神經網絡在處理大量數據方面表現優異,從家庭助手到自動駕駛汽車,在很多方面都極大地造福了我們的生活。然而,人們發現神經網絡是脆弱的。通過以一種人類察覺不到的方式輕微擾亂輸入,神經網絡幾乎不能做出任何正確的預測。這嚴重限制了它們在安全關鍵領域的應用,如醫療健康和金融。在本文中,我們研究了魯棒神經網絡,希望促進神經網絡的更廣泛和更可靠的應用。具體來說,我們專注于評估和訓練魯棒的神經網絡。我們首先考慮魯棒性評估。評估神經網絡魯棒性的一種常用方法是通過形式化驗證,這通常是計算開銷很大的。我們為加快這一進程做出了一些貢獻。簡單地說,我們采用了在統一的分支和定界框架下可以重新制定大多數驗證方法的思想。通過直接處理統一框架,對分支和邊界組件提出了高層次的改進,包括啟發式和學習框架。此外,我們引入了新的數據集,使我們的方法能夠與其他現有的方法進行綜合比較分析。在構造魯棒神經網絡方面,我們提出了一種新的魯棒訓練算法。許多流行的魯棒訓練方法依賴于強對手,當模型復雜度和輸入維數較高時,計算成本較高。我們設計了一個新的框架,可以更有效地利用對手。因此,為了達到類似的性能,可以使用廉價而弱小的對手。在此基礎上,介紹了算法ATLAS。我們通過展示ATLAS在幾個標準數據集上的出色表現來證明它的有效性和效率。
是一所英國研究型大學,也是羅素大學集團、英國“G5超級精英大學”,歐洲頂尖大學科英布拉集團、歐洲研究型大學聯盟的核心成員。牛津大學培養了眾多社會名人,包括了27位英國首相、60位諾貝爾獎得主以及數十位世界各國的皇室成員和政治領袖。2016年9月,泰晤士高等教育發布了2016-2017年度世界大學排名,其中牛津大學排名第一。
盡管深度學習取得了理論成就和令人鼓舞的實踐結果,但在推理、因果推理、可解釋性和可解釋性等許多領域仍然存在局限性。從應用程序的角度來看,最有效的限制之一與這些系統的魯棒性有關。事實上,目前的深度學習解決方案都沒有告知它們是否能夠在推理過程中對一個例子進行可靠的分類。現代神經網絡通常過于自信,即使它們是錯誤的。因此,構建魯棒的深度學習應用是當前計算機視覺、自然語言處理和許多其他領域的前沿研究課題。構建更可靠的深度學習解決方案最有效的方法之一是提高它們在所謂分布外檢測任務中的性能,所謂分布外檢測任務本質上是由“知道你不知道”或“知道未知”組成的。換句話說,當提交神經網絡未訓練的類實例時,具有分布外檢測能力的系統可能會拒絕執行無意義的分類。本文通過提出新的損失函數和檢測分數來解決目標性分布不均檢測任務。不確定性估計也是構建更魯棒的深度學習系統的關鍵輔助任務。因此,我們也處理這個與魯棒性相關的任務,它評估由深度神經網絡呈現的概率有多真實。為了證明我們的方法的有效性,除了大量的實驗,其中包括最新的結果,我們使用基于最大熵原理的論點來建立所提出的方法的理論基礎。與大多數當前的方法不同,我們的損失和得分是無縫的和有原則的解決方案,除了快速和有效的推斷,還能產生準確的預測。此外,我們的方法可以并入到當前和未來的項目中,只需替換用于訓練深度神經網絡的損失,并計算一個快速的檢測評分。
在這篇論文中,我們考慮了多模態在機器學習決策和協調問題中的作用。我們提出使用一系列多模態概率方法,使用(有限)混合模型的擴展來解決時間序列預測的挑戰,神經網絡中的高效不確定性量化,對抗模型和多智能體協調。在論文的第一部分中,我們關注多模態不確定性估計在時間序列預測中的應用,表明這種方法提供了易于操作的、有益的替代點估計方法,點估計仍然是預測的普遍選擇方法。我們討論了多模態不確定性的意義,并展示了更熟練的方法估計后驗目標分布的必要性。我們提出了一系列計算高效,但有能力的方法來估計豐富的多模態后驗分布。我們將我們的模型與用點測量或單峰分布估計不確定性的技術進行了比較,并在生成對抗網絡的啟發下,對所開發的方法進行了擴展,以此結束本部分。我們表明,該方法對加性噪聲提供了最先進的魯棒性,使其特別適用于包含大量未知隨機的數據集。
在本工作的第二部分,我們研究了協作多智能體系統(CMASs)的多模態模型的重要性,并將我們的工作擴展到采用概率方法。到目前為止,這一領域的大多數研究都局限于考慮自玩范式,即使這些方法解決了各種具有挑戰性的問題。雖然這些進步是重要的,但在自玩中使用任意約定會導致當智能體在此設置之外玩時的協調問題。我們考慮了特殊的CMAS設置,遠離了自玩框架。這是機器學習中一個特別具有挑戰性的領域,也是近年來備受關注的一個領域,為AI智能體在現實世界中能夠與人類(和其他智能體)有效交互提供了希望。我們通過在其他主體的策略上建立后驗信念來解決特別協調問題。這是通過吉布斯抽樣的擴展來實現的,以獲得接近最優的即席性能。我們在具有挑戰性的游戲Hanabi上測試了我們的算法,Hanabi是合作多智能體強化學習中最著名的測試平臺之一,近年來已成為一個具有發展勢頭的基準。我們表明,我們的方法可以實現強大的交叉游戲,即使與看不到的合作伙伴,實現成功的臨時協調,無需預先了解合作伙伴的戰略。
本文介紹了在一系列背景下進行因果參數推理的程序,包括觀察性研究、完全隨機化設計、配對實驗和協變量自適應設計。首先,我們討論了凸優化在匹配觀測研究中進行方向推斷和靈敏度分析的應用。我們設計了一種算法,使信噪比最大化,同時考慮了未觀察到的混雜。我們分析算法輸出的漸近分布行為,以發展因果效應的漸近有效假設檢驗。由此產生的程序在廣泛的程序類上達到最大的設計靈敏度。其次,我們研究了特征信息在完全隨機實驗中對效應進行高精度推斷的作用。本文構建了一種基于線性回歸的校正技術,該技術構造了估計量的漸近方差的上界。該校準程序適用于任何可能是半參數有效的填補估計器,并自動證明所產生的非線性回歸調整估計器至少與均值之差一樣漸近精確;在模型錯誤規范下,非線性回歸調整估計器先前沒有保證的一個特性。第三,我們引入了高斯預軸:一種構建檢驗統計量的算法技術,即使在零中違反隨機化假設的對稱性時,隨機化推理仍保持漸近有效。我們證明了基于預軸統計量的隨機化檢驗在銳利的零值下是有限樣本精確的,而在弱零值下它們漸近地控制了錯誤拒絕的概率。這允許形成具有同聲傳譯的處理效應的置信區域,作為齊次相加處理效應的精確置信區域和異質相加處理效應的漸近置信區域;從而統一費雪和內曼推理的許多實驗設計,包括重隨機實驗。第四,我們構建了重采樣算法的嵌套層次結構,該算法利用了超總體、固定協變量和有限總體模型中的概率結構,以促進完全隨機設計中各種統計數據的非參數推斷。重采樣算法通過利用回歸調整和最優傳輸的現代結果擴展了經典的自舉范例,在固定協變量和有限人口模型下實現了顯著的增益。
盡管最近在深度學習方面取得了進展,但大多數方法仍然采用豎井式的解決方案,即為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實世界的問題需要同時解決許多任務。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,對其進行定位,估計其距離和軌跡等,以便在其周圍環境中安全導航。類似地,用于商業應用的圖像識別系統應該能夠標記產品、檢索類似的商品、提出個性化的建議等,以便為客戶提供盡可能好的服務。這類問題促使研究人員建立多任務學習模型。多任務學習的核心思想是并行學習多個任務,同時共享學習到的表示。與單任務情況相比,多任務網絡具有許多實際的優點,單任務情況下,每個單獨的任務由自己的網絡單獨解決。首先,由于層的共享,產生的內存占用大大減少。其次,由于它們避免在共享層中重復計算特征,每個任務一次,它們顯示出提高的推理速度。第三,如果相關的任務共享互補信息,或者作為一個正則化器,它們有可能提高性能。
在構建多任務學習模型時,我們面臨著兩個重要的挑戰。首先,我們需要想出能夠處理多個任務的神經網絡架構。其次,我們需要為共同學習任務制定新的訓練方案。特別是,由于我們并行地優化多個目標,一個或多個任務可能會開始主導權重更新過程,從而阻礙模型學習其他任務。在這份手稿中,我們在視覺場景理解的背景下鉆研了這兩個問題。我們提出了兩種新的模型類型來解決體系結構問題。首先,我們探索了分支多任務網絡,其中神經網絡的更深層次逐漸成長為更具體的任務。我們介紹了一種有原則的方法來自動構建這樣的分支多任務網絡。構造過程將可以用一組相似特征來解決的任務組合在一起,同時在任務相似性和網絡復雜性之間進行權衡。通過這種方式,我們的方法生成的模型可以在性能和計算資源量之間做出更好的權衡。
其次,我們提出了一種新的神經網絡結構,用于聯合處理多個密集的預測任務。其關鍵思想是從多個尺度上對其他任務的預測中提取有用信息,從而提高對每個任務的預測。包含多個尺度的動機是基于這樣的觀察:在某個尺度上具有高相似性的任務不能保證在其他尺度上保持這種行為,反之亦然。在密集標記的兩個流行基準上進行的廣泛實驗表明,與之前的工作不同,我們的模型提供了多任務學習的全部潛力,即更小的內存占用,減少的計算數量,以及更好的性能w.r.t.單任務學習。此外,我們還考慮了多任務學習優化問題。我們首先分析幾種平衡任務學習的現有技術。令人驚訝的是,我們發現了這些工作之間的一些差異。我們假設,這可能是由于多任務學習缺乏標準化的基準,不同的基準受益于特定的策略。基于這個結果,我們然后分離最有希望的元素,并提出一組啟發式方法來平衡任務。啟發式具有實際性質,并在不同的基準測試中產生更魯棒的性能。
在最后一章中,我們從另一個角度來考慮場景理解的問題。文獻中描述的許多模型都受益于有監督的預訓練。在這種情況下,在轉移到感興趣的任務之前,模型首先在一個更大的帶注釋的數據集(如ImageNet)上進行預訓練。這使得模型能夠很好地執行,即使是在只有少量標記示例的數據集上。不幸的是,有監督的預訓練依賴于帶注釋的數據集本身,這限制了它的適用性。為了解決這個問題,研究人員開始探索自監督學習方法。我們以對比學習為基礎來回顧最近流行的作品。首先,我們展示了現有的方法,如MoCo可以在不同的數據集上獲得穩健的結果,包括以場景為中心的數據、長尾數據和特定領域的數據。其次,我們通過增加額外的不變性來改進學習的表示。這一結果直接有利于許多下游任務,如語義分割、檢測等。最后,我們證明了通過自監督學習所獲得的改進也可以轉化為多任務學習網絡。綜上所述,本文提出了幾個重要的貢獻,以改進多任務學習模型的視覺場景理解。創新集中在改進神經網絡結構、優化過程和訓練前方面。所有方法都經過了各種基準測試。該代碼公開發布://github.com/SimonVandenhende。
對抗性例子的威脅激發了訓練可靠的魯棒神經網絡的工作,以便在推理時有效地驗證局部魯棒性。我們形式化了全局魯棒的概念,它捕獲了在線局部魯棒認證的操作特性,同時為魯棒訓練提供了一個自然學習目標。我們證明,通過將有效的全局Lipschitz邊界合并到網絡中,通過構建達到最先進的可驗證精度的可靠模型,廣泛使用的體系結構可以很容易地適應這一目標。值得注意的是,與最近的認證訓練方法相比,這種方法需要更少的時間和記憶,并且在在線認證點時成本可以忽略不計;例如,我們的評估表明,在大約幾小時內訓練一個大型魯棒的Tiny-Imagenet模型是可能的。我們的模型有效地利用了便宜的全局Lipschitz邊界來進行實時認證,盡管之前的建議是為了良好的性能需要更緊密的局部邊界;我們假設這是可能的,因為我們的模型經過專門訓練,以實現更緊密的全局邊界。也就是說,我們證明了對于給定的數據集,最大可實現的可驗證精度不能通過使用局部邊界來提高。
在本文中,我們研究了生成模型的幾個重要標準,并引入評價指標來解決每個問題,同時討論了生成模型評價中的上述問題。特別是,我們研究了測量生成輸出的感知現實主義的挑戰,并引入了一個人在循環中的評估系統,利用心理物理學理論,以人類知覺文獻和眾包技術為基礎,構建一個高效、可靠、并采用一致的方法比較不同的模型。除此之外,我們還分析了解纏性(Disentanglement),這是評估已學習表示的一個日益重要的特性,通過使用持久同調測量生成模型數據流形的內在特性。
【導讀】牛津大學的博士生Oana-Maria Camburu撰寫了畢業論文《解釋神經網絡 (Explaining Deep Neural Networks)》,系統性介紹了深度神經網絡可解釋性方面的工作,值得關注。
作者介紹:
Oana-Maria Camburu,來自羅馬尼亞,目前是牛津大學的博士生,主修機器學習、人工智能等方向。
Explaining Deep Neural Networks
深度神經網絡在計算機視覺、自然語言處理和語音識別等不同領域取得了革命性的成功,因此越來越受歡迎。然而,這些模型的決策過程通常是無法向用戶解釋的。在各種領域,如醫療保健、金融或法律,了解人工智能系統所做決策背后的原因至關重要。因此,最近研究了幾個解釋神經模型的方向。
在這篇論文中,我研究了解釋深層神經網絡的兩個主要方向。第一個方向由基于特征的事后解釋方法組成,也就是說,這些方法旨在解釋一個已經訓練過的固定模型(事后解釋),并提供輸入特征方面的解釋,例如文本標記和圖像的超級像素(基于特征的)。第二個方向由生成自然語言解釋的自解釋神經模型組成,也就是說,模型有一個內置模塊,為模型的預測生成解釋。在這些方面的貢獻如下:
首先,我揭示了僅使用輸入特征來解釋即使是微不足道的模型也存在一定的困難。我表明,盡管有明顯的隱含假設,即解釋方法應該尋找一種特定的基于真實值特征的解釋,但對于預測通常有不止一種這樣的解釋。我還展示了兩類流行的解釋方法,它們針對的是不同類型的事實基礎解釋,但沒有明確地提及它。此外,我還指出,有時這兩種解釋都不足以提供一個實例上決策過程的完整視圖。
其次,我還介紹了一個框架,用于自動驗證基于特征的事后解釋方法對模型的決策過程的準確性。這個框架依賴于一種特定類型的模型的使用,這種模型有望提供對其決策過程的洞察。我分析了這種方法的潛在局限性,并介紹了減輕這些局限性的方法。引入的驗證框架是通用的,可以在不同的任務和域上實例化,以提供現成的完整性測試,這些測試可用于測試基于特性的后特殊解釋方法。我在一個情緒分析任務上實例化了這個框架,并提供了完備性測試s1,在此基礎上我展示了三種流行的解釋方法的性能。
第三,為了探索為預測生成自然語言解釋的自解釋神經模型的發展方向,我在有影響力的斯坦福自然語言推斷(SNLI)數據集之上收集了一個巨大的數據集,數據集約為570K人類編寫的自然語言解釋。我把這個解釋擴充數據集稱為e-SNLI。我做了一系列的實驗來研究神經模型在測試時產生正確的自然語言解釋的能力,以及在訓練時提供自然語言解釋的好處。
第四,我指出,目前那些為自己的預測生成自然語言解釋的自解釋模型,可能會產生不一致的解釋,比如“圖像中有一只狗。”以及“同一幅圖片中沒有狗”。不一致的解釋要么表明解釋沒有忠實地描述模型的決策過程,要么表明模型學習了一個有缺陷的決策過程。我將介紹一個簡單而有效的對抗性框架,用于在生成不一致的自然語言解釋時檢查模型的完整性。此外,作為框架的一部分,我解決了使用精確目標序列的對抗性攻擊的問題,這是一個以前在序列到序列攻擊中沒有解決的場景,它對于自然語言處理中的其他任務很有用。我將這個框架應用到e-SNLI上的一個最新的神經模型上,并表明這個模型會產生大量的不一致性。
這項工作為獲得更穩健的神經模型以及對預測的可靠解釋鋪平了道路。
作為傳統DNNs對圖的推廣,GNN繼承了傳統DNNs的優點和缺點。與傳統的DNNs一樣,GNN在許多圖形相關的任務中被證明是有效的,比如節點聚類和圖聚焦任務。傳統的DNNs已被證明易受專門設計的對抗性攻擊(Goodfellow et al., 2014b;徐等,2019b)。在對抗性的攻擊下,受害樣本會受到干擾,不容易被發現,但會導致錯誤的結果。越來越明顯的是,GNNs也繼承了這個缺點。對手可以通過操縱圖的結構或節點特征來欺騙GNN模型,從而產生圖的對抗性擾動。GNN的這種局限性引起了人們對在諸如金融系統和風險管理等安全關鍵應用程序中采用它們的極大關注。例如,在一個信用評分系統中,欺詐者可以偽造與幾個高信用客戶的關系,以逃避欺詐者檢測模型;垃圾郵件發送者可以很容易地創建虛假關注者,以增加虛假新聞被推薦和傳播的機會。因此,圖形對抗性攻擊及其對策的研究越來越受到人們的關注。在這一章中,我們首先介紹了圖對抗攻擊的概念和定義,并詳細介紹了一些具有代表性的圖對抗攻擊方法。然后,我們討論了針對這些對抗性攻擊的典型防御技術。