛飛行器(UAVs)的第一個更高的技術應用是用于情報、監視和偵察(ISR)的作用,與有人駕駛的飛機相比,具有更高的續航能力和射程,以及更高的被擊落接受度。特別是在航空平臺上,取消機上人員提供了巨大的優勢;首先,消除了飛行員寶貴生命的風險,其次,可以獲得額外的空間和重量。載人飛機只會在非常特殊的情況下參與,將大部分任務留給遙控平臺,包括戰斗任務。
有必要回顧一下美國的U2間諜飛機在非常高的高度飛行,對蘇聯執行偵察任務。最初沒有武器來擊落這些飛機。這種導彈最終被開發出來。美國開發的SR-71飛機可以以3.4馬赫的速度飛行,但很快就退役了,改用間諜衛星。現在是無人機填補這一空間的時候了,即使不是完全填補。一群無人機聯網并覆蓋一個巨大的區域可以提供大量的情報和通信覆蓋。
隨著學習算法的成熟,人工智能(AI)作為主要推動力的出現將成為無人駕駛系統的主要工作動力。具體來說,基于人工智能的圖像處理和推理引擎是最近一段時間的主要發展。其中包括人臉識別,目標的識別和分類--一個人是拿著槍還是拿著杖,一輛車是否是值得的軍事目標。重要的方面是人工智能系統可以得到多好的訓練,他們的推斷能力有多強,當出現反直覺的情況時,會發生什么。必須接受的是,在該領域有經驗的人可能會很慢,而且可能會犯錯,但當涉及到未知因素時,他的啟發式方法和直覺可能是更好的選擇。
整個現代戰爭都取決于通信領域,誰在戰場上主導了這個領域,誰就會有巨大的優勢。整個無人系統如果沒有一個強大的通信系統,就會使自己失去作用。能夠與指揮中心有效溝通的空間資產甚至更加重要。
最令人興奮的是 "蜂群 "的概念,其中蜂群的單個實體可能有非常簡單的傳感器和控制器,但在一個具有簡單蜂群算法的編隊中,它們可以成為一支重要的力量,當它們攻擊傳統平臺時,沒有人能夠對付它們。想象一下,當反艦導彈在其目標附近投放蜂群時,這些攜帶小型炸藥的蜂群實體可以擊中戰艦的重要系統,或者可以做任何事情,包括將戰艦圍困。目前,唯一可以想象的針對蜂群的可靠對策是反蜂群。
科學和技術研究將在核心技術和材料科學方面繼續保持同樣的活力,特別是在非金屬材料方面。未來的無人系統研究將更多地以應用為導向,學術界和國防科學家共同合作,調整和配置技術,包括非常嚴肅的實驗室模擬和實際場景的仿真,以及對必須處理這些情況的人工智能引擎的培訓。
審慎的做法是看一下一些可能的未來主旨領域,在這些領域中,可以預期會有顯著的增長。建造未來無人系統的技術將與建造傳統戰爭機器的技術相同,然而,有幾個重要的應用研究領域將需要立即關注和努力。
首先,最重要的是要有能力與異質系統進行無縫通信,這些系統將有不同的起源和建造日期。所有的東西都不可能是最新的和最先進的。有必要建立一個骨干網,以無縫地處理所有最先進的和傳統的系統,以便指揮中心的人類指揮官能夠快速更新和理解情況,并給這些無人駕駛系統提供適當的指示。將需要具有容錯和快速重新配置能力的分布式通信網絡。這些網絡應該能夠使用多種資源,即衛星、無人機、地面光纖網絡、帶有或不帶中繼器的不同頻段的無線網絡。這些系統將是軟件驅動的,有能力用任何可用的最佳資源建立從戰場到指揮中心的聯系。通信系統需要應對固定電話的物理破壞、無線鏈接的干擾等。毋庸強調,通信網絡應該有強大的加密、解密和認證系統。據說,在未來的任何戰爭中,誰主導了電磁空間,誰就是贏家。應該承認,現代系統有很強的屏蔽能力和抗干擾能力,它們可以 甚至可以承受高能量的脈沖。使敵方平臺失明到支配水平所需的能量水平是巨大的,不切實際的,甚至是不可能的。其次,利用衛星、無人機作為通信平臺,可以快速連接備用通信渠道。總而言之,誰擁有更好的和強大的通信網絡,誰能更快地處理數據并有效地利用現有的數據,誰就能在戰場上處理無人駕駛系統方面擁有巨大的優勢。
有人與無人機編隊(MUMT)是一個預期的增長方向,其主要目標是在最大限度保護載人平臺的情況下有效打擊目標。這帶來了一個優越的形勢思考者--人類--的優勢,這樣他就可以指導無人平臺達到最佳效果。有人-無人合作可能有許多技術挑戰,但它似乎是一個值得追求的研究領域。一個典型的場景可能是傳統戰斗機與無人平臺一起飛行。美國的國際防務、航空航天和安全公司BAE系統公司已經宣布了無人駕駛僚機的概念,并且可以使用無人駕駛僚機的戰斗機具有更多的生存能力和更大的殺傷力。諾斯羅普-格魯曼公司也發表了一篇論文,提出了一個典型的作戰場景,即一群無人機干擾敵人的雷達,并在進行救援行動時自主地參與戰斗。有人和無人平臺之間的合作以及戰術場景需要由各自的專業人員進行想象和制定。團隊合作的不同場景必須被模擬、仿真,并對人工智能引擎和人類作戰員進行培訓。
無人機、無人地面飛行器和無人水面及水面下系統組成的蜂群可以對沒有任何反制措施的常規平臺造成不成比例的破壞。一輛作戰坦克如果被一群炸藥包圍,僅憑數量就沒有生存的機會。電子對抗措施可能起作用,也可能不起作用,這取決于這些實體被設計成如何在受挑戰的環境中運作。很難想象常規平臺在面對蜂群時的命運。使用誘餌,如照明彈、金屬箔片、高強度輻射來蒙蔽搜尋者、反射器、熱信號模擬器的經典方法可能對蜂群沒有用。它不像一個單一的彈頭朝向目標,你甚至可以用反導彈系統將其擊落。無人機群更容易建造和部署,它們可以由一個較大的無人機運送到離目標足夠近的地方,但又足夠遠以保證自身的安全。它類似于從戰斗機上遠距離發射的反艦導彈。飛機從未進入艦艇防空導彈的射程,但其射程足以讓反艦導彈到達目標。
蜂群依賴于蜂群算法,這些算法將通過在計算機模型或實驗室的實驗裝置中的模擬環境中進行訓練而發展。Eric Bonabeau、Marco Dorigo和Guy Theraulaz在他們的書中提供了對蜂群算法的良好見解。人工神經網絡(ANN)、遺傳算法(GA)、模糊邏輯、圖論等的組合,成為學習和建立人工智能系統的基本工具。這些基于人工智能的系統和一些確定性的算法將能夠處理蜂群操作的一些重要方面,即:蜂群的傳播、目標的識別和將目標分配給蜂群成員、目標的優先次序、蜂群的領導和等級制度、它們的操作情緒,即:保存能量、保壘、全力攻擊或撤退。就像自然界的蜂群或獸群一樣,它們需要具備生物世界的一些特征,以獲得更好的效率和生存。有些情況可能是為了部落的更大利益而進行自我犧牲。一個直接的需要是解決識別朋友或敵人的問題,并在與指揮中心失去聯系時以最佳方式采取行動。一群無人駕駛的戰斗坦克的成本和大小將是四分之一,并且有更多的裝甲來打敗傳統的反坦克射擊。
在極低地球軌道上的太空衛星群具有較短的壽命,將給部隊帶來優勢。將會有一種 "軍事物聯網 "的出現。
未來的戰場如果沒有各種蜂群將是不可想象的。武裝部隊別無選擇,要么盡快接納它們,要么面對它們。
不難預見,超音速無人駕駛作戰飛機的出現,以及類似的無人駕駛作戰坦克、無人駕駛海軍艦艇和潛艇的出現,與現有的常規平臺相比,其殺傷力要大很多。這些系統將以自上而下的方式設計為 "天生自主",并能夠在人類指揮官的指揮下以群組的形式運行,戰術上避開障礙物、與指定目標交戰等任務都是自主完成的。諾斯羅普-格魯曼公司的X-47B已經完成了半自主和自主模式的飛行試驗。預計它將在半自主模式下投入運行。
直觀地講,可以理解的是,不能讓自主系統自己操作,因為它們是根據所學的內容來操作的,對于不熟悉的和大綱以外的問題,人工智能可能沒有答案,但在完全不確定的情況下,人類的理解力可能要好得多。像無人駕駛作戰坦克這樣的大型平臺可以在半自主模式下運行,其中發射武器的決定將由人類控制,而其他操作,如避開障礙物和移動將是自主的。一個操作員控制幾個平臺的可能性將需要有效的算法開發,最重要的是培訓。
將接近報廢的常規平臺轉換為無人系統是另一種選擇,以便在 "先天自主"類型的系統擴散之前擁有一個相當大的無人系統基地。這樣的轉換需要非常小心,因為大多數子系統可能需要調整和手動調整,甚至是修改。戰斗機、作戰坦克、海軍艦艇包括潛艇的轉換可能需要更深入的研究,如果是許多大型平臺,可能不值得努力。未來具有可比火力的無人系統在尺寸和重量上將更小,并將攜帶更多的傳感器,而且必然會有一個完整的健康監測系統。
推動未來發展的另一個重要方面是大型平臺面對不斷發展的導彈技術時的脆弱性。尋的器變得更加智能和精確,推進系統變得更快,而高超音速導彈也不是很遙遠。現在已經到了裝甲部隊更難戰勝彈藥的階段。除非使用大型航空母艦的部隊能夠完全支配敵人,否則大型航空母艦的前景確實很暗淡。抵消這種情況的唯一方法是擁有大量的無人駕駛系統,形成無法對抗的集群。需要注意的是,任何反制措施的發展都會滯后于任何新的戰爭武器。目前,無人系統,尤其是蜂群具有這種優勢。任何擁有蜂群打擊能力的武裝力量都將在戰場上擁有巨大的優勢。
指揮中心將需要大量的軟件來吸收來自無人駕駛系統的巨大數據流。人類不可能處理和控制具有不同任務的多個蜂群,因此,指揮中心的軟件工具需要具有優先考慮的能力,并為人類決策者提供圖形化的情況,以便向自主無人平臺蜂群發出指令,有效地完成任務。首先,我們應該建立這樣的指揮中心,能夠處理巨大的通信流量。其次,軟件應該能夠吸收數據并大致推斷出情況,并提出人類指揮官必須知道并采取行動的重要和關鍵信息。
軍事硬件的庫存將是異質的,種類繁多,這與維修專業人員的意愿相反。使用傳統的記賬和存儲方法將是不可能的。幸運的是,可以建立具有健康監測功能的系統,其升級和維護記錄可以通過軟件集成來實現自動化,大部分傳統的存儲管理也可以實現自動化。庫存的種類和巨大的類型反而是可取的,而不是維護的禍根。即使從管理的角度來看,這些系統的自動化也會使尾牙比率下降。然而,這些系統的技術支持需要工業企業的支持,無人駕駛系統和人類指揮官的培訓需要特殊的實驗室基礎設施。
目前,壓力驅動型和影響型地雷被埋在地下,這些地雷等待著敵人的戰斗坦克不小心踏過去而啟動。埋設的地雷將真正被埋入歷史,原因有二:第一,埋設數公里的地雷將無法阻止敵人,因為地雷探測已經變得更快,用掃雷器或布雷器或拖網清除一些地雷的突破口將形成車輛安全通道。強大的掃雷系統可以在一兩個小時內清除一條車道,而敵方車輛可以突破,使苦心營造的雷區完全失去作用。其次,有可能設計出具有智能和移動性的地雷,使雷場具有致命性。未來的雷場將是智能化的地面地雷,對任何企圖突破的行為進行監視,這些地雷也可以是移動的,可以迅速治愈雷場,拒絕敵方車輛和部隊通過,同時為自己的車輛和人員提供安全通道。這樣的智能雷場將是可怕的,并為懲罰敵人提供更多時間。
海底水雷是致命的,因為它們無法被探測到,拆除它們的唯一方法可能是派遣一艘無人駕駛的水面下的船只來目測和消除地雷。目前,海面下的地雷是由耐力有限的特殊破雷船破除的。無人駕駛的破雷自主車輛群可以有效地執行探測和解除這些地雷的任務。
無人機的另一個未來應用是通過各種手段物理攔截低空巡航導彈和其他導彈來保護機場。這個概念類似于地面或海上的雷區。用無人機群在機場周圍設置雷場,可以完全保護機場不受任何入侵。蜂群的方法之一可能是幾個無人機攜帶像網一樣的物理屏障,并將網置于來襲導彈的彈道中。這些可以自主操作,而友軍的飛機將在蜂群提供安全通道的情況下沒有任何問題地運行。
擁有隱身技術的第五代飛機將擁有巨大的優勢。具有相同水平的隱身技術和較小的雷達截面的無人機將成為一種可怕的武器。如前所述,常規平臺的所有技術都將流入無人駕駛系統。如果這些系統的群集,最初從群集中分散開來,匯聚到一起攻打敵人的陣地,如機場等,這將是一種致命的和可怕的武器。當出現反戰時,隱身能力將變得很重要,在這種情況下,誰能給誰帶來驚喜將成為制勝點。內部武器艙、合并機身的飛翼和蛇形進氣口將成為UCAVs的基本特征。帶有雷達吸收夾雜物和涂層的復合材料以及具有最小反射邊緣的變形翼將是未來的趨勢。
不難猜測,現有的雷達在對付RCS非常不明顯的小型無人機時有什么缺點。這些雷達從來就不是為這個角色而設計的。為了謹慎起見,我們應該指出這樣一個事實:能夠提供最遠射程的最節能和緊湊的雷達取決于材料技術和特定半導體技術的制造技術。這是一個被嚴密保護的技術領域,這些技術中最好的技術將被列入拒絕名單,以便技術發展國家始終保持領先。長期以來一直如此,除了先進的半導體之外,所有先進材料也將繼續如此。能夠對大面積地區進行監視的天基雷達也將提供巨大的優勢。然而,另一種方法是擁有無人駕駛的預警監視飛機,其機載雷達以蜂群的形式運作,并持續提供集體情況數據。這不僅可以提供敵方機場行動的數據,還可以提供地面活動的數據。
由無人機或無人水面艦艇進行的海面監視將提供對水面艦艇活動的情況了解。然而,最具挑戰性的部分是次表層領域,其傳感器的范圍非常小,而且介質的不一致性使得探測潛艇極為困難。適當的做法是讓較小的無人潛水艇在感興趣的區域運行,以探測任何敵方的潛水艇。
與傳統系統不同,無人駕駛系統非常容易受到外國供應商可能在代碼中實施的殺傷開關的影響。事實上,從外國提供的所有高科技系統都有保障措施,使武器不能被用來對付原產國,因為它可能落入壞人之手,或者進口國可能在未來變成敵對國家,這不是什么秘密。其次,必須認識到,無人系統的主要優勢在于其數量和在必要時被犧牲的能力,所有進入這些系統的技術總量都是成熟的技術,設計創新是優勢的主要支點。因此,可以得出結論,在國內用已經成熟的技術建立可信的無人系統是可能的。由于數量、種類和不同的尺寸會很高,謹慎的做法是,本土系統應以比發展本身更快的速度引進。
同時,軟件升級和諸如傳感器單元等組建的升級必須經常進行,至少以三年為一個周期,電子和軟件的完整升級壽命最長為10年。無人系統的數量和它們的賭注在未來將繼續增長,這有很多原因。武裝部隊總是期待著技術上最好的產品。然而,技術的創新和應用的增長將是如此之快,以至于超過了傳統的現場試驗、采購和誘導時間周期。非常規的系統需要非常規的入伍方式,而武裝部隊需要一些創新的管理過程。平臺和技術集合體有不同的生命周期,隨著新的步伐,必須盡早考慮預先計劃的產品升級。一些未來的技術可能仍處于理論或早期實驗室階段。更快的誘導和升級的經濟性既不會打動管理者,也不會打動財務控制人員。
無人戰場系統,尤其是 "神風 "無人機,已經經過了實戰檢驗。具有非常有效的人工智能的蜂群技術將在戰場上幾乎是無敵的,具有無可比擬的優勢,因為傳統平臺目前對這種蜂群沒有任何對策。主要的驅動力將是利用已經證實的技術的創新設計,并探索和利用人的生命不受威脅時的獨特優勢。在人工智能系統的開發和實施以及針對特定場景的蜂群訓練方面的應用研究有巨大的潛力。作者第一次接觸人工智能是在1996年,當時印度孟買理工學院的一位研究學者正在研究人工神經網絡,他咨詢確認網絡是否在學習。 該網絡的學習能力確實令人驚訝。后來,作者在研究了一些關于蜂群的學術著作后,于2008年寫了一篇內部論文。然而,所進行的研究并沒有形成一個可交付的產品。
現在用于先進常規平臺的所有先進技術將被部署在無人系統中,這將更加有效。有效的載人-無人機組隊可以給作戰部隊帶來不對稱的優勢。
由于常規導彈系統和定位技術的巨大進步,大型常規平臺更加脆弱,但也因為無人系統的蜂擁而至。陸地和海上的地雷戰將被重新定義,無人預警和監視群將是關鍵領域。
指揮中心將需要智能推斷引擎,以吸收來自無人系統的數百個傳感器的大量數據,并將可理解的數據呈現給人類指揮官,以便他們做出關鍵的決定。
誘導一個創新的首創系統具有先鋒優勢,因為不存在針對這種系統的對策,這將為先鋒提供不對稱的優勢。這不是一個等待和觀察心態的領域。在這里,創造者和先驅者拿走一切。自主無人戰場系統有無限的可能性等待我們去探索。
有必要在每個行動領域建立專門的無人駕駛戰場系統開發中心。在我們建立和測試這些系統時,"天生的無人駕駛 "將有不同的設計原則需要發展。學術研究人員和設計專業人員之間需要協同合作,特別是在算法和軟件的開發方面。謹慎的做法是強調確定性的算法是基礎,而基于人工智能的算法則是通過計算機和物理模擬的系統學習過程中產生的。健全的算法構成了無人駕駛戰場行動的支柱,尤其是在有挑戰的環境中。最后,控制戰斗的人類指揮官將根據他們的啟發式方法和直覺做出最后的決定。
現代軍隊依靠電磁頻譜來運作。因此,通過干擾和定向能量攻擊電子和信息系統會降低現代對手的作戰系統。冷戰結束后,美國的對手在電子攻擊能力方面進行了投資,而美國陸軍則基本上放棄了自己的能力。意識到這一點,陸軍現在正投資于新舊電子武器以縮小差距,在陸軍試驗多域作戰概念時重新獲得電子攻擊能力。本專著的目的是回答這樣一個問題:"美國陸軍如何在MDO空間中利用電子攻擊?" 本專著提出,陸軍作戰部隊應將新興的干擾和定向能武器整合到一個作戰系統中,將物理、控制論和道德效應融合到對敵人的深度攻擊中。這一建議對條令、組織和領導者的發展有重大影響。作者的意圖是鼓勵陸軍領導人將環衛系統中的進攻行動視為當前和未來戰場上聯合武器作戰的關鍵。
無人機系統和傳統的干擾技術已經融合在一起,形成一種新的能力。正如前面的案例研究中提到的,俄羅斯已經在無人機上安裝了干擾器,作為其Leer3 EW系統的一部分。在美國,陸軍和空軍希望更深入地測試空中發射的多功能無人機群,這些無人機可以快速穿越戰場進入對手的支持區,以識別、破壞甚至摧毀高回報目標。陸軍作戰能力發展司令部的合同提案要求這些無人機配備ES傳感器和EA武器,能夠同時探測敵人的作戰秩序,進行干擾,并觀察火力任務。陸軍的建議表明,網絡化的EW無人機在近距離、縱深和支援領域都有作用。除了在更大的收集-火力架構中的整合,EW無人機群可以通過欺騙性的信號和特征支持作戰機動。雖然這一系統尚未投入實戰,但該提案表明,陸軍正在考慮將EA能力與不斷擴大的無人機群整合到一個更廣泛的作戰系統中。
反無人機干擾系統有效地發揮了機動短程防空(SHORAD)武器的作用,保護單位和關鍵節點免受觀察和攻擊。許多反無人機武器干擾或欺騙測向和通信系統,導致無人機墜毀或返航。理想情況下,反無人機EA系統可以與戰區的IADS相連接,能夠迅速解除空域的沖突,辨別敵我雙方。然而,在有爭議的EMS環境中與低空飛行的無人機交戰的被動性質將使蓄意的空域和EMS解沖突變得不可能,特別是對于裝備有便攜式變體的部隊。
定向能源武器的破壞潛力來自于隨著時間推移轉移到目標的能量。高能(HE)激光器的能量通常在千瓦到兆瓦之間。在低端,這些武器可以使傳感器失明。隨著能量的增加,它們可以降低敏感的電子元件,加熱設備和人員,使其不能再發揮其功能,并導致燃料或彈藥爆炸。 美國海軍在實施高能激光器方面處于領先地位,2014年在一艘水面艦艇上安裝了第一臺。它現在在許多艦艇上都有一系列的激光器,從光學 "炫目 "到150千瓦的光束。光學、發電和傳播方法的進步使得在海上、空中和太空以及陸地移動系統中使用高能激光成為現實。
陸基高爆激光系統可以發揮許多功能。在戰術層面上,高爆激光器可以抵御來襲的彈藥,使無人機失效,并壓制敵人的主動防護系統,作為動能射擊的補充。空軍安裝在卡車上的 "恢復基地拒絕的彈藥"(RADBO)系統使用高爆激光器在舒適的距離內引爆地雷。陸軍目前正在開發一種300千瓦的車載激光器,以防止火箭彈、火炮和迫擊炮的攻擊。在戰區和戰略層面,高爆激光器可能是對抗高超音速導彈的唯一有效手段。根據大氣條件和可用功率,地面高爆激光器可以瞄準敵方軌道上的衛星。
高爆激光器可以有效地作為動能武器的彈藥替代物。這也是有代價的:功率要求、交戰時在EMS中的信號增加,以及由于遠距離和跨域的影響而可能造成自相殘殺。高爆激光器還可能受到大氣條件的限制,盡管該領域的進展正在努力克服這一挑戰。
激光與物理環境中的元素的相互作用使DE有了非致命的用途。美國軍方在伊拉克和阿富汗的反叛亂行動的高峰期試驗了 "疼痛射線",作為其主動拒絕系統(ADS)的一部分。該系統是為控制人群而設計的,它將電轉化為毫米級的無線電波,加熱皮膚中的水,在幾秒鐘內產生難以忍受的熱感。對ADS的1.1萬次測試只導致了兩次受傷。另一種應用是用激光在人員附近產生等離子體球,然后用其他激光誘發物理效應,如幽靈般的聲音或周圍空氣中難以忍受的噪音。聯合非致命武器局正處于將激光誘導的等離子體效應武器用于加熱目標的皮膚,產生極其響亮或混亂的聲音,以及投射口頭命令的邊緣。
非致命的DE武器可用于固定地點的安全,可在安全和鞏固行動中使用,并可通過使人群遠離道路來提高流動性。然而,這些武器的新穎性可能會在信息環境中產生負面效應。斯坦利-麥克里斯特爾將軍在ADS部署后的幾周內就下令將其從阿富汗撤走,因為塔利班讓人們相信美國在對平民進行 "微波",使其患上癌癥和不孕癥。
高功率微波(HPM)武器旨在通過用電磁能量壓倒目標的電子裝置來拒絕、干擾、損害或摧毀它們。HPM是可擴展的,根據HPM投射的能量的多少來呈現所需的效果。在較低的范圍內,HPM激增的能量足以 "鎖定 "一個系統,拒絕其使用。在較高的功率范圍內,HPM會破壞集成電路。與干擾器不同,HPM可以在目標系統不工作的情況下實現其效果。反擊HPM需要對整個電子系統進行加固,因為激增的能量會通過暴露的電線、端口、天線和光學器件滲透進去。與高爆激光器不同,HPM是區域性武器。破壞性效果通常是在較近的范圍內產生的,而破壞性效果可以在較遠的距離上實現更大的面積。作為區域性武器,HPM在對付無人機群時特別有用,空軍已經部署了至少一種HPM武器來保護其地面設施免受無人機攻擊。2017年,波音公司和空軍成功測試了 "反電子高功率微波高級導彈項目"(CHAMP),這是一種巡航導彈,旨在用機載HPM摧毀計算機和電子設備。將這種技術應用于無人機系統或基于直升機的運載系統,為遠程HPM攻擊提供了另一個載體。
具有最大戰略潛力的HPM武器是非核電磁脈沖(EMP)。一旦美國研究人員認識到核爆炸伴隨著電磁能量的大規模激增,美國和蘇聯就開始研究用非核彈藥復制這種效果。雖然CHAMP使用機載電池來發射其HPM以達到局部效果,但EMP炸彈將爆炸能量轉移到磁場中,在整個作戰區域產生HPM效果。組件技術已經成熟到EMP炸彈或導彈是可行的地步。雖然國防部沒有公開其EMP研究,但在2017年,國防部向工業界征集一種 "彈藥投送的非動能效應",該效應能夠 "在不破壞與這些系統相關的硬件的情況下使對手的基本工業、民用和通信基礎設施失效"。該提案要求用標準的陸軍155毫米射彈來實現這一效果。96F 97 該提案所要求的能力指向某種火炮發射的EMP武器。由于C2系統和光電傳感器依賴于敏感和脆弱的電子器件,成功的EMP攻擊對對手的影響可能是決定性的。
博伊德斷言,戰斗人員必須有道德-心理-身體的和諧才能進行抵抗。要破壞這種和諧,需要將致命的、機動的和道德的努力結合起來。施耐德斷言,戰斗有三個領域:道德、控制論[心理]和身體。各個領域都會受到能力的影響,包括EA。結合這些觀點,我們得出了一種方法來理解新的電子攻擊能力如何在多領域作戰中被利用(見圖3)。考慮到案例研究,現在的任務是考慮我們如何將新興的EA系統與現有的能力相結合,在物理、控制論和道德領域產生影響,以支持致命的、機動的和道德的努力。
圖 3.“在作戰中應用電子攻擊的模型”。
電子武器特性的最重大變化是開發了能夠直接摧毀敵人系統和平臺的電子武器。HPM和HE激光系統有能力摧毀無人機和飛機。陸軍的高爆激光器目前集中在防空和反無人機任務上,但這些激光器瞄準地面上的敵方平臺只是時間問題。戰斗車輛上的主動保護系統,如以色列的 "戰利品 "系統的擴散,可能需要在用直接或間接火力攻擊這些平臺之前,通過干擾或DE武器對其進行抑制。為工兵部隊配備RADBO或類似的高爆激光系統,將使他們能夠迅速減少雷區,在行動中能夠更快地進行地面機動。
無人機群ES/EA干擾器,與間接或精確火炮協同作戰,形成了一種觀察-壓制-打擊的能力,有可能遠遠超出前線部隊的作戰范圍,支持偵察和反偵察任務。裝有高爆激光器的航空平臺將為陸軍提供其最遠距離的直接火力武器系統,能夠在距離目標數英里的地方升空進行瞄準射擊,然后落回地面。作為常規致命打擊的一部分,EMP炮彈將摧毀主動防護系統和反火力雷達的電路。
陸軍EA系統也將在物理領域支持MDO的其他服務。DE武器的效果上限可以延伸到太空,使其能夠與飛機交戰以支持空軍。消耗性的無人機干擾器可以激活敵方的EA系統,顯示其位置以便聯合瞄準。裝備有小型EMP裝置的特種作戰部隊可以使岸基雷達和導彈系統在沿海和海上行動中無法使用。陸軍高能激光器有可能通過從地面瞄準敵方衛星來支持太空部隊。
雖然美軍傳統上將EA集中在網絡領域,但現代EA武器為陸軍提供了沿著作戰區域的長度和寬度攻擊網絡決定性點的潛力。蜂群無人機可以將陸軍各師的干擾范圍擴大到遠遠超過空地作戰的30公里。ES系統可以提示高爆激光器來干擾(或炸毀)指揮節點的天線。HPM和EMP彈藥將使整個網絡無法使用,嚴重降低了指揮官在分布式部隊之間提供目的和方向的能力。成群的EA無人機和固定的誘餌可以模擬平臺和指揮節點的電子特征,欺騙敵人并模糊其電子監視工作。同樣的能力也可以用噪音淹沒EMS,在關鍵時刻隱藏關鍵系統的使用或機動。
無人機干擾器和高爆激光器可以壓制防空系統以支持空軍行動。電磁炮是在MDO中產生機動窗口的完美武器,因為它可以使不發光的防空雷達失效,而不會使載人的空中干擾機處于危險之中。地面干擾器可以破壞衛星和地面站之間的聯系,使太空部隊的資產騰出來用于其他行動。EA系統可以刺激敵方網絡,或創造可能有利于敵方網絡內部的網絡行動的缺口。針對網絡決定性點的EA的累積效應將使敵人無法對加速的致命打擊作出反應,也無法對進入脆弱地區的滲透性機動作出反擊。
陸軍可以在戰術、作戰和戰略層面上將現代EA技術用于對抗敵人的意志。在戰略層面上,EMP彈藥可以作為一種有效的威懾手段來對抗對手的行動。從多個載體--空中、太空、海上和陸地--發射的EMP提供了核交換之外的升級選擇。在作戰層面,一個模擬蜂窩網絡同時干擾真實網絡的系統,如俄羅斯的Leer 3,將幫助指揮官更有效地管理信息環境。對分散的部隊使用戰術電磁脈沖,從電子上切斷他們的總部和相鄰的編隊,將在紀律性不強的部隊中產生恐懼和威脅。激光誘導的等離子體效應可以在塑造行動中使用,作為致命的動能打擊或快速穿透機動的前奏,制造恐懼和焦慮。
正如俄羅斯人在烏克蘭所展示的那樣,操縱性電子攻擊是利用聯合網絡行動中獲得的情報的一種機制。我們的網絡戰士必須與EA和心理行動相結合,以收集情報,制作欺騙或信息,然后以無線方式投射到對手的網絡。
不斷變化的戰爭特點使得信息環境中的行動(OIE)必須處于軍事規劃和執行的最前沿。由于無法與美國的物質力量相提并論,美國的對手越來越依賴包括信息戰能力在內的不對稱方法來破壞美國的行動和影響。未來的聯合全域作戰(JADO)將需要一個綜合的、跨學科的作戰方法。本文認為,針對對手的認知和信息過濾器而采取的蓄意行動將阻礙對手的決策過程,使其失去對有效運用軍事力量作出明智決定的能力。通過研究俄羅斯在信息環境中的行動、信息戰活動以及反射性控制理論,作者提出了決策優勢理論。該理論試圖提供一種方法,故意利用信息來針對對手的行為和信息系統。其目的是剝奪對手感知和認識形勢的能力,并阻礙其有效利用呈現在他面前的信息來做出經過計算的決策的能力。
圖1 決策優勢理論。
決策優勢是通過信息力量來實現的,而信息力量是通過控制信息、利用信息和加強信息來保證自己的利益。信息力量可以達到與物質火力相同的效果,甚至更大的效果。它通過預測對手的行動,了解對手的動機,管理和操縱信息,改變決策算法,以及在信息環境中發展機會、活動和投資(OAI)來增強全領域的聯合軍事力量和效力。
決策優勢:一種理想狀態,在這種狀態下,指揮官比其對手更快、更有效地感知、理解、決定和行動。決策優勢在敵人的決策周期內發揮作用,以消除時間上的庇護所,并消除空間上的選擇。
信息力量是利用信息來塑造認知、態度和其他推動預期行為和事件進程的要素的能力。信息力量涉及獲取、處理、分配和運用數據的能力,以最大限度地提高戰斗力。作者進一步斷言,信息力量是通過控制、利用和加強信息來實現的,這使得信息戰的結果能夠持久、靈活和精心計算,以加強戰斗力并拒絕敵人的決策優勢。
信息力量--控制信息、利用信息和增強信息的組合--將使美國能夠把信息環境中的行動納入聯合防衛行動的規劃和執行。這將使規劃者能夠利用信息來實現結果。信息戰能力--信息作戰;電子戰;網絡;以及情報、監視和偵察(ISR)--提供了改變對手的指揮和控制過程,減少決策,并削弱其作戰行動的有效性的手段。信息力量和物質力量相結合,將通過在環境中制造多種困境,造成混亂,延遲或剝奪敵人采取適當行動的能力,從而降低對手的戰斗力。信息力量和物質力量的結合能加強軍事力量。
信息力量的第一個支柱,控制信息,涉及到保護自己的網絡不被敵人破壞或操縱。保持對信息傳輸和信息系統的控制可以確保信息的保密性、信息的完整性以及美國規劃者和作戰單位對信息的可用性。不受限制地進入值得信賴的系統和相關架構,確保最及時和最相關的信息指導決策。剝奪對手對信息的控制權使其無法了解自己的環境,造成不確定性,并使其決策復雜化。
決策也受到信息利用的影響。利用,是指利用資源并從中獲益的行為,包括改變、變更或操縱信息,使之對自己有利。通過了解對手的信息和認知過濾器、信息系統和情報結構,這是最有效的做法。創造信息戰結果的能力取決于精心制作信息并將其置于敵人決策周期中的正確時間和地點的能力。信息可以在四個過濾點被鎖定或武器化--傳感器、分析中心、分發點或個人。利用過濾器,人們可以降低決策者可獲得的信息的收集和質量,導致對情況的不完整或故意的錯誤理解。決策和具體行動是根據對環境的感知理解而做出的。阻斷信息流的能力阻止和延遲了重要數據到達組織,導致感知、理解和發展局勢的能力下降。傳統的信息操作活動與故意和持續地針對對手的過濾器相結合,將有機會同時針對代理人、信息和對所提交信息的解釋。反過來,這可以減緩對手感知、觀察、定位、決定和行動的能力,促進錯誤的結論,并破壞決策能力。
增強信息使人們能夠制定戰略目標和選擇,為對手創造跨越時間和空間的多種困境。 這需要強大的、敏捷的、分層的ISR資源和綜合指揮與控制過程。JADO的規劃和執行需要有能力同時在戰術、作戰和戰略梯隊中,在所有領域和統一的信息空間中進行機動。協調的計劃需要對形勢的理解,觀察模式和行為的能力,以及識別信息和行動環境的變化。支撐一個人加強信息的能力的是信任。信任包含了團體或個人對所收集信息的完整性所賦予的權重。經過處理、過濾和分析的信息能夠回答知識中的一個特定缺口。這種經過處理的信息被稱為情報。有了準確的情報和被充分理解的假設,決策者可以更準確地評估局勢,塑造環境,并削弱對手自己的決策過程。這樣一來--信息,更具體地說是強化的信息(或情報)--是一種武器,可以用來操縱和欺騙對手,剝奪他做出符合自己最佳利益的決定的能力。
控制、利用和增強信息的結合使決策者擁有了信息力量。信息力量使信息優勢得以實現,而信息優勢又能保證決策優勢。增強信息的能力使人能夠觀察敵人的習慣和行為,幫助人了解敵人的動機和意圖,并確定敵人的作戰能力。管理、放大和操縱信息可以使有針對性的、精心設計的信息到達指定的受眾。類似于過去信息傳遞的錯誤信息和虛假信息可以在過濾器上針對敵人。在信息系統的過濾器處進入情報裝置的信息以傳感器、分析中心和向作戰人員分發信息為目標。此外,通過在一個被認為可信的來源處提供虛假或誤導性的信息,可以改變敵人的決策算法。在特定的時間和地點呈現特定的信息可以改變對環境的理解并改變行為。這也會使人改變他的時間范圍。隨著不確定性的增加,一個人可能會根據感知到的情況選擇加快或減慢他的計劃。
雖然這一理論的每一部分,單獨來看,并沒有提出什么新意,但有兩點是明顯不同的。首先,必須把信息放在軍事規劃的最前沿,并與傳統的物質力量相結合。軍事文化認為,物質力量是至高無上的。現代戰爭要求在同等水平上考慮信息和物質力量。第二,控制、利用和加強信息的活動是美國空軍現在所接受的功能;然而,跨領域和跨職能的綜合規劃是有限的。缺少的環節是有意的整合和專門的過程,在一個同步和審慎的過程中納入所有領域的現有能力。為了實現決策主導權并通過信息力量獲得信息優勢,必須將信息環境中的行動納入規劃過程,如聯合規劃過程(JPP)、軍事決策過程(MDMP)、海軍陸戰隊規劃過程(MCPP)和空中聯合行動規劃過程(JOPPA)。指揮和控制必須充分考慮到所有領域--空中、太空、網絡、陸地和海洋--的非動能和動能行動。在信息環境中執行行動的能力要求在行動層面上有一個集中的規劃過程,以同時計劃和執行對信息的控制、利用和加強。這一點目前并不存在。集中化的規劃將使一個綜合的方法能夠與物質火力結合起來。控制可以保護美國的網絡和計劃,同時阻止敵人獲得重要信息。利用允許有機會拒絕、降低、破壞、改變和放大敵方使用的信息。加強為決策、目標定位和環境中的戰術行動提供所需的關鍵ISR收集。信息力量為指揮官提供了有效處理、分析數據和信息并采取行動的機會,同時剝奪了對手的同樣能力。因此,實現決策主導權需要一個協調和同步的計劃,利用控制、利用和加強所有領域和作戰功能的信息,目的是統一信息空間。
本文闡述了統一信息空間的重要性,以通過在信息環境中的精心策劃和綜合行動實現決策優勢。充分執行聯合全域作戰的能力需要在規劃周期中重新強調信息和信息戰活動。這項研究提出了四項建議:
建議1:聯合部隊應考慮實現信息力量的要求。這項研究和相關的決策優勢理論斷言,信息力量是通過控制、利用和加強信息來實現的。信息力實現了信息優勢,從而保證了決策優勢。信息環境中的運作為物質環境創造了條件。信息力量與物質力量相結合,形成了軍事力量。
建議2:美軍需要進行組織、領導和文化變革,以實現信息力量和決策優勢。信息系統和情報架構必須在所有梯隊中得到整合--戰術、作戰和戰略。戰術任務規劃和更廣泛的作戰規劃必須轉變為將信息置于規劃的最前沿。個人和團隊必須理解信息環境中的行動的重要性,以及這些行動塑造物理環境條件的方式。正規化的領導者發展和專業軍事教育必須強調認知上的轉變,不再將沖突理解為物質力量,而是將信息力量和活動納入規劃、命令和執行。應更加強調了解如何使用和信任信息,如何操縱和處理信息,使之成為情報,以及如何利用信息來實現決策主導權。最后,數字素養應成為未來培訓的一項要求。
建議3:JADO要求有能力評估信息環境中的績效措施和有效性措施。必須制定一個有效的評估程序,以了解和衡量信息環境中行動的影響。應更詳細地研究這一點,因為這將建立信任,并更好地了解信息戰和信息相關活動如何產生軍事力量和作戰成功。
建議4:未來的指揮和控制程序應該能夠整合信息環境下的行動規劃和執行。應該制定一個聯合防務辦公室的軍事力量計劃,以協調和指導所有領域的戰略,并在信息環境中執行行動。這個過程應該與物質和動能規劃相結合,而不是分開,因為信息和與信息有關的活動為物質操作環境塑造和設定條件。
指揮所的作用是為指揮官和參謀部提供理解。隨著戰場的發展,涵蓋了多域作戰,指揮所的規模和基礎設施也在不斷增加,以應對不斷增加的復雜性。今天的指揮所相當于小村莊的大小,在包含無處不在的情報監視偵察能力和傳感器的作戰環境中已經無法生存。為了適應不斷變化的環境,指揮所必須遷移到完全虛擬的環境中,以減少其特征,提供增加的容量,并在多域環境中的大型復雜人員之間提供一致的協作。
未來的戰場是一個將受到近鄰對手快速變化的技術能力嚴重影響的戰場。在這種環境下的成功將需要簡單易用的系統,它能適應各種情況,并能與其他部隊和系統整合。多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)旨在為海軍陸戰隊準備未來的戰場。由于傳統的機器學習技術存在某些缺點,MDOC5i使用矢量關系數據建模(VRDM),為海軍陸戰隊提供適合動態部署的系統。MDOC5i使用全球信息網絡架構(GINA)作為其VRDM平臺。這項研究使用GINA創建了一個無處不在的決策模型,可以根據美國海軍陸戰隊的場景進行配置。該研究實現了無處不在的模型,并通過一個網絡分析用例證明了其功能。這個決策模型將作為所有GINA實施的基礎模型。快速構建和調整基于場景的GINA模型并將這些模型整合到一個共同的框架中的能力將為海軍陸戰隊提供對抗未來對手的信息優勢。
圖. 超圖描繪了構成 GINA 決策模型的關鍵實體。這是圖 3.2 中描述的“決策者信息”部分的細分。影響力的三個主要領域是現實世界、網絡和網絡。本論文中的模型將僅包含網絡類別的一部分,特別是 XMPP 流量。這三個領域應被視為為大規模網絡診斷設計的決策模型的起點。
在最近的沖突中,美國能夠承擔對其敵人的技術優勢[1]。然而,由于美國已經將重點從反叛亂(COIN)行動轉移到與近距離對手的沖突上,這是一種不能再假設的奢侈。美國和國防部必須不斷尋求獲得并保持對近距離對手的技術優勢。所有軍種的指揮官都強調了這一點,包括司令部的規劃指南[2]。網絡戰場是一個日益復雜和快速發展的領域,在戰爭中從來沒有出現過像現在這樣的能力。目前的對手既有掌握該空間的愿望,也有掌握該空間的能力[1]。人機交互(HCI)將是在未來沖突中實現信息主導的關鍵。人機交互融合了計算機科學、認知科學和人因工程,以 "專注于技術的設計,特別是用戶和計算機之間的互動"[3]。我們必須掌握人機交互,以協助指揮官并保持對敵人的優勢
美國海軍陸戰隊(USMC)沒有很好的裝備來在網絡領域取得成功。美國海軍陸戰隊訓練和教育司令部(TECOM)已經將這一能力差距確定為一個主要的問題聲明:"海軍陸戰隊沒有接受過應對同行威脅的訓練,在這種情況下,我們不再享有數量或技術優勢的歷史優勢。為了在未來的戰場上取勝,我們必須提供一個學習框架,以發展適應性和決定性的海軍陸戰隊,并提供訓練環境,以產生能夠產生決定性效果的互操作單位"[4]。
信息技術的進步產生了一個以網絡為中心的應用框架[5],可以幫助縮小能力差距,使美國海軍陸戰隊保持對對手的網絡優勢。
在為滿足指揮官的指導并使美國海軍陸戰隊為網絡戰場做好準備而采取的舉措中,海軍陸戰隊已經建立了多域作戰指揮、控制、計算機、通信、作戰系統和情報(MDOC5i)。MDOC5i是一個基于陸軍網絡信息管理環境(ANIME)的系統,提供了一個以網絡為中心的因果動態數字孿生環境。利用基于實體的模擬,MDOC5i提供以網絡為中心的互操作性和決策模型,可以增強多域作戰(MDO)[6]。MDOC5i計劃 "提供基層開發的技術,使操作人員能夠'推斷和適應'不斷變化的戰斗空間的需求" [7]。MDOC5i確定了需要改進的三個問題領域:互操作性、信息處理和利用,以及文化轉變[7]。
隨著戰場的不斷發展,聯合解決方案將是獲得優勢的關鍵。這些互操作性的解決方案將依賴于網絡和通信能力。互操作性是指與整個服務的各種通信系統相關的所有設備之間的通信能力。因此,目前在互操作性方面的差距需要被彌補,以進行聯合行動。系統之間的互操作性還沒有通過一個標準化的通用方法來實現[7]。MDOC5i認為這個問題的根源在于,當前系統所使用的所有網絡都被認為是彼此獨立的領域,而不是一個統一的作戰指揮和控制(C2)系統[7]。
MDOC5i解決的下一個問題是信息處理和利用。這個問題指的是目前整個海軍陸戰隊沒有能力處理大量的信息。數據通常很豐富,而且隨著傳感器能力的增長,數據會越來越豐富,但很難分析所有的數據并從噪音中分出有用的數據。鋪天蓋地的數據如果不進行適當的分析,對決策過程是無用的,甚至是有害的。這個問題被具體描述為:"當前行動和數據收集的速度超過了我們處理、識別和獲取可操作情報的能力,以快速評估、調整和修改計劃和實時COA,從而優化部隊投射、殺傷力,并實現持久的超額配給"[7]。
為了提高處理越來越多的數據和跟上快速發展的戰場的能力,作戰人員需要關注人機互動。這種關系對于能夠在可操作的時間范圍內將大量的數據轉化為有用的信息,從而做出更好的決定至關重要。更好的人機交互可以幫助確保 "數據處理和決策的速度與行動的速度相稱" [7]。
解決的最后一個問題,即文化轉變,涉及美國防部需要調整其在數據整合和聯合行動方面的重點。雖然國防部致力于為作戰人員提供可操作的情報,但其方法是無效的和低效的[7]。此外,各個軍種制定了自己的就業方法和情報方式,這往往會導致聯合行動的無效性。為了在目前存在的動態戰場上作戰,各軍種必須共同努力,"使能力與任務、標準操作程序、訓練戰術和協議、采購和部署政策以及作戰部隊的整體文化相一致" [7]。
5月9日至5月13日,MDOC5i在海軍陸戰隊空地作戰中心(MCAGCC)二十九棕櫚島與第七海軍陸戰隊進行了演示。這次初步測試的目的是展示MDOC5i所帶來的增強的火力能力,并確定MDOC5i通過提供共同情報圖像(CIP)--共同作戰圖像(COP)和決策支持來增強整個海軍陸戰隊空地特遣部隊(MAGTF)的MDO的可行性。
在MCAGCC Twenty-Nine Palms進行的MDOC5i演習成功地描述了該系統的防火能力。MDOC5i系統使用最先進的掃描機制和瞄準系統,將標準裝備的區域射擊武器轉變為精確射擊武器平臺,能夠在幾乎沒有歸零的情況下有效地攻擊目標。雖然這本身就大大增加了海軍陸戰隊的殺傷力,但增強的火力能力僅僅是MDOC5i概念所提供的效用的開始。底層系統使用全球信息網絡架構(GINA),一個矢量關系數據建模(VRDM)平臺,以使所有通過網絡連接的單位都能獲得準確的COP和CIP。這在戰場上提供了一個優勢,因為所有單位都獲得了意識,并將能夠為共享系統提供輸入,從而產生最準確的CIP-COP。
這些投入可以用來幫助決策和影響有利于沖突空間競爭的活動。
這一過程的關鍵使能部分之一是GINA內的決策模型,它能使人采取行動。在二十九棵樹的演示中,海軍陸戰隊員被展示了使用標準武器系統對選定目標進行第一輪射擊的能力。選定的目標出現在通過網絡連接的所有信息顯示器上。為了實現目標定位,GINA模型接受目標的輸入并將信息傳遞給所有用戶。系統首先決定該目標是一個有效的目標還是一個重復的目標。它通過一個專門設計的決策模型來實現這一目標,該模型將確定的目標與其他繪圖的目標進行比較。如果新的目標在指定的距離內,程序會認為它是重復的。這可以防止信息過載,使指揮官對現有的威脅有最準確的描述,以便更好地決定如何使用武器系統來對付敵人的目標。因此,在這個特定的例子中,輸入的是確定的目標位置,決定的是該目標是合法的還是重復的,決定的標準是確定與其他已經繪制的目標的距離,結果是對威脅的準確描述,使海軍陸戰隊能夠最好地與敵人作戰。
在演示中,決策與識別目標有關,而影響的行動與射擊有關。然而,如前所述,增強射擊能力只是MDOC5i通過基于VRDM的GINA平臺所能提供的好處的開始。創建和采用為指揮官提供最新的CIP-COP并幫助決策的模型將對海軍陸戰隊和國防部(DOD)的所有方面都有用。按照目前的情況,每次實施新的模型時,都需要從頭開始創建新的決策模型。
海軍研究生院(NPS)論文的目的是在GINA平臺上使用VRDM建立一個不可知的決策模型。重點是該模型的普遍性,以便它可以很容易地被塑造為未來的情景。該決策模型擴展了無處不在的數據表概念,以包含關于數據的信息屬性,并允許通過基于屬性的真值表關系實現來自數據屬性和信息屬性(邏輯類型)的知識屬性。因此,模型將數據轉化為信息,然后從已知的真值(既定協議)中獲取狀態和規定過程的知識,然后模型執行相應的過程。這表明了該方法的普遍性,并使任何數據任務的數據轉化為行動。本論文驗證了使用基于模型的配置方法,該方法由數據、真值表和狀態的概念對象組成,可用于人在/在環的自動數據決定-行動,并可在知識管理圖框架內為任何任務進行管理。
建議的模型在通過分析可擴展消息和存在協議(XMPP)消息來確定網絡健康狀況的情況下進行測試。該模型的輸入是可擴展標記語言(XML)消息,旨在復制大規模戰術網絡的數據包捕獲(PCAP)中捕獲的XMPP消息。雖然網絡診斷分類本身很重要,并證明了功能,但主要的效用將在于決策模型的普遍性。因為該模型是不可知的,它可以很容易地被修改以適應一系列所需的場景。務實地說,它可以作為所有其他GINA實施的基礎模型,使海軍陸戰隊實現信息超配。
本論文的假設是,GINA將被證明是一個高效的平臺,在這個平臺上實現一個可以輕松配置的泛在決策模型,以應對多種情況。在這個假設的核心,主要目標是利用GINA架構成功地設計和實現一個無所不在的決策模型。這項任務已經完成,證明了主要假說的正確性。
本論文的問題包括。
1.無處不在的決策模型能否在GINA的界面中實現?
2.GINA是否為機器學習(ML)提供了一個可行的、可操作的替代方案,該模型是否達到了與傳統機器學習技術相同的效果?
3.該模型是否有切實的方面證明比傳統機器學習技術優越?
4.該模型和GINA平臺能否用于大規模網絡流量分析?
與假設一致,第一個問題是最重要的,并且被證明是正確的。所實施的決策模型應該能夠促進并推動未來的工作。其余的問題涉及模型的可擴展性和與傳統技術相比的性能。雖然這兩個概念都沒有直接解決,但該模型提供了肯定的機會來測試這些概念。
為了成功地理解決策模型的實施和它可以應用的規模,有必要了解所涉及的工具。其中一些應用在本論文中直接使用。其他的是在MDOC5i中使用的,對于理解這個模型如何推導到多種情況下是很有用的。這些工具也提供了很好的背景,對未來的工作有好處。
GINA 是一個基于云的、提供可執行建模環境的 VRDM 平臺,該平臺產生的模型能夠進行推理和適應[7], [8]。該架構通過其反思性的、可執行的、基于組件的、與平臺無關的和模型驅動的構造,提供先進的數據、信息和知識的互操作性[9]. 該平臺使用一種語義結構,使應用領域的用戶能夠理解組成的模型組件,并形成具有半知覺行為的系統,這對動態任務需求的適應性和可配置的靈活性至關重要。該創新平臺是松散耦合的,這意味著它可以通過配置創建模型,使用來自遺留系統、現有系統或未來系統的各種輸入[8],而不會破壞或重新編譯。由于概念性的信息對象構造可以臨時引入,并可能存在于任何領域,GINA提供了誘人的可能性,美國防部正在探索這種可能性[2]。
GINA技術由方法論、開發工具和可執行模型的部署平臺組成,可作為軟件程序使用。這些模型不需要被編譯,而是在元數據中定義并實時編譯。該平臺使用通過配置實現的行為、環境和因果的建模概念,以提供定義、操作和互操作性[10]。GINA可以通過其名稱的組成部分進一步理解。"全球 "指的是該平臺通過多層抽象包含了所有的數字表示。"信息 "指的是可以被建模和管理的靜態和動態數據以及互動關系。"網絡 "指的是可以通過模型和圖表顯示、參考和管理的所有互聯關系的數字表示。"架構 "意味著GINA是被使用的系統,專門用于制作行為、背景和因果關系的可執行模型[10]。
第二章將深入討論GINA的優點和特點。
Dark Stax是一個由ANIME開發和使用的工具,能夠以接近實時的速度創建復雜系統的數字孿生體。這些數字孿生體可以用來操作克隆的系統進行數據操作和決策分析。這種聯合有助于數據驅動的決策過程。這個工具能夠創建戰術網絡的克隆,并過濾PCAP數據,為網絡診斷模型創建輸入[10]。Dark Stax工具由Ad Hoc維護和運行。他們對該工具的掌握為首要的人工智能(AI)技術和VRDM技術的結合提供了巨大的效用。
StarUML是一個開源的軟件建模平臺,支持統一建模語言(UML)[11]。它被設計為支持簡明和敏捷的建模,并提供系統疊加的可視化描述[12]。本文使用UML圖來描述實現的VRDM模型的靜態和動態方面。UML并沒有捕捉到VRDM模型中包含的所有細節,但它確實捕捉到了最重要的信息,并提供了模型中連接的清晰疊加。
在這個項目中,它只被用于GINA模型的可視化和文檔化。然而,我們的意圖是使GINA能夠接受UML設計作為輸入。因此,一個系統可以用UML建模并輸入到GINA中,以放棄配置。
Cursor On Target(COT)"是一個互聯網協議和一個基于XML的機器對機器模式,可以被任何系統讀取和理解,使專有和開放源碼系統能夠相互通信"[13]。模擬器在GINA模型中被用來模擬XMPP流量。XMPP消息的樣本在一個文本文件中生成。然后,Cursor On Target Simulator(COTS)模擬器將文本文檔的內容作為XML輸入到GINA。這個XML是決策模型的輸入。
彈道導彈能力的增長已經威脅到了傳統航母及其機群的作用。在未來的對抗中,目前的平臺將需要被重新評估,并承擔新的和非傳統的角色,以填補傳統上由航母打擊群占據的空白。潛艇將需要一個新的和更具進攻性的理論,作為分布式海上作戰(DMO)的一個組成部分。兩棲平臺將發揮新的作用,成為能夠分散航空資產并為艦隊帶來超視距打擊能力的水面平臺。航空母艦將擺脫傳統的打擊角色,成為指揮和控制(C2)、情報、監視、偵察(ISR)和維持的中心。目前具有綜合能力和創新部署的平臺可以克服遠程陸基導彈防御帶來的威脅。
"這句話不是由機智的馬克-吐溫、深思熟慮的亞伯拉罕-林肯、甚至是聰明的愛因斯坦說的,而是由80年代的電視英雄馬蓋先說的。這部長期播出的節目講述了一個沒有超能力的普通英雄的冒險故事,以及他利用周圍任何東西來解決問題的非凡能力。馬蓋先從未將“回形針”用于其預期目的,而是創造了一個獨特的變通方法來實現預期目標。經過深思熟慮和創造性的再利用,“回形針”找到了新的用途和新的意義。今天,現代軍隊有許多 "回形針 "平臺,它們有各種不同的目的和能力。也許現在是海軍對其平臺采取類似馬蓋先的方法的時候了,以便在與同行競爭者的沖突中發揮能力。
杰拉爾德-R-福特號航母是美國海軍最新和最現代化的航空母艦。一個新的電磁飛機發射系統(EMALS)、經過改造的甲板配置和靈活的電子結構只是這艘價值130億美元的船的一些新升級。在與同行競爭者的現代沖突中,如果美國海軍失去了能力或直接拒絕冒失去數十億美元資產的風險,它將轉向什么?由于航空母艦的脆弱性和其在戰場上可能喪失的能力,美國海軍應該研究現有平臺的額外和非傳統用途,以便在海洋環境中與同行競爭者競爭制海權。首先,核潛艇作為一個能夠爭奪制海權的平臺具有很大的優勢。其次,裝載有飛機和無人機的較小的兩棲艦提供了一個可行的替代方案,可替代在敵對環境中運行的一或兩艘大型航空母艦。最后,提高航母機翼的模塊化程度,可以增強其航程和影響在目前航程不允許使用的地區的行動的能力。
在未來的軍事行動中,通過協調多智能體系統(MAS)來實施戰略機動以獲得對對手的優勢,是一個很重要的途徑。最近探索MAS協作的工作主要集中在識別、分類、驗證、實施,以及通過多智能體強化學習(RL)來研究新興的協作方式。強化學習方法可以通過探索和利用選定行動來響應特定環境中的突發行為,這有可能抑制對抗性協作,反過來又可以為各種情報、監視、目標獲取和偵察任務提供機會窗口。本報告簡要介紹了RL領域的突出工作及其在自主戰略機動協作式MAS中的潛在應用。
美國陸軍現代化激增是由對手在多個領域(如陸地、海洋、空中、網絡、電磁和空間)對美國構成的威脅所推動的,這對美國利益的威脅超出了常規戰爭。預計未來的戰斗將在這些復雜的多領域環境中進行,人工智能(AI)將指導與人類士兵一起協同工作的機器人Agent的戰術、技術和過程(TTPs)。這些機器人將聚集在一起,形成智能多Agent團隊,與人類士兵有效協作,完成任務。
美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的基本研究計劃(ERPs)構建了開發和實施智能多Agent系統(MAS)的具體計劃路徑。此類陸軍計劃為美國國防行動提供了關鍵研究問題的答案,這些問題匯聚在一起,指明陸軍未來司令部的現代化努力方向。人工智能用于自主機動性(AIMM)和新興超限技術(EOT)是ERP的例子,明確側重于使下一代戰車具有自主感知、學習、推理、規劃和機動能力。這些未來的自主系統將與人類智能體合作進行預測和規劃,并通過戰場上的自主機動(AIMM)和保護(EOT)向士兵提供支持。本報告重點關注需要進行的自主協作,以使多智能體系統(即人類、智能體或人類和智能體混合)在未來的軍事行動中取得成功。
集成和協調的MAS將需要技術的進步,重點是超越我們目前的能力,以有效地對付同等裝備的對手(同行或接近同行)的協作戰略機動性。一個直接的挑戰是開發能夠以良好協調方式自主和智能地工作的智能體團隊。這種能力要求智能體在執行關鍵任務時與士兵一起觀察、定位、決定和行動(OODA-Loop)。雖然新的努力促進了對多智能體范式中情報的一般理解,但目前對情報的解釋并不明確。最近的文獻表明,基于強化學習(RL)的方法可能為實現這種技術進步提供了一條可行的途徑,本文介紹的一系列工作就是證明。
在本報告中,介紹了RL領域的貢獻,以及它們在軍事環境中的潛在應用--特別是通過戰略編隊機動來抑制對手的協作,以實現戰場上的超越。最小化、限制或完全抑制對抗性多Agent行為中的協作是探索和執行在模擬情況下通過RL實驗得出戰略機動的一種手段。此外,協作的戰略機動可以通過各種RL方法學習,以告知防御部隊創造機會或優勢窗口的潛在途徑。
為了在模擬環境中通過戰略機動的RL方法實現MAS協作,我們首先介紹了近年來一些最突出的RL研究。最近在RL領域的進展(如alphago)促進了更復雜的多智能體強化學習(MARL)算法在現實世界應用。此外,近年來也有一些框架來實現多智能體協作。這些努力加在一起,可以為開發和實施多機器人協作提供一條道路,以便在為未來戰場設計的多機器人系統中實現戰略機動。
在下面的章節中,對近年來突出的RL方法進行了分類和概述,并表明這些方法與DEVCOM陸軍研究實驗室目前的研究和開發項目相一致。具體來說,本報告的重點是確定戰略機動的特定算法的優勢和劣勢。此外,對選定的RL方法類別進行了分類,以深入了解戰略機動的潛在實施,并考慮到情報、監視、目標獲取和偵察(ISTAR)任務。
簡單地說,戰略機動可以解釋為一組智能體協調他們的行動,通過戰勝對手來實現一個共同的目標。破壞,是戰略機動的一個特例,可以表示為對對手協作戰略機動的抑制。因此,戰略機動一詞的使用意味著至少存在兩個對立的或敵對的雙方,他們處于動態的斗爭中,通過限制、抑制或以其他方式破壞對手的協調或戰術,并強加自己的協作戰術來獲得對對方的優勢。
在本節中,提供了一個對抗性的交戰場景,其核心是使用選定的遠程資產,這些資產本質上破壞了友好部隊的交戰。圖1顯示了一個圖例,描述了與所述多域作戰(MDO)情景相關的選定資產和部隊的軍事符號學。根據MDO理論,在武裝沖突中,對手的遠程反介入和區域拒止(A2AD)火力系統可以被用來拒絕友軍在戰區的機動自由(見圖1)。這是通過將情報、監視和偵察(ISR)資產與致命性和非致命性火力相結合來實現的,以攻擊戰略和行動支持區的友軍指揮結構、維持能力和部隊編隊。這些地區是近距離地區作戰資產(如部隊和裝備)的傳統集結地(見圖2)。對手有能力在友軍后方深處識別和攻擊目標,導致這些實體在地理上與戰術支持區和近距離區分離,這有效地提高了友軍的損耗率,即所謂的對峙。鑒于前線部隊與戰略和作戰機動支援相分離,敵對勢力可以利用這種友軍孤立無援的情況,將其消滅。
圖1 友軍(BLUEFOR,左)和敵軍(OPFOR,右)部隊的資產和資源。在所描述的MDO情景中,假設BLUEFOR和OPFOR的所有資產都是自主化的編隊。
圖2 敵軍(OPFOR)使用遠程導彈和火箭炮干擾或破壞友軍(BLUEFOR)戰略支援區的維持行動,這使得友軍無法以有利的條件與近距離地區的敵軍機動部隊交戰。為了應對這一戰略,BLUEFOR執行反擊任務,以摧毀位于深火區的OPFOR遠程火力系統(藍色箭頭)。從深層機動區的BLUEFOR SOF發出的三叉箭頭代表了一種 "破壞 "戰術,它打破了對手的隊形和節奏。
圖3 壓制(S)或解除(N)敵方遠程火力系統和ISR資產,使友軍能夠穿透敵方的A2AD保護傘。這使友軍能夠在近距離地區擊敗敵人,并使機動指揮官有能力利用他們的成功,迅速將部隊轉移到深度機動區,摧毀(D)脆弱的敵方資產并追擊撤退的敵軍。F表示 "固定",可有效減緩敵軍的行動。粗箭頭代表部隊移動的方向。
MDO理論規定了擊敗對手A2AD能力的計劃(即對峙),以便戰略和作戰機動能夠使前沿部署的友軍以有利的條件與對手交戰(即穿透和瓦解A2AD系統以利用機動自由)。在這里,我們只關注友軍(BLUEFOR)野戰軍和軍團與敵方A2AD系統交戰時的滲透和瓦解部分,這可能需要在未來的戰斗中使用自主MAS。此外,據推測,圖1中友軍(BLUEFOR)和敵軍(OPFOR)的所有符號都將包含自主化的編隊(例如,機器人戰車、自動瞄準系統、地面和空中的機器人ISR資產)。圖2和圖3分別顯示了利用這種符號學與自主化編隊進行戰略機動的情景圖。
如圖2所示,敵對的A2AD火力系統通過攻擊戰略和作戰支持區來創造對峙局面。友軍火力和防空部隊從太空和高空監視(未顯示)接收有針對性的情報,在狹窄的時間窗口內打擊高價值目標(即多管火箭系統[MLRS]),以減少對手的位置調整。除了監視之外,還可以采用戰略刺激--打擊來穿透和瓦解對手的遠程火力系統。
在ISTAR任務中,MARL可以通過利用敵軍理論和敵軍行動中的局部觀察,戰略性地照亮和跟蹤敵軍目標的位置。此外,經過MARL訓練的具有自主能力的編隊,結合高度機動和分散的空中和地面火力,可以開始壓倒對手的遠程防空。友軍可以利用經過訓練的MARL方法來利用對手的TTP,進行防空和地面火力的戰略機動。這些具有自主能力的編隊根據從戰略空基刺激收集的監視數據選擇地理位置。隨著對手的遠程火力系統被消滅,戰略和作戰支援部隊能夠向前方的作戰部隊推進(機動)(見圖2)。
敵軍利用ISR資產識別作戰支援區的友軍資產,并從作戰縱深火力區用遠程火力系統(即多管火箭炮)攻擊友軍。這些敵方火力擾亂了友軍在該地區進行傳統支援行動的能力,這反過來又導致這些活動在離部隊前線更遠的地方進行。這通過擴大戰場和緊張的補給線而造成地理上的對峙。此外,這還允許敵方機動部隊以有利于敵方既成事實的條件與近距離地區的友軍作戰。根據MDO的理論,為了消除對峙,友軍的炮兵系統必須在敵軍的火力和ISR資產部署之前識別、交戰并摧毀它們。友軍SOF通過破壞補給和指揮與控制(C2)節點以及為聯合火力提供目標數據來協助這項工作。這在敵人的A2AD保護中創造了缺口,可以被機動指揮官所利用。在這種覆蓋下,友軍機動部隊穿透并利用近距離和深層機動區域的缺口。
在作戰區,近距離和縱深地區的聯合部隊的戰略編隊可能是自主啟用的編隊(即MAS),利用MARL訓練的策略來利用對手的TTP(來自理論)、本地觀察和ISR收集的信息。如圖2所示,聯合部隊將協調其ISR和遠程精確火力的能力,為前沿部署的BLUEFOR部隊提供支持。在戰略和作戰單位的支持下,擁有自主能力的前線部隊可以在近距離和縱深地區進行協調,以分離和擊敗敵方資產。這將促進消滅敵對的前沿機動部隊(OPFOR),使遠程火力系統容易受到地面攻擊(瓦解),如圖2所示。
聯合火力(即友軍或BLUEFOR)壓制或消滅對手的遠程火力系統,使友軍機動部隊能夠進入并擊敗近距離區域的作戰部隊(見圖3)。然后,友軍機動部隊利用這一優勢,在深度機動區(見圖3中的D區)摧毀敵方的助推器。這將導致剩余的敵對機動編隊從近距離區域撤出,并在深層機動區域建立一個新的戰線。這個過程不斷重復,直到達到戰略目標或打敗OPFOR。這些協調活動在理論上可以通過人類士兵和自主多智能體系統之間的合作來實現。此外,鑒于目前正在積極研究開發和部署這種自主系統,預計未來的戰場將需要考慮像這樣的場景來規劃戰略機動。
本節提供了一個可以應用MARL方法訓練自主化編隊的場景;然而,在這種復雜的MDO環境中執行的具體RL方法還沒有經過測試,或者可能還不存在。下一節闡明了與利用RL方法為未來的MDO交戰訓練MAS有關的一些挑戰。
在這項工作中,我們將重點聚焦到可以指導MAS克服與軍事防御MDO中戰略機動相關挑戰的RL方法。從技術上講,RL是機器學習(ML)的一個分支,它超越了從數據中建立精確的預測,通過在環境中產生行動來展示學習。這種學習的展示可以被認為是一種決策形式,但更準確的描述是通過狀態空間探索進行戰略行動選擇。
RL智能體在獎勵函數的基礎上進行學習(或訓練),最終確定在當前情況下(即該智能體在環境中的狀態),哪一個是智能體要選擇的最佳行動。例如,RL智能體可以與環境互動,產生與獎勵掛鉤的經驗,這將形成學習的策略(即一系列的狀態-行動對)。然而,在后面的章節中強調,目前的RL方法可能還不夠成熟,無法克服與人類類似的適應性相關的挑戰,以便在新情況或環境中進行智能決策。盡管RL算法有其缺點,但它們似乎是在軍事防御MDO中實現協調的MAS執行戰略機動的最有希望的途徑之一。
在多智能體任務中,協作通常是定義不清的,而且經常被用來表示一組智能體在某些合作任務領域中成功地執行了任務。在以前的工作中,開發并采用了各種新方法來測量執行合作任務時智能體行動之間的相互依賴性,以確認這些智能體事實上已經學會了協作。對協作的確認是確定MAS有能力與其伙伴合作的先決條件,而不是簡單地采取導致某種程度的優化行動。雖然在某些情況下,最佳行為可能是可取的,但如果任務以某種不可預見的方式發生了變化,一個簡單的最佳行為的智能體可能會在戰場上導致災難性的損失。因此,未來防御行動的MAS必須具有明確協作的能力。
在本節的其余部分,描述了與開發戰略機動MAS有關的一些挑戰,其中時間尺度、能力和局部目標可能有很大的不同(例如,MDO),但需要某種程度的協作。此外,假設更大程度的靈活協作可以促進任務執行的改進(例如,更快、更少的損失、非直觀的策略、有效處理不斷變化的能力/團隊組成)。
隨著環境在動態戰場上的變化,敵對雙方(至少)可能需要重復規劃和預測,以便1)跟上,或2)領先于對手的規劃和預測。經過RL訓練的MAS能夠學習這種動態的規劃和預測循環。另外,如果學習智能體建立了一個關于對手協作行動的適當模型,然后采取行動破壞這種協作,也可以實現這一目標。
在一個理想的情況下,一個被選來指導MAS行為的算法將學會處理環境、對手戰術和能力、自身能力(獲得新的能力或失去以前的能力)、團隊組成(例如,改變合作者)和局部目標的變化。然而,大多數最先進的(sota)方法受到經驗的限制(正如許多RL方法的情況一樣)。此外,在大多數模擬中,團隊的能力和組成通常是固定的,不能為算法提供足夠的數據來操作和處理任何上述的特征變化。因此,在選擇一種算法來指導旨在產生戰略機動的MAS的行為時,必須考慮新的或動態的事件、行為、資產和實體。
總之,目前的算法方法在復雜的軍事防御MDO環境中沒有達到所需的能力。目前的缺點可以分為三類。1)數據要求,由于情況的新穎性,數據是有限的,數據集不足以產生準確的預測,或者數據以某種方式被污染(例如,嘈雜、臟亂或對手的改變),2)有限的計算資源,以及3)算法不能泛化到訓練期間遇到的情況之外(例如,不同的目標、改變的能力或修改的團隊組成),導致狹隘或脆弱的MAS解決方案。
在下一節中,我們將更詳細地討論RL的缺點,以闡明如何克服這些問題,為軍事防御MDO環境提供解決方案。為此,我們介紹了現有的RL算法的分類法。這一努力應提供對有前途的RL技術更好的洞察力,這可能有助于確定最終應用于美國國防MDO的可行途徑。
學習算法的可擴展性是MDO中軍事任務的主要關注點之一,特別是因為這種任務可能需要大量的智能體來完成一個目標。此外,軍事任務可能涉及多個子任務,每個子任務都有自己的子目標,從而進一步復雜化了場景。在MDO中,預計一個子目標由無數復雜的戰略演習組成,這需要MAS的快速計算,以及使用最小計算資源(如在戰術邊緣計算)的最佳(或至少足夠)戰略。因此,一個可擴展的RL算法必須考慮到:1)環境和任務的復雜性;2)智能體(伙伴和對手)的數量,以便每個智能體能夠在通過RL學習過程中收集經驗時正確選擇行動。
環境復雜性(即智能體的狀態和行動空間的大小)可以指環境的狀態空間中可用的狀態數量,以及該環境中智能體可用的行動方案數量。RL算法的可擴展性是指在足夠復雜的狀態和行動空間中,在合理的時間和計算能力內計算最優策略的能力。環境的復雜性還包括納入額外的智能體(例如,擴展到MAS),其中狀態空間被放大以考慮到額外的智能體,而行動空間的大小被乘以該之智能體的數量。
通過使用狀態-動作對的表格來解決RL的可擴展性問題是不實際的,因為連續的領域會使表格無法維持,而且在合理的時間內同時更新所有智能體的表格條目是不可行的。即使有足夠大的計算資源(如過多的計算機內存)來包含所有的狀態,在每個狀態-動作對之間的學習也會太慢。與利用表格跟蹤狀態-動作對相反,一個解決方案是使用非參數函數近似器(例如,權重為參數的深度神經網絡)來近似整個狀態空間的值。然而,函數近似器必須是可微分的,這樣就可以計算出一個梯度,以提供參數調整的方向。
有兩種方法來訓練值函數近似器:1)增量方法和2)批量方法。增量方法使用隨機梯度,在梯度方向上調整近似器的參數,使估計值和目標值之間的誤差最小。然而,增量方法的樣本效率不高,因此不具備可擴展性。相比之下,批量處理方法從一組經驗中保存數據,并使用它們來計算函數近似值估計和目標值之間的誤差。批量方法與傳統的監督學習有共同之處,即結果是已知的(例如,數據被標記),計算近似值的估計值和實際結果值之間的誤差。這種類型的批量學習通常被稱為經驗重放。重復這個過程將導致最小平方誤差的解決方案。最近一個成功的經驗重放的例子是用深度Q網絡(DQN)玩雅達利游戲演示的。盡管函數近似法在復雜的環境中顯示出了成功,但如果不考慮額外智能體的加入(即非平穩性或部分可觀察性),單靠這種方法不太可能足以訓練出MDO場景的MAS。
與價值函數近似法相比,策略學習方法依靠策略梯度(PG)的計算來明確優化策略,而不是間接依靠價值函數。與函數近似方法相比,PG具有更好的收斂特性。PG方法比價值近似方法更受歡迎的主要原因是它們能夠在高維和連續的行動空間中有效(即在復雜環境中可擴展)。在蒙特卡洛(MC)策略梯度(例如REINFORCE算法)中,實際回報(選擇行動)與一個分數函數相乘,以計算梯度。該梯度被用于策略調整(通過改變參數值)以找到最大的回報行動。MC策略梯度具有高方差,收斂速度慢,因為它使用智能體的狀態-行動對在不同時間的整個軌跡來獲得一個返回值。另一種可能超越傳統函數近似方法缺點的解決方案是利用 "演員評論"方法。
在演員-評論家方法中,PG方程被修改為使用價值函數的近似值,而不是使用真實的行動-價值函數乘以分數(如REINFORCE算法)。這表明行為者按照評論者所指向的方向調整策略,以便使總的累積獎勵能夠達到最大。評論者的這一策略評估步驟可以通過使用組合值近似方法(即MC、時差-TD(0)和TD(λ))來完成。為了減少策略梯度的差異,可以使用一個優勢函數。優勢函數告訴我們,與一般的狀態值函數相比,一個行動比另一個行動(Q值)好多少。這意味著評論者必須估計Q值。一個有效的方法是使用TD-error,它是優勢函數的無偏樣本,評論者對一組參數進行近似。TD(λ)資格跟蹤也可用于評論者估計不同時間步長的值。有趣的是,MC(高方差)和TD方法可以與行為人一起使用,隨著時間的推移(即收集的經驗)修改策略。
由于MDO涉及軍事任務,RL算法必須有能力與許多其他智能體協調,以實現最佳的戰略機動,因此MAS的算法必須能夠與大量的智能體和異質資產一起擴展。算法的另一個重要能力是處理復雜狀態空間(即許多智能體)和多領域環境的大量觀察能力。在接下來的章節中,我們將討論在MDO中使用不同種類的RL算法對戰略機動的影響。
無模型算法可分為非策略性和策略性算法,其中狀態行動空間可以是連續的或離散的。在這一節中,討論了無模型算法的優勢和劣勢,以及它們如何與戰略機動相一致,從而實現MDO的目標。這一分析的目的是為尋找在MDO環境中實現戰略機動性的潛在算法方法提供方向。
深度Q網絡(DQN)是一種單一的RL智能體算法,它被訓練用來玩行動空間離散、狀態空間連續的Atari 2600游戲。DQN使用一個用Q-learning訓練的卷積神經網絡,從高維輸入(連續圖像)中學習。
DQN算法是一種有效的樣本方法,因為它利用所有收集到的經驗來提取盡可能多的信息。DQN足夠強大,可以使用相同的超參數進行訓練,玩六種不同的Atari游戲,其中智能體在其中三個游戲中的表現比人類專家更好。
然而,DQN的一個缺點是,在理論上不能保證訓練好的神經網絡實現穩定的Q值預測(即在不同的獨立模型中,訓練好的策略可能會有很大的差異)。
鑒于DQN本質上是一個單一的RL智能體模型,它應該不足以在MDO中進行戰略機動。在MDO中,多智能體RL算法可能更適合,因為智能體在執行時間內典型的分散化,允許智能體彼此獨立運作。此外,DQN的原始實現只利用了四個觀察序列來學習Q值,這對于MDO中的戰略機動來說是不夠的。多個資產的戰略機動通常不能在如此短的時間間隔內被捕獲。事實上,這是DQN在評估的三個Atari游戲(即Q*bert、Seaquest和Space Invaders)中與人類相比表現不好的主要原因。然而,存在一些DQN的變體來解決這個問題和其他弱點。
Bootstrap DQN就是這樣一個變體,它學習了一個Q網絡的集合,以提高采樣效率,并克服了傳統DQN的不足之處。行動消除是另一種與DQN一起使用的方法,以解決大的行動空間。帶有記憶類型的DQN(即循環神經網絡)也可以用來處理部分可觀察性。如果一個智能體需要為完成任務而導航環境,這種方法就特別有用。另外,分布式DQN返回一個分布信息,可用于評估策略風險和減少最佳解決方案周圍的方差或噪音。
盡管DQN及其修改后的變體在處理比簡單的Atari游戲更復雜的任務方面很有前途,但DQN方法本質上缺乏一個多智能體預測機制來進行協作戰術,而這是MDO中戰略機動的需要。此外,DQN在大多數情況下計算量太大,無法用于軍事相關環境。最后,DQN算法方法對未見過的例子(例如,伙伴的新行為或環境中出現的實體/障礙)缺乏足夠的適應性。
在現實世界中,大多數常規任務涉及連續狀態和行動空間。然而,DQN只考慮離散的狀態空間和低維的行動空間。處理連續狀態和行動空間的DQN的另一種方法是深度確定型策略梯度(DDPG)方法。DDPG通過結合價值函數近似和確定性策略梯度(DPG),推進了DQN方法的進展。DDPG利用行為批判的方法,可以克服連續空間的復雜性。這種無模式、非策略預測和控制算法可以執行物理控制任務(如車桿、靈巧的操縱、腿部運動或汽車駕駛)。
另一種使用深度神經網絡的方法是信任區域策略優化(TRPO)。這種方法直接構建一個隨機策略,而不需要演員-評論者模型(不要與環境模型混淆,這將使其成為一種基于模型的方法)。與TRPO類似,引導式策略搜索(GPS)不需要角色評論模型,而是使用軌跡引導的監督式策略學習以及一些額外的技術(例如,減少視覺特征的維度,在網絡的第一層增加機器人配置動態的信息)。因此,GPS的數據效率很高,如果需要的話,可以改編成DDPG。另一方面,PILCO首先學習一個概率模型,然后找到一個最佳策略。PILCO在某些問題領域具有很高的數據效率;然而,它的計算量很大。此外,D4PG對DDPG算法提出了一些改進:分布式評論者更新、分布式并行演員、N步返回和經驗重放的優先級,以實現對不同類別任務的更穩定和更好的解決方案。
從戰略機動的角度來看,DDPG算法的主要缺點是它被設計成一個完全分散的單一智能體算法(即獨立學習者)。因此,DDPG算法不便于在多智能體場景中進行協作。因此,使用DDPG所產生的戰略機動將不會產生協作的團隊行為。此外,DDPG不具備處理基于角色的多目標任務的能力,而這是軍事行動中戰略機動的要求。
RL智能體互動對于戰略機動的人工智能系統至關重要,不同的智能體可能需要組成團隊來抑制對手的戰略合作或抑制對手的協調。Q-Learning和PG方法分別受到非平穩性和高方差的影響。為了克服這些問題,多智能體深度確定性策略梯度(MADDPG)算法擴展了一個演員評論家方法,這使得它可以通過集中智能體訓練而對多智能體系統發揮作用。MADDPG框架采用集中式評論家家進行訓練,并在測試期間部署分散的演員。一個評論者(每個智能體都有一個)接收每個智能體的策略,這允許開發具有潛在不同獎勵功能的依賴性策略(例如,MADDPG允許訓練具有相反獎勵功能的對抗性團隊)。相反,演員(即策略網絡)在訓練和測試期間只擁有本地知識。演員(通過訓練)在與評論者評價一致的方向上反復改進策略。
MADDPG的一個主要弱點是,對Q函數的輸入隨著環境中智能體數量的增加而增加(不可擴展)。這給MDO中的戰略機動性帶來了問題。如果智能體需要被替換、添加、修改或移除,可能需要進行再訓練。在戰略機動中,智能體可能需要定期轉換角色或改變能力,這對MADDPG適應軍事領域構成了重大挑戰。此外,頻繁的再訓練將使快速戰略機動變得不可能。縮短訓練時間將減少邊緣的計算負荷,使快速戰略機動成為可能。MADDPG不能適應這種極端情況。對于軍事應用,希望有一個強大的對手或智能體模型,以便使作戰時間最大化(即有足夠的時間來執行戰略機動)。
為解決其可擴展性問題,對MADDPG的一個潛在修改是形成智能體集群,為集群而不是每個智能體單獨學習一個策略。在發生新事件的情況下,可以推遲重新訓練的需要,因為從理論上講,一個智能體集群將有一套處理動態情況的可變能力。此外,這將避免隨著智能體的修改或新智能體的引入而增加Q函數的輸入空間。然而,問題來了。我們怎樣才能將一個任務分解成部分獨立的子任務,并使最優分組策略的退化程度最小?
雖然MADDPG可以形成一組異質的多智能體策略,能夠完成不同的任務,但這種方法不能很好地擴展到十幾個智能體。隨著智能體數量的增加,策略梯度的方差會呈指數級增長。因此,這種方法不太適合MDO中的戰略機動,在這種情況下,必須考慮到40多個異質智能體的對抗情況。克服這一可擴展性問題的方法是均值場多智能體RL算法,該算法計算鄰近智能體Q值的均值估計,當智能體之間的鄰近互動變得復雜時,可能導致高誤差率。此外,進化種群課程算法的設計是為了通過將遺傳算法方法與RL相結合,使MADDPG具有可擴展性。隨著MADDPG的進步和該方法所顯示的成功,可以想象這些算法的進步會導致在模擬實驗中對MDO內的戰略機動性進行強有力的演示。
與MADDPG不同的是,反事實多智能體(COMA)方法對所有智能體使用一個集中的評論家,但被設計用于離散的行動空間。COMA比MADDPG更具可擴展性,但它可能導致一套同質的策略,在智能體能力充分不同、局部目標不同或獎勵函數不同的情況下可能失敗。與MADDPG類似,Minmax多智能體DDPG(M3DDPG)比MADDPG的原始版本增加了一項改進,允許智能體制定更穩健的策略來對抗對手(即具有對立獎勵結構的競爭游戲)。然而,M3DDPG仍然無法處理異質智能體被引入系統的情況。
在具有連續狀態和行動空間的環境中實施算法,有時需要利用常見的技術來操作輸入或輸出,如離散化狀態和行動空間或將離散的策略輸出轉換為連續輸出。轉換策略輸出的一個例子是OpenAI多智能體粒子環境中MADDPG的實現。在這個例子中,離散的策略組件被用來計算連續的行動。從另一個角度來看,多智能體轉化器軟雙Q學習算法將連續行動空間離散為一組速度和角速度控制,然后可以在運動模型中使用。盡管這些技術允許在連續環境中使用這種算法,但這些算法方法沒有用連續信息進行訓練,這可能會限制它們在物理環境中進行戰略機動的功效。
最近的一個基于價值的MARL算法系列在非常復雜的《星際爭霸2》模擬環境中被證明是相當成功的,其中根據智能體的本地Qa值學習了一個集中的聯合行動值Qtot。然后通過線性argmax算子從Qa中提取一個分散的策略。這種非常簡單而有效的分解方法避免了學習聯合行動值,而聯合行動值的規模并不大。如果增加新的智能體或用新的能力替換智能體,仍需進行再訓練。然而,與MADDPG相比,它更具有可擴展性,因為單個Q值僅從局部觀察中學習,避免了通過學習因子化的Qtot來學習聯合行動值。但是,當有超過40個智能體時,這個系列的算法的可擴展性可能會受到挑戰。為了使其更具可擴展性,已經提出了基于角色的算法RODE,其中智能體的角色是根據他們對環境的影響對他們的行動進行聚類來確定。該算法對于大量的智能體顯示了非常有希望的結果。
對于戰略機動,RODE算法是非常有前途的,因為各組智能體可以被分配到不同的角色,其中角色可以基于他們的行動和對環境的影響或任何其他固定的行為(對于盟友或甚至敵人)。然后,該算法可用于不同群體的戰略角色轉換。由于不同角色的行動空間受到限制,該算法收斂得非常快。這種算法也適合于基于角色的技術的戰略使用,這可能會在未來的工作中進行研究。即使RODE是非常可擴展的,我們也不清楚當新的智能體將被添加到環境中時如何調整它;需要學習一個集中的策略以實現最佳協作。
與RODE算法相比,一種可擴展的多智能體強化學習方法部署了一種熵-規則化的非策略方法來學習隨機價值函數策略,實驗表明它能夠擴展到1000多個智能體。如前所述,可擴展的RL算法關注環境的復雜性--系統或團隊中的智能體越多,狀態空間越大。RODE是有限的,因為它使用一個集中的策略,當更多的智能體被引入到環境中時必須重新訓練。多智能體轉化器軟雙Q學習算法是一種集中訓練的非策略學習算法(即共享一個中央經驗重放緩沖器),其執行是分布式的(即每個智能體根據其本地觀察做出自己的控制決定),而不是來自中央控制器。由于這種分布式的方案,當智能體被添加或從系統中移除時,團隊不受影響,繼續執行他們的策略。
在可擴展性方面,訓練大型MAS(即許多智能體)是很困難的,而且已經表明,即使是最先進的算法也不能為復雜的MARL任務學習到高性能的策略。多智能體變換器軟雙Q學習通過在訓練期間利用啟發式方法緩解了這一可擴展性問題,該方法允許在較小的智能體集合上訓練策略(例如,在目標追蹤場景中,四個智能體追蹤四個目標),并且該策略已被證明可以在執行中與更多的智能體一起工作而不需要任何調整(即用1000個智能體測試和評估)。訓練和執行過程中使用的啟發式方法使算法能夠解決智能體數量的巨大分布變化:它基本上將測試時的大型復雜觀察空間縮減為接近智能體策略最初訓練的內容。從軍事角度看,這種提法是戰略機動的理想選擇,因為現場的智能體可能會在原地丟失或獲得,可能要考慮額外的戰略信息。一個靈活和可擴展的算法提供了MDO中所需要的能力。
由于一些因素,包括科技進步,美國的對手正在變得更加先進。在未來的MAS自主戰爭中,協作的戰略機動可以為國防軍帶來某些優勢。在這篇文章中,我們討論了一些最突出的RL算法,以發現訓練MAS的可行候選策略,這些MAS可以有效地進行戰略機動,從而在未來潛在的軍事行動中打開機會之窗。本文描述了RL方法的分類法,并對最突出的RL算法進行了概述。研究發現,由于訓練和測試因素的不同,大多數RL算法缺乏處理與未來潛在沖突相關的復雜性的能力。
DEVCOM ARL ERPs為開發和實施智能MAS提供了一個規劃性的路徑。鑒于陸軍研究項目為美國國防行動提供了關鍵研究問題的答案,AIMM和EOT ERPs特別促成了研究,可以為協作的自主MAS提供一個路徑,可以克服與1)環境,2)對手戰術和能力,3)自身能力(即,獲得新的能力,失去以前的能力,或能力被改變),4)團隊組成(例如,增加、刪除或交換隊友),5)戰略團隊定位、進入、導航(機動)以支持部隊并壓倒對手,以及6)任務目標。最近,AIMM和EOT ERP在這一領域的工作闡明了衡量MAS協調性的方法,并允許開發一個框架來訓練和測試執行各種任務的MAS的協調性,此外還評估了利用一系列集中訓練技術的新算法方法。
此外,還需要進行更多的調查,以闡明有利于在ISTAR任務和其他交戰場景中利用MAS的軍事戰略。在淺顯的情況下,將完全自主的MAS送入高風險情況(即預期因果率高的情況)是可取的;然而,由于目前的技術限制,僅僅期望MAS能夠在沒有人類監督或干預的情況下完成任務是不夠的。因此,在未來的工作中,將進行研究以確定一套強有力的交戰方案。最后,這項工作將導致自主MAS的最終整合,以便在未來的軍事行動中盡可能地協調戰略機動。