亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在過去的十年里,深度學習取得了巨大的成功,但在權值更新和訓練樣本數量方面,實際有用的深度模型的訓練仍然非常低效。為了解決這些問題的一個方面,本文研究了持續學習設置,該模型利用一系列的任務,利用之前的知識來快速學習新任務。持續學習的主要挑戰是,在為新任務更新模型時,避免模型災難性地忘記之前的信息。

//ora.ox.ac.uk/objects/uuid:7a3e5c33-864f-4cfe-8b80-e85cbf651946

為此,本文首先提出了一種持續學習算法,通過正則化兩個連續任務的條件似然之間的kl -散度來保留之前的知識。結果表明,這種正則化對網絡權值施加了二次懲罰,該懲罰基于上一個任務的最小曲率。其次,本文提出了一種更有效的持續學習算法,利用對過去任務的情景記憶作為約束,這樣當對新任務進行權重更新時,情景記憶的損失不會增加。結果表明,使用情景記憶約束目標比正則化網絡參數更有效。此外,為了提高學習新任務的速度,提出了使用組合任務描述符的聯合嵌入模型,大大提高了正向遷移。基于情景記憶的持續學習目標通過直接在損失函數中使用記憶來簡化。盡管它傾向于記憶出現在微小情景記憶中的數據,結果算法顯示出比使用記憶作為約束的算法更好的泛化。分析認為,這種驚人的概化是由于新任務數據帶來的正則化效應。然后利用該算法對合成數據和真實數據進行持續學習。為此,提出了一種方法,通過優化重放緩沖區上的事后遺忘損失,為每個任務生成合成數據點。設計了一個嵌套的持續學習優化目標,有效地利用這些綜合點來減少基于記憶的持續學習方法的遺忘。最后,本文提出了一種持續學習算法,在不重疊的特征子空間中學習不同的任務。通過保持不同任務的子空間相互正交來最小化重疊,可以減少這些任務表示之間的干擾。

付費5元查看完整內容

相關內容

持續學習(continuallearning,CL) 是 模 擬 大 腦 學 習 的 過 程,按 照 一 定 的 順 序 對 連 續 非 獨 立 同 分 布 的 (independentlyandidenticallydistributed,IID)流數據進行學習,進而根據任務的執行結果對模型進行 增量式更新.持續學習的意義在于高效地轉化和利用已經學過的知識來完成新任務的學習,并且能夠極 大程度地降低遺忘帶來的問題.連續學習研究對智能計算系統自適應地適應環境改變具有重要的意義

最近,深度學習研究在包括計算機視覺、自然語言處理和強化學習在內的廣泛任務中取得了令人印象深刻的快速進展。這些系統的非凡性能常常給人一種印象,即它們可以用來使我們的生活變得更好。然而,正如最近的研究指出的,這些系統存在一些問題,使其在現實世界中使用不可靠,包括易受對抗性攻擊(Szegedy等人[243]),傾向于記憶噪聲(Zhang等人[286]),對錯誤的預測(錯誤校準)過于自信(Guo等人[99]),以及不適合處理私人數據(Gilad-Bachrach等人[88])。在本分析中,我們將詳細研究這些問題,研究它們的原因,并提出在實踐中減少它們的計算成本低廉的算法。為此,我們確定了深度神經網絡中的結構,可以利用這些結構來減輕上述導致深度學習算法不可靠的原因。在第4章中,我們展示了最小化神經網絡中單個權重矩陣的矩陣的一個屬性,稱為穩定秩,降低了網絡記憶噪聲的趨勢,而不犧牲其在無噪聲數據上的性能。在第5章中,我們證明了記憶標簽噪聲或進行不適當的表示學習使實現對抗魯棒性成為不可能。第6章表明,神經網絡表示空間上的低秩先驗增加了神經網絡對對抗性擾動的魯棒性,而在實踐中不會導致與精度的任何權衡。在第7章中,我們重點介紹焦點損失(focal loss)的使用,它根據神經網絡對每個樣本的分類情況,對單個樣本的損失分量進行差異加權,作為交叉熵的替代損失函數,以最小化神經網絡中的錯誤校準。在第8章中,我們首先定義了一個名為加密預測即服務(Encrypted Prediction As a Service, EPAAS)的新框架,以及一系列計算和隱私約束。然后,我們提出使用一種完全同態加密[84]方案,該方案可與二元神經網絡[61]一起使用,以及一組代數和計算技巧,以滿足我們對EPAAS的所有條件,同時計算效率高。

//ora.ox.ac.uk/objects/uuid:1b9afe07-718b-404a-af25-470d476d5c30

付費5元查看完整內容

模型必須能夠自我調整,以適應新環境。深度網絡在過去十年取得了巨大成功,特別是當訓練和測試數據來自相同的分布時。不幸的是,當訓練(源)與測試(目標)數據不同時,性能會受到影響,這種情況稱為域移位。模型需要自我更新以應對這些意外的自然干擾和對抗性擾動,如天氣變化、傳感器退化、對抗性攻擊等。如果我們有一些標記的目標數據,可以使用一些遷移學習方法,如微調和少樣本學習,以有監督的方式優化模型。然而,對目標標簽的要求對于大多數現實場景是不實際的。**本文專注于無監督學習方法,以將模型泛化到目標域。

本文研究了完全測試時自適應的設置,在不獲取目標標簽和源數據的情況下,將模型更新到不可控的目標數據分布。換句話說,模型在這個設置中只有它的參數和未標記的目標數據。其核心思想是利用測試時間優化目標,熵最小化,作為可學習模型的反饋機制,在測試時間內關閉循環。我們通過在線或離線的方式優化模型,以測量輸出熵的置信度。這種簡單有效的方法可以降低自然破壞和對抗性擾動圖像分類的泛化誤差。此外,語義分割模型的自適應特性可用于處理場景理解的動態尺度推理。通過對比學習和擴散模型,我們可以學習目標域特征并生成源風格的圖像,進一步提高動態環境下的識別性能。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-229.html

付費5元查看完整內容

我們周圍的物質世界極其復雜,幾個世紀以來,我們一直試圖對其運作方式有更深入的了解。因此,建立能夠預測多物理系統(如復雜血流、混沌振蕩器和量子力學系統)長期動力學的模型仍然是科學領域的一個關鍵挑戰。雖然傳統和計算工具在解決這一開放問題方面有了顯著的改進,但它們仍面臨許多挑戰,計算資源仍然密集,而且容易產生嚴重的錯誤積累。現在,現代機器學習技術,加上大量的傳感器數據,正在推動這個方向取得重大進展,幫助我們從潛在的物理過程中發現復雜的關系。該領域的一個新興領域是混合物理信息機器學習,將物理系統的部分先驗知識集成到機器學習管道中,以提高預測性能和數據效率。在這篇論文中,我們研究了如何使用現有的關于物理世界的知識來改進和增強神經網絡的預測性能。首先,我們展示了旨在保持結構、連通性和能量(如圖、積分器和哈密頓量)的學習偏差可以有效地結合起來,從稀疏、噪聲數據中學習復雜多體節能系統的動力學。其次,通過在神經網絡中嵌入廣義的port- hamilton形式,從數據中準確地恢復不可逆物理系統的動力學。此外,我們強調了我們的模型如何通過設計從稀疏數據中發現潛在的力和阻尼項,以及重建混沌系統的Poincaré部分。最后,我們展示了基于物理的神經網絡可以有效地用于高效和準確的遷移學習——在大量研究良好的微分方程上保持高保真的同時,實現數量級的加速。總的來說,這些創新展示了科學機器學習的一個新方向——將現有知識與機器學習方法相結合。由此自然產生了許多好處,包括(1)準確的學習和長期預測(2)數據效率(3)可靠性和(4)可伸縮性。這種混合模型對于開發能夠建模和預測復雜的多保真度、多尺度物理過程的魯棒機器學習方法至關重要。

付費5元查看完整內容

幾十年來,研究人員一直在追求一個雄心勃勃的目標:設計出能夠像人類一樣有效地解決問題的計算機模型。人工神經網絡——一種通用的、可優化的模型,最初是受到大腦中的生物神經元的啟發——似乎提供了一個有希望的答案。然而,當前模型的一個重大限制是,它們往往只可靠地精通它們明確訓練過的任務和數據集。如果正在訓練多個任務或數據集,則需要適當地混合和平衡樣本,以便在連續批次的訓練中不會導致前批次學習到的知識的遺忘,這是持續學習的障礙。此外,需要通過成對的輸入目標樣本使訓練網絡的關聯明確,以實現其在期望任務上的最佳性能;當網絡在沒有明確目標的情況下以無監督方式進行訓練時,為了減少數據收集的成本,網絡學到的知識遷移到期望任務的效果明顯差于具有明確關聯的有監督訓練。

所有這些問題都與基本的泛化問題有關,泛化是指盡管面向新類但仍能表現良好的能力。在第二章中,我們討論了在有監督、無監督和持續學習環境下,可以預期產生良好泛化的條件,包括小模型大小和訓練和測試數據之間的相似性。第三章提出了一種預測模型何時不能泛化到測試樣本的方法,推導出泛化邊界,利用模型大小和與訓練數據的相似度來量化預測的可靠性。第四章介紹了一種聚類方法,該方法學習了如何在語義概念之間近似地分離數據,使用的是非監督目標不使用手動標簽。第五章包含了一種不需要專門訓練數據就可以執行目標定位任務的方法,即通過重新利用顯著性映射。第6章包含了一個持續學習的方法,在這個方法中,模型被迫重新考慮之前的知識與新知識并行,第7章使用了一個動態架構來抑制新學習片段對舊知識的干擾。如果沒有這些泛化問題的解決方案,神經網絡就無法從自然順序的、沒有注釋的現實世界數據中實時有效地學習,這限制了它們的部署選項。因此,泛化是一個具有巨大實際意義的問題,從理論上和從生物學啟發學習的角度來看都很有趣。

//ora.ox.ac.uk/objects/uuid:2d7f8f92-d730-40a5-a47c-0acd0998f0d0

付費5元查看完整內容

由于醫療數據的多樣性和數據收集和注釋的費用高昂,數據不足和異質性是表示學習在醫學機器學習中的挑戰。為了從如此有限和異構的醫療數據中學習可泛化的表示,我們的目標是利用各種學習范式來克服這個問題。在本文中,我們系統地探索了有限數據、數據不平衡和異構數據的機器學習框架,使用跨領域學習、自我監督學習、對比學習、元學習、多任務學習和魯棒學習。我們提出了不同醫療應用的研究,如臨床語言翻譯、超聲圖像分類和分割、醫學圖像檢索、皮膚診斷分類、病理元數據預測和肺部病理預測。

//dspace.mit.edu/handle/1721.1/144745

我們首先關注有限的數據問題,這在醫學領域很常見。我們利用具有相同錨點的無監督嵌入空間對齊方法,在有限且不配對的醫學語料庫中學習臨床語言翻譯的跨領域表示,并使用統計語言建模進行句子翻譯。使用臨床正確性和可讀性的指標,開發的方法在單詞和句子級別的翻譯中優于基于詞典的算法。為了更好地學習有限數量的超聲圖像的數據表示,我們隨后采用了自我監督學習技術,并將相應的元數據作為多模態資源集成,以引入歸納偏差。我們發現,與標準遷移學習方法相比,通過開發的方法學習的表示可以獲得更好的下游任務性能,如超聲圖像質量分類和器官分割。

接下來,我們放大數據不平衡問題。本文探索了對比學習的用途,特別是孿生網絡,從不平衡的眼底成像數據集中學習表示,用于糖尿病視網膜病變圖像檢索。與標準的監督學習設置相比,我們使用從Siamese網絡學習的表示獲得了可比較但可解釋的結果。我們還利用極不平衡的長尾皮膚圖像數據集進行皮膚病分類的元學習。我們發現,使用元學習模型和使用常規類不平衡技術訓練的模型集成可以產生更好的預測性能,特別是對于罕見的皮膚病。

最后,針對異構醫療數據,我們開發了一個多模態多任務學習框架來學習病理元數據預測的共享表示。我們利用多模態融合技術集成幻燈片圖像、自由文本和結構化元數據,并采用多任務目標損失來引入學習時的歸納偏差。這比標準的單模態單任務訓練設置產生更好的預測能力。我們還應用魯棒訓練技術來學習可以解決兩個胸部x射線數據集分布轉移的表示。與標準訓練相比,我們發現當存在偏移時,魯棒訓練提供了更好的容忍度,并學習了肺病理預測的魯棒表示。本文的研究并不詳盡,但對在有限和異構的醫療數據設置下利用機器學習幫助臨床決策進行了廣泛的了解。我們還提供了見解和警告,以激發利用低資源和高維醫療數據的機器學習的未來研究方向,并希望對現實世界的臨床產生積極的影響。

付費5元查看完整內容

摘要

與批量學習不同的是,在批量學習中所有的訓練數據都是一次性可用的,而持續學習代表了一組方法,這些方法可以積累知識,并使用序列可用的數據連續學習。與人類的學習過程一樣,不斷學習具有學習、融合和積累不同時間步的新知識的能力,被認為具有很高的現實意義。因此,持續學習在各種人工智能任務中得到了研究。本文綜述了計算機視覺中持續學習的最新進展。特別地,這些作品是根據它們的代表性技術進行分組的,包括正則化、知識蒸餾、記憶、生成重放、參數隔離以及上述技術的組合。針對每一類技術,分別介紹了其特點及其在計算機視覺中的應用。在概述的最后,討論了幾個子領域,在這些子領域中,持續的知識積累可能會有幫助,而持續學習還沒有得到很好的研究。

//www.zhuanzhi.ai/paper/a13ad85605ab12d401a6b2e74bc01d8a

引言

人類的學習是一個漸進的過程。在人類的一生中,人類不斷地接受和學習新知識。新知識在發揮自身積累作用的同時,也對原有知識進行補充和修正。相比之下,傳統的機器學習和深度學習范式通常區分知識訓練和知識推理的過程,模型需要在有限的時間內在預先準備好的數據集上完成訓練,然后使用這些數據集進行推理。隨著相機和手機的廣泛普及,每天都有大量新的圖片和視頻被捕捉和分享。這就產生了新的需求,特別是在計算機視覺領域,模型在推理過程中要連續不斷地學習和更新自己,因為從頭開始訓練模型以適應每天新生成的數據是非常耗時和低效的。

由于神經網絡與人腦的結構不同,神經網絡訓練不易從原來的批量學習模式轉變為新的連續學習模式。特別是存在兩個主要問題。首先,按照序列學習多個類別的數據容易導致災難性遺忘的問題[1,2]。這意味著,在從新類別的數據更新模型參數后,模型在先前學習類別上的性能通常會急劇下降。其次,當按順序從同一類別的新數據中學習時,也會導致概念漂移問題[3,4,5],因為新數據可能會以不可預見的方式改變該類別的數據分布[6]。因此,持續學習的總體任務是解決穩定性-可塑性困境[7,8],這就要求神經網絡在保持學習新知識的能力的同時,防止遺忘之前學習過的知識。

近年來,在計算機視覺的各個子領域中提出了越來越多的持續學習方法,如圖1所示。此外,2020年和2021年還舉辦了若干與計算機視覺中的持續學習有關的比賽[9,10]。因此,本文綜述了計算機視覺中持續學習的最新進展。我們將這一概述的主要貢獻總結如下。(1)系統地綜述了計算機視覺中持續學習的最新進展。(2)介紹了用于不同計算機視覺任務的各種持續學習技術,包括正則化、知識提取、基于記憶、生成重放和參數隔離。(3)討論了計算機視覺中持續學習可能有所幫助但仍未得到充分研究的子領域。

本文的其余部分組織如下。第二節給出了持續學習的定義。第3節介紹了這一領域常用的評估指標。第4節討論了各種類型的持續學習方法及其在計算機視覺中的應用。在第5節中討論了計算機視覺中沒有很好地利用持續學習的子領域。最后,第六部分對全文進行總結。

付費5元查看完整內容

人工神經網絡在解決特定剛性任務的分類問題時,通過不同訓練階段的廣義學習行為獲取知識。由此產生的網絡類似于一個靜態的知識實體,努力擴展這種知識而不針對最初的任務,從而導致災難性的遺忘。

持續學習將這種范式轉變為可以在不同任務上持續積累知識的網絡,而不需要從頭開始再訓練。我們關注任務增量分類,即任務按順序到達,并由清晰的邊界劃分。我們的主要貢獻包括:

(1) 對持續學習技術的分類和廣泛的概述;

(2) 一個持續學習器穩定性-可塑性權衡的新框架;

(3) 對11種最先進的持續學習方法和4條基準進行綜合實驗比較。

考慮到微型Imagenet和大規模不平衡的非自然主義者以及一系列識別數據集,我們以經驗的方式在三個基準上仔細檢查方法的優缺點。我們研究了模型容量、權重衰減和衰減正則化的影響,以及任務呈現的順序,并從所需內存、計算時間和存儲空間等方面定性比較了各種方法。

//www.zhuanzhi.ai/paper/c90f25024b2c2364ce63299b4dc4677f

引言

近年來,據報道,機器學習模型在個人任務上表現出甚至超過人類水平的表現,如雅達利游戲[1]或物體識別[2]。雖然這些結果令人印象深刻,但它們是在靜態模型無法適應其行為的情況下獲得的。因此,這需要在每次有新數據可用時重新啟動訓練過程。在我們的動態世界中,這種做法對于數據流來說很快就變得難以處理,或者可能由于存儲限制或隱私問題而只能暫時可用。這就需要不斷適應和不斷學習的系統。人類的認知就是這樣一個系統的例證,它具有順序學習概念的傾向。通過觀察例子來重新審視舊的概念可能會發生,但對保存這些知識來說并不是必要的,而且盡管人類可能會逐漸忘記舊的信息,但完全丟失以前的知識很少被證明是[3]。相比之下,人工神經網絡則不能以這種方式學習:在學習新概念時,它們會遭遇對舊概念的災難性遺忘。為了規避這一問題,人工神經網絡的研究主要集中在靜態任務上,通常通過重組數據來確保i.i.d.條件,并通過在多個時期重新訪問訓練數據來大幅提高性能。

持續學習研究從無窮無盡的數據流中學習的問題,其目標是逐步擴展已獲得的知識,并將其用于未來[4]的學習。數據可以來自于變化的輸入域(例如,不同的成像條件),也可以與不同的任務相關聯(例如,細粒度的分類問題)。持續學習也被稱為終身學習[18]0,[18]1,[18]2,[18]3,[18]5,[18]4,順序學習[10],[11],[12]或增量學習[13],[14],[15],[16],[17],[18],[19]。主要的標準是學習過程的順序性質,只有一小部分輸入數據來自一個或幾個任務,一次可用。主要的挑戰是在不發生災難性遺忘的情況下進行學習:當添加新的任務或域時,之前學習的任務或域的性能不會隨著時間的推移而顯著下降。這是神經網絡中一個更普遍的問題[20]的直接結果,即穩定性-可塑性困境,可塑性指的是整合新知識的能力,以及在編碼時保持原有知識的穩定性。這是一個具有挑戰性的問題,不斷學習的進展使得現實世界的應用開始出現[21]、[22]、[23]。

為了集中注意力,我們用兩種方式限制了我們的研究范圍。首先,我們只考慮任務增量設置,其中數據按順序分批到達,一個批對應一個任務,例如要學習的一組新類別。換句話說,我們假設對于一個給定的任務,所有的數據都可以同時用于離線訓練。這使得對所有訓練數據進行多個時期的學習成為可能,反復洗刷以確保i.i.d.的條件。重要的是,無法訪問以前或將來任務的數據。在此設置中優化新任務將導致災難性的遺忘,舊任務的性能將顯著下降,除非采取特殊措施。這些措施在不同情況下的有效性,正是本文所要探討的。此外,任務增量學習將范圍限制為一個多頭配置,每個任務都有一個獨占的輸出層或頭。這與所有任務共享一個頭的更有挑戰性的類增量設置相反。這在學習中引入了額外的干擾,增加了可供選擇的輸出節點的數量。相反,我們假設已知一個給定的樣本屬于哪個任務。

其次,我們只關注分類問題,因為分類可以說是人工神經網絡最既定的任務之一,使用相對簡單、標準和易于理解的網絡體系結構具有良好的性能。第2節對設置進行了更詳細的描述,第7節討論了處理更一般設置的開放問題。

付費5元查看完整內容

持續學習(CL)是一種特殊的機器學習范式,它的數據分布和學習目標會隨著時間的推移而改變,或者所有的訓練數據和客觀標準都不會立即可用。學習過程的演變是以一系列學習經驗為模型的,其中的目標是能夠在學習過程中一直學習新的技能,而不會忘記之前學過的知識。CL可以看作是一種在線學習,需要進行知識融合,以便從按順序及時呈現的數據流中學習。在學習過程中,不斷學習的目的還在于優化記憶、計算能力和速度。機器學習的一個重要挑戰不是必須找到在現實世界中有效的解決方案,而是找到可以在現實世界中學習的穩定算法。因此,理想的方法是在嵌入的平臺中處理現實世界:自治的代理。持續學習在自主代理或機器人中是有效的,它們將通過時間自主學習外部世界,并逐步發展一套復雜的技能和知識。機器人必須學會通過連續的觀察來適應環境并與之互動。一些最近的方法旨在解決機器人持續學習的問題,但最近關于持續學習的論文只是在模擬或靜態數據集的實驗方法。不幸的是,對這些算法的評估并不能說明它們的解決方案是否有助于在機器人技術的背景下持續學習。這篇論文的目的是回顧持續學習的現有狀態,總結現有的基準和度量標準,并提出一個框架來展示和評估機器人技術和非機器人技術的方法,使這兩個領域之間的轉換更加容易。我們在機器人技術的背景下強調持續學習,以建立各領域之間的聯系并規范方法。

//www.sciencedirect.com/science/article/pii/S07377#sec0001

概要:

機器學習(ML)方法通常從平穩數據分布中隨機采樣的數據流中學習。這通常是有效學習的必要條件。然而,在現實世界中,這種設置相當少見。持續學習(CL)[128]匯集了解決當數據分布隨時間變化時,以及在永無止境的數據流中需要考慮的知識融合的學習問題的工作和方法。因此,CL是處理災難性遺忘[47]的范式[102]。

為了方便起見,我們可以根據經驗將數據流分割成幾個子段,這些子段有時間邊界,我們稱之為任務。然后我們可以觀察在學習一項新任務時所學到或忘記了什么。即使對任務沒有強制約束,任務通常指的是一段特定的時間,其中數據分布可能(但不一定)是平穩的,并且目標函數是常量。就學習目標而言,任務可以是相互獨立的,也可以是相互關聯的,并且取決于設置。

持續學習的一個解決方案是保存所有數據,打亂它,然后回到傳統的機器學習設置。不幸的是,在這種情況下,這并不總是可能的,也不是最佳的。這里有幾個例子,其中持續學習是必要的:

你有一個訓練過的模型,你想用新的數據更新它,但是原來的訓練數據被丟棄了,或者你沒有權利再訪問它。

你想在一系列任務上訓練一個模型,但你不能存儲你的所有數據,或者你沒有計算能力從所有數據中重新訓練模型(例如,在嵌入式平臺中)。

您希望智能代理學習多種策略,但您不知道學習目標何時發生變化,如何變化。

您希望從持續的數據流中學習,這些數據可能會隨著時間而變化,但您不知道如何變化,何時變化。

為了處理這些設置,表示應該通過在線方式學習[87]。隨著數據被丟棄并且生命周期有限,忘記不重要的東西而保留對未來有意義的東西的能力是持續學習的主要目標和重點。

從機器人技術的角度來看,CL是發展機器人技術的機器學習答案[93]。發展機器人技術是一種交叉學科的方法,用于自主設計人工主體的行為和認知能力,直接從兒童自然認知系統中觀察到的發展原則和機制中獲得靈感。

在這種情況下,CL必須包含一個學習累積技能的過程,并能逐步提高所處理任務的復雜性和多樣性。

自主主體在這樣的環境中以開放式的[36]方式學習,但也以持續的方式學習。這種發展方法的關鍵組成部分包括學習自主產生目標和探索環境的能力,開發內在動機[113]和好奇心的計算模型[112]。

我們提出了一個框架來連接持續學習和機器人技術。這個框架也為持續學習提供了機會,以一個有框架的數學公式以清晰和系統的方式呈現方法。

首先,我們介紹了持續學習的背景和歷史。其次,我們的目標是在不斷學習的基礎上理清概念匯。第三,我們將介紹我們的框架作為一種標準的CL方法,以幫助在不同的持續學習領域之間進行轉換,特別是對于機器人技術。第四,我們提供了一組度量標準,它將有助于更好地理解每一類方法的質量和缺點。最后,我們提出了持續學習機器人技術的細節和機會,這使得CL變得如此重要。

對于機器人技術和非機器人技術領域,我們保持了定義、框架、策略和評估的一般性。盡管如此,最后一節,機器人持續學習(第6節)受益于前幾節的內容,以呈現機器人領域持續學習的特殊性。

付費5元查看完整內容

賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。

在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。

總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。

//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28

付費5元查看完整內容
北京阿比特科技有限公司