亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

1、周志華教授:關于深度學習的一點思考

作者:周志華

摘要:深度學習已被廣泛應用到涉及圖像、視頻、語音等的諸多任務中并取得巨大成功。如 果我們問“深度學習是什么?”很可能會得到這樣的回答:“深度學習就是深度神經網 絡”。至少在目前,當“深度學習”作為一個術語時幾乎就是“深度神經網絡”的同義詞, 而當它指向一個技術領域時則如 SIAM News 頭版文章所稱[1],是“機器學習中使用深度 神經網絡的子領域”。關于深度學習有很多問題還不清楚。例如深度神經網絡為什么要“深”?它成功背 后的關鍵因素是什么?深度學習只能是深度神經網絡嗎?本文將分享一些我們關于深度 學習的粗淺思考。

網址: //mp.weixin.qq.com/s/yKzMxJ2pwwLYSO8ry0sJIQ

2、Attention Mechanisms in Computer Vision: A Survey(注意力機制)

清華&南開最新「視覺注意力機制Attention」綜述論文,帶你全面了解六大類注意力機制方法

作者: Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, Shi-Min Hu

摘要:人類可以自然有效地在復雜的場景中找到顯著區域。在這種觀察的推動下,注意力機制被引入到計算機視覺中,目的是模仿人類視覺系統的這方面。這種注意力機制可以看作是一個基于輸入圖像特征的動態權值調整過程。注意力機制在圖像分類、目標檢測、語義分割、視頻理解、圖像生成、三維視覺、多模態任務和自監督學習等視覺任務中取得了巨大的成功。本文綜述了計算機視覺中的各種注意力機制,并對其進行了分類,如通道注意力、空間注意力、時間注意力和分支注意力; 相關的存儲庫

網址:

3、Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges(幾何深度學習)

重磅!《幾何深度學習》新書發布,帝國理工/DeepMind等圖ML大牛共同撰寫,160頁pdf闡述幾何DL基礎原理和統一框架

幾何深度學習是一種從對稱性和不變性的角度對大量ML問題進行幾何統一的嘗試。這些原理不僅奠定了卷積神經網絡的突破性性能和最近成功的圖神經網絡的基礎,而且也提供了一種原則性的方法來構建新型的問題特定的歸納偏差。

在本文中,我們做了一個適度的嘗試,將Erlangen項目的思維模式應用到深度學習領域,最終目標是獲得該領域的系統化和“連接點”。我們將這種幾何化嘗試稱為“幾何深度學習”,并忠實于Felix Klein的精神,提出從對稱性和不變性的原則推導出不同的歸納偏差和網絡架構。特別地,我們將重點放在一類用于分析非結構集、網格、圖和流形的神經網絡上,并表明它們可以被統一地理解為對應這些域的結構和對稱性的方法。

我們相信這篇文章將吸引深度學習研究人員、實踐者和愛好者的廣泛受眾。新手可以用它來概述和介紹幾何深度學習。經驗豐富的深度學習專家可能會發現從基本原理推導熟悉架構的新方法,也許還會發現一些令人驚訝的聯系。實踐者可以獲得如何解決各自領域問題的新見解。

網址:

4、A Survey of Transformers(Transformer綜述論文)

復旦大學邱錫鵬教授等「Transformers全面綜述」論文

作者:Tianyang Lin,Yuxin Wang,Xiangyang Liu,Xipeng Qiu

摘要:Transformers 在自然語言處理、計算機視覺和音頻處理等許多人工智能領域都取得了巨大的成功。因此,自然會引起學術界和工業界研究人員的極大興趣。到目前為止,各種各樣的Transformer變種(即X-formers)已經被提出,但是,關于這些Transformer器變種的系統和全面的文獻綜述仍然缺乏。在這項綜述中,我們提供了一個全面的Transformer綜述。我們首先簡單介紹了普通的Transformer,然后提出了一個x-former的新分類。接下來,我們將從三個方面介紹不同的x -former架構修改,預訓練和應用。最后,展望了未來的研究方向。

網址:

5、Model Complexity of Deep Learning: A Survey(深度學習模型復雜性)

裴健等發布首篇「深度學習模型復雜性」綜述論文,44頁pdf闡述深度學習模型框架、模型規模、優化過程和數據復雜性

作者:Xia Hu,Lingyang Chu,Jian Pei,Weiqing Liu,Jiang Bian

摘要:

模型復雜性是深度學習的一個基本問題。

本文對深度學習中模型復雜性的最新研究進行了系統的綜述。深度學習的模型復雜度可分為表達能力和有效模型復雜度。

從模型框架、模型規模、優化過程和數據復雜性四個方面回顧了現有的研究成果。我們還討論了深度學習模型復雜性的應用,包括理解模型泛化能力、模型優化、模型選擇和設計。

最后,我們提出幾個有趣的未來方向。

網址:

6、Towards Out-Of-Distribution Generalization: A Survey(分布外泛化)

清華大學崔鵬等最新「分布外泛化(Out-Of-Distribution Generalization)」 綜述論文

作者:Zheyan Shen,Jiashuo Liu,Yue He,Xingxuan Zhang,Renzhe Xu,Han Yu,Peng Cui

摘要: 經典的機器學習方法是建立在i.i.d.假設的基礎上的,即訓練和測試數據是獨立同分布的。然而,在真實場景中,i.i.d.假設很難得到滿足,導致經典機器學習算法在分布移位下的性能急劇下降,這表明研究非分布泛化問題的重要性。Out-of-Distribution分布外 (OOD)泛化問題解決了測試分布未知且與訓練不同的挑戰性設置。本文首次系統、全面地探討了OOD泛化問題,從定義、方法、評價到啟示和未來發展方向。首先,給出了OOD泛化問題的形式化定義。其次,根據現有方法在整個學習流程中的位置,將其分為無監督表示學習、有監督模型學習與優化三部分,并詳細討論了每一類的典型方法。然后,我們展示了不同類別的理論聯系,并介紹了常用的數據集和評價指標。最后,對全文文獻進行了總結,并對OOD泛化問題提出了未來的研究方向。本次綜述OOD泛化文獻可在

網址:

7、Deep Long-Tailed Learning: A Survey(深度長尾學習)

NUS顏水成等發布首篇《深度長尾學習》綜述,20頁pdf172篇文獻闡述長尾類別深度學習進展

作者:Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, Jiashi Feng

摘要:深度長尾學習是視覺識別中最具挑戰性的問題之一,其目標是從大量遵循長尾類分布的圖像中訓練出性能良好的深度模型。在過去的十年中,深度學習已經成為一種學習高質量圖像表示的強大的識別模型,并導致了一般視覺識別的顯著突破。然而,長尾類不平衡是實際視覺識別任務中普遍存在的問題,這種不平衡往往限制了基于深度網絡的識別模型在實際應用中的實用性,因為長尾類容易偏向主導類,在尾類上的表現較差。為了解決這一問題,近年來人們進行了大量的研究,在深度長尾學習領域取得了可喜的進展。鑒于該領域的快速發展,本文對深度長尾學習的最新進展進行了綜述。具體地說,我們將已有的深度長尾學習研究分為三類(即類重平衡、信息增強和模塊改進),并根據這三類對這些方法進行了詳細的回顧。之后,我們通過一種新提出的評價指標,即相對準確性,來評估它們在多大程度上解決了階級失衡問題,從而對幾種最先進的方法進行了實證分析。最后,我們強調了深度長尾學習的重要應用,并確定了未來研究的幾個有前景的方向。

網址:

8、Trustworthy AI: From Principles to Practices(可信人工智能)

京東等學者發布《可信賴人工智能》綜述論文,62頁pdf449篇文獻全面闡述可信賴AI的理論與方法

作者:Bo Li,Peng Qi,Bo Liu,Shuai Di,Jingen Liu,Jiquan Pei,Jinfeng Yi,Bowen Zhou

摘要: 人工智能(AI)技術的發展使各種應用系統得以應用于現實世界,影響著人們的日常生活。然而,目前很多人工智能系統被發現容易受到無形的攻擊,對弱勢群體存在偏見,缺乏對用戶隱私的保護等,這不僅降低了用戶體驗,也侵蝕了社會對所有人工智能系統的信任。在這篇綜述中,我們努力為人工智能從業者提供一個全面的指南,以構建可信賴的人工智能系統。我們首先介紹了人工智能可信度的重要方面的理論框架,包括穩健性、泛化性、可解釋性、透明度、再現性、公平性、隱私保護、與人類價值觀的一致性和問責性。然后我們調研了行業中在這些方面的領先方法。為了統一目前零散的人工智能方法,我們提出了一種系統的方法,考慮人工智能系統的整個生命周期,從數據采集到模型開發,到開發和部署,最后到持續監測和治理。在這個框架中,我們向從業者和社會利益相關者(如研究人員和監管機構)提供具體的行動項目,以提高人工智能的可信度。最后,我們確定可信賴的人工智能系統未來發展的關鍵機遇和挑戰,我們確定需要向全面可信賴的人工智能系統轉變范式。

網址:

9、Masked Autoencoders Are Scalable Vision Learners(簡單實用的自監督學習掩碼自編碼MAE)

何愷明最新一作論文:簡單實用的自監督學習掩碼自編碼MAE,ImageNet-1K 87.8%!

作者:Kaiming He,Xinlei Chen,Saining Xie,Yanghao Li,Piotr Dollár,Ross Girshick

摘要:

何愷明提出一種用于計算機視覺的可擴展自監督學習方案Masked AutoEncoders(MAE)。所提MAE極為簡單:對輸入圖像進行塊隨機mask并對遺失像素進行重建。它基于以下兩個核心設計:

我們設計了一種非對稱編解碼架構,其中編碼器僅作用于可見塊(無需mask信息),而解碼器則通過隱表達與mask信息進行原始圖像重建;

我們發現對輸入圖像進行高比例mask(比如75%)可以產生一項重要且有意義的自監督任務。

上述兩種設計促使我們可以更高效的訓練大模型:我們加速訓練達3x甚至更多,同時提升模型精度。所提方案使得所得高精度模型具有很好的泛化性能:僅需ImageNet-1K,ViT-Huge取得了87.8%的top1精度 。下游任務的遷移取得了優于監督訓練的性能,證實了所提方案的可擴展能力。 網址:

10、徐宗本院士談人工智能的10個重大數理基礎問題

徐宗本院士:人工智能的10個重大數理基礎問題

作為新一代信息技術的代表,人工智能已經廣泛應用于科學、社會、經濟、管理的方方面面,已經和正在成為創新驅動發展的核心驅動力之一。然而,就其技術發展而言,人工智能還只是突破了從“不可用” 到“可以用”的技術拐點,從“可以用”到“很好用” “用得好”還存在諸多技術瓶頸,正呼喚重大技術變革。

技術變革的先導是理論創新,即基礎研究。它是指對事物本質和規律的科學化探尋和揭示,是啟發、促動技術變革的激發源和理論依據。理論創新既應包括對原有理論體系或框架的新突破、對原有理論 和方法的新修正和新發展,也包括對理論禁區和未知領域的新探索。

本文主要關注人工智能技術發展當前亟待解決的重大數理基礎問題。為什么要特別關注 AI 的數理基礎問題呢?這是因為當前人工智能技術和發展主要是靠“算例、算法、算力”所驅動的,其基礎是數據,其核心是算法,這二者都深刻地以數學為基礎。數學主要提供對所研究問題的形式化手段、模型化工具和科學化語言。沒有形式化就沒有程式化和計算機化,沒有模型化就沒有定量化和知識化,沒有科學化就沒有系統化和現代化。所以,數學在科學技術中具有獨特的作用和價值。對人工智能而言,數學不僅僅是工具,還是技術內涵本身, 而且常常也是最能體現本質、原始創新的部分。

本文提出并闡述人工智能研究與應用中凾待解決的10個重大數理基礎問題,包括:

(1) 大數據的統計學基礎; (2) 大數據計算的基礎算法; (3) 數據空間的結構與特性; (4) 深度學習的數學機理; (5) 非正規約束下的最優輸運; (6) 如何學習學習方法論; (7) 如何突破機器學習的先驗假設; (8) 機器學習的自動化; (9) 知識推理與數據學習的融合; (10) 智能尋優與人工智能芯片問題.

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

注意力是一種重要的機制,可用于跨許多不同領域和任務的各種深度學習模型。這項綜述提供了一個關于深度學習注意力機制的重要概述。各種注意力機制通過一個由注意力模型,統一符號,和一個全面的分類注意力機制組成的框架來進行解釋。在此基礎上,本文綜述了注意力模型評價的各種方法,并討論了基于該框架的注意力模型結構表征方法。最后,對注意力模型領域的未來工作進行了展望。

1. 引言

**模擬人類注意力的想法最早出現在計算機視覺領域[1],[2],試圖通過引入一個只關注圖像特定區域而不是整個圖像的模型來降低圖像處理的計算復雜度,同時提高性能。然而,我們今天所知道的注意力機制的真正起點通常是源于自然語言處理領域[3]。Bahdanau等人的[3]在機器翻譯模型中實現了注意力,以解決循環神經網絡結構中的某些問題。在Bahdanau等人的[3]強調了注意力的優點后,注意力技術得到了改進,[4],并迅速流行于各種任務,如文本分類[5]、[6]、圖像字幕[7]、[8]、情感分析[6]、[9],以及語音識別[10]、[11]、[12]。

注意力已經成為深度學習中的一種流行技術,原因有幾個。首先,整合了注意力機制的模型在上述所有任務和許多其他任務中都獲得了最先進的結果。此外,大多數注意力機制可以與基本模型聯合訓練,如使用規則反向傳播[3]的循環神經網絡或卷積神經網絡。此外,attention向神經網絡模型[8]引入了一種特定類型的解釋,這種解釋通常被認為非常復雜。此外,Transformer模型[13]的引入進一步證明了注意力的有效性,進一步提高了注意力機制的受歡迎程度。注意力最初是作為循環神經網絡[14]的擴展而引入的。然而,在[13]中提出的Transformer模型是注意力研究的一個重大發展,因為它證明了注意力機制足以建立一個最先進的模型。這意味著可以避免一些缺點,比如遞歸神經網絡特別難以并行化的事實。就像引入最初的注意力機制[3]一樣,Transformer模型是為機器翻譯創建的,但很快就被用于其他任務,如圖像處理[15]、視頻處理[16]和推薦系統[17]。

本綜述的目的是解釋注意力的一般形式,并提供一個在深度學習注意力技術的全面概述。關于注意力模型的其他綜述已經發表。例如,在[18]中,給出了計算機視覺中注意力的調研,[19]提供了圖模型中注意力的概述,[20],[21],[22]都是自然語言處理中注意力的調研。本文部分地建立在上述綜述所提供的資料之上。本綜述與前面提到的綜述的主要區別在于,其他的綜述一般都關注某個領域內的注意力模型。然而,這項綜述提供了一個跨領域的注意力技術概述。我們將以一種通用的方式討論注意力技術,使它們能夠被理解并應用于各種領域。此外,我們發現以往研究中提出的分類方法缺乏恰當區分各種注意力機制所需的深度和結構。此外,某些重要的注意力技巧在以前的綜述中還沒有得到適當的討論,而其他提出的注意力機制似乎缺乏技術細節或直觀的解釋。因此在本文中,我們通過使用統一符號的單一框架,結合技術和直觀的解釋,提出了重要的注意力技術,并對注意力機制進行了全面的分類。 本文的結構如下:第2節介紹了一個一般的注意力模型,為讀者提供了一個基本的了解注意力的屬性和如何應用它。本文的主要貢獻之一是在第3節中介紹的注意力技術的分類。在本節中,將根據所提供的分類法對注意機制進行解釋和分類。第4節概述了評估注意力模型的性能測量和方法。此外,該分類方法還用于評價各種注意模型的結構。最后,在第五部分,我們給出了結論和進一步研究的建議。

2. 通用注意力模型

本節介紹一種注意力一般性與相應的符號。這里介紹的符號是基于[23]中引入并在[13]中普及的符號。本節中介紹的框架將在本文的其余部分中使用。為了實現一個通用的注意力模型,首先需要描述一個可以使用注意力的模型的一般特征。首先,我們將完整的模型稱為任務模型,其結構如圖1所示。這個模型只接受一個輸入,執行指定的任務,并產生所需的輸出。例如,任務模型可以是一種語言模型,它將一段文本作為輸入,并將內容摘要、情緒分類或逐字翻譯成另一種語言的文本作為輸出。或者,任務模型可以獲取圖像,并為該圖像生成標題或分割。任務模型由四個子模型組成: 特征模型、查詢模型、注意力模型和輸出模型。在2.1小節中,我們討論了特征模型和查詢模型,它們是用來為注意力計算準備輸入的。在2.2小節中,我們討論了注意力模型和輸出模型,它們與產生輸出有關。

3. 注意力分類法**

有許多不同類型的注意力機制和擴展,一個模型可以使用這些注意技術的不同組合。因此,我們提出了一種分類法,可以用來對不同類型的注意機制進行分類。圖3提供了不同類別和子類別的視覺概述,注意力機制可以涵蓋在其中。基于是否關注技術是設計來處理特定類型的特征向量(相關特性),特定類型的模型查詢(查詢相關),或者它僅僅是一個通用的機制, 分成三大類。這些類別及其子類別的進一步解釋將在下面的小節中提供。本節中討論的每一種機制要么是對第2節中介紹的一般注意模塊現有內部機制的修改,要么是對其的擴展

注意力機制分類法

特征相關注意力機制

**基于特定的一組輸入數據,特征模型提取特征向量,從而使注意力模型能夠關注這些不同的向量。這些特征可能具有特定的結構,需要特殊的注意力機制來處理它們。可以對這些機制進行分類,以處理以下特征特征之一: 特征的多樣性、特征的級別或特征的表示。

通用注意力機制

這個主要的類別包括了可以應用于任何類型的注意力模型的注意力機制。該組件的結構可以分解為以下幾個子方面:注意力評分函數、注意力對齊和注意力維度。

查詢相關的注意力機制查詢是任何注意力模型的重要組成部分,因為它們直接決定從特征向量中提取哪些信息。這些查詢基于任務模型的期望輸出,可以解釋為文字問題。有些查詢具有特定的特征,需要特定類型的機制來處理它們。因此,這一類封裝了處理特定類型查詢特征的注意力機制。這一類中的機制處理以下兩個查詢特征之一:查詢的類型或查詢的多樣性。**

4. 注意力模型評價

在本節中,我們介紹了各種類型的注意力模型的評估。首先,我們可以使用第3節中介紹的分類法來評估注意力模型的結構。對于這樣的分析,我們考慮注意力機制類別(見圖3)作為模型的正交維數。可以通過確定模型對每個類別使用的機制來分析模型的結構。表3提供了文獻中發現的注意模型的概述,并基于模型實現的注意力機制進行了相應的分析。其次,我們討論了評價注意力模型表現的各種技術。注意力模型的性能可以通過外部或內部性能測量來評估,這將分別在第4.1和4.2小節中討論。

5. 結論

本研究綜述了近年來關于深度學習中的注意力模型的研究進展。注意力機制已經成為深度學習模型的一個顯著發展,因為它們已經表明可以顯著提高模型性能,在幾個研究領域的各種任務中產生了最先進的結果。我們提出了一個全面的分類,可以用來分類和解釋不同數量的注意力機制提出的文獻。分類法的組織基于任務模型的結構,該任務模型由一個特征模型、一個注意力模型、一個查詢模型和一個輸出模型組成。此外,還使用基于查詢、鍵和值的框架討論了注意力機制。最后,我們展示了如何使用外在和內在的測量方法來評估注意力模型的表現,以及如何使用分類方法來分析注意力模型的結構。

參考文獻

[1] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses with a third-order Boltzmann machine,” in 24th Annual Conference in Neural Information Processing Systems (NIPS 2010). Curran Associates, Inc., 2010, pp. 1243–1251. [2] V. Mnih, N. Heess, A. Graves, and k. kavukcuoglu, “Recurrent models of visual attention,” in 27th Annual Conference on Neural Information Processing Systems (NIPS 2014). Curran Associates, Inc., 2014, pp. 2204–2212.

付費5元查看完整內容

【導讀】2020注定是寫入到歷史的一年,新冠變成主題詞。在2019年機器學習領域繼續快速發展,深度學習理論、對比學習、自監督學習、元學習、持續學習、小樣本學習等取得很多進展。在此,專知小編整理這一年這些研究熱點主題的綜述進展,共十篇,了解當下,方能向前。

1、Recent advances in deep learning theory(深度學習理論)

陶大程院士等最新《深度學習理論進展》綜述論文,41頁pdf255篇文獻闡述六大方面進展

作者:Fengxiang He,Dacheng Tao

摘要:深度學習通常被描述為一個實驗驅動的領域,并不斷受到缺乏理論基礎的批評。這個問題已經部分地被大量的文獻解決了,這些文獻至今沒有被很好地組織起來。本文對深度學習理論的最新進展進行了綜述和整理。文獻可分為六類: (1)基于模型復雜度和容量的深度學習泛化; (2)用于建模隨機梯度下降及其變量的隨機微分方程及其動力學系統,其特征是深度學習的優化和泛化,部分受到貝葉斯推理啟發; (3)驅動動力系統軌跡的損失的幾何結構; (4)深度神經網絡的過參數化從積極和消極兩個方面的作用; (5)網絡架構中幾種特殊結構的理論基礎; (6)對倫理和安全及其與泛化性的關系的日益關注。

網址: //www.zhuanzhi.ai/paper/b5ac0f259b59817b890b6c253123ee84

2、Learning from Very Few Samples: A Survey(少樣本學習)

清華大學張長水等最新《少樣本學習FSL》2020綜述論文,30頁pdf414篇參考文獻

作者:Jiang Lu,Pinghua Gong,Jieping Ye,Changshui Zhang

摘要:少樣本學習(FSL)在機器學習領域具有重要意義和挑戰性。成功地從很少的樣本中學習和歸納的能力是區分人工智能和人類智能的一個明顯的界限,因為人類可以很容易地從一個或幾個例子中建立他們對新穎性的認知,而機器學習算法通常需要數百或數千個監督樣本來保證泛化能力。盡管FSL的悠久歷史可以追溯到21世紀初,近年來隨著深度學習技術的蓬勃發展也引起了廣泛關注,但迄今為止,有關FSL的調研或評論還很少。在此背景下,我們廣泛回顧了2000年至2019年FSL的200多篇論文,為FSL提供了及時而全面的調研。在本綜述中,我們回顧了FSL的發展歷史和目前的進展,原則上將FSL方法分為基于生成模型和基于判別模型的兩大類,并特別強調了基于元學習的FSL方法。我們還總結了FSL中最近出現的幾個擴展主題,并回顧了這些主題的最新進展。此外,我們重點介紹了FSL在計算機視覺、自然語言處理、音頻和語音、強化學習和機器人、數據分析等領域的重要應用。最后,我們對調查進行了總結,并對未來的發展趨勢進行了討論,希望對后續研究提供指導和見解。

網址:

3、A Survey on Knowledge Graphs: Representation, Acquisition and Applications(知識圖譜研究綜述論文)

最新!知識圖譜研究綜述論文: 表示學習、知識獲取與應用,25頁pdf詳述Knowledge Graphs技術趨勢

作者:Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu

摘要:人類知識提供了對世界的認知理解。表征實體間結構關系的知識圖譜已經成為認知和人類智能研究的一個日益流行的方向。在本次綜述論文中,我們對知識圖譜進行了全面的綜述,涵蓋了知識圖譜表示學習、知識獲取與補全、時序知識圖譜、知識感知應用等方面的研究課題,并總結了最近的突破和未來的研究方向。我們提出對這些主題進行全視角分類和新的分類法。知識圖譜嵌入從表示空間、得分函數、編碼模型和輔助信息四個方面進行組織。對知識獲取,特別是知識圖譜的補全、嵌入方法、路徑推理和邏輯規則推理進行了綜述。我們進一步探討了幾個新興的主題,包括元關系學習、常識推理和時序知識圖譜。為了方便未來對知識圖的研究,我們還提供了不同任務的數據集和開源庫的集合。最后,我們對幾個有前景的研究方向進行了深入的展望。

網址:

4、A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications(生成式對抗網絡綜述論文)

密歇根大學28頁最新《GANs生成式對抗網絡綜述:算法、理論與應用》最新論文,帶你全面了解GAN技術趨勢

作者:Jie Gui,Zhenan Sun,Yonggang Wen,Dacheng Tao,Jieping Ye

摘要:生成對抗網絡(GANs)是最近的熱門研究主題。自2014年以來,人們對GAN進行了廣泛的研究,并且提出了許多算法。但是,很少有全面的研究來解釋不同GANs變體之間的聯系以及它們是如何演變的。在本文中,我們嘗試從算法,理論和應用的角度對各種GANs方法進行敘述。首先,詳細介紹了大多數GANs算法的動機,數學表示形式和結構。此外,GANs已與其他機器學習算法結合用于特定應用,例如半監督學習,遷移學習和強化學習。本文比較了這些GANs方法的共性和差異。其次,研究了與GANs相關的理論問題。第三,說明了GANs在圖像處理和計算機視覺,自然語言處理,音樂,語音和音頻,醫學領域以及數據科學中的典型應用。最后,指出了GANs未來的開放性研究問題。

網址:

5、A Survey on Causal Inference(因果推斷綜述論文)

最新「因果推斷Causal Inference」綜述論文38頁pdf,阿里巴巴、Buffalo、Georgia、Virginia

作者:Liuyi Yao,Zhixuan Chu,Sheng Li,Yaliang Li,Jing Gao,Aidong Zhang

摘要:數十年來,因果推理是一個跨統計、計算機科學、教育、公共政策和經濟學等多個領域的重要研究課題。目前,與隨機對照試驗相比,利用觀測數據進行因果關系估計已經成為一個有吸引力的研究方向,因為有大量的可用數據和較低的預算要求。隨著機器學習領域的迅速發展,各種針對觀測數據的因果關系估計方法層出不窮。在這項綜述中,我們提供了一個全面的綜述因果推理方法下的潛在結果框架,一個眾所周知的因果推理框架。這些方法根據是否需要潛在結果框架的所有三個假設分為兩類。對于每一類,分別對傳統的統計方法和最近的機器學習增強方法進行了討論和比較。并介紹了這些方法的合理應用,包括在廣告、推薦、醫藥等方面的應用。此外,還總結了常用的基準數據集和開放源代碼,便于研究者和實踐者探索、評價和應用因果推理方法。

網址:

6、Pre-trained Models for Natural Language Processing: A Survey(預訓練語言模型)

【復旦大學】最新《預訓練語言模型》2020綜述論文大全,50+PTMs分類體系,25頁pdf205篇參考文獻

作者:Xipeng Qiu,Tianxiang Sun,Yige Xu,Yunfan Shao,Ning Dai,Xuanjing Huang

摘要:近年來,預訓練模型(PTMs)的出現將自然語言處理(NLP)帶入了一個新的時代。在這項綜述中,我們提供了一個全面的PTMs調研。首先簡要介紹了語言表示學習及其研究進展。然后,我們根據四種觀點對現有的PTMs進行了系統的分類。接下來,我們將描述如何將PTMs的知識應用于下游任務。最后,我們概述了未來PTMs研究的一些潛在方向。本調查旨在為理解、使用和開發各種NLP任務的PTMs提供實際指導。

網址:

7、A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources(異質圖網絡嵌入)

異質圖嵌入綜述: 方法、技術、應用和資源, 23頁pdf

作者:Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu

摘要:

異質圖(Heterogeneous Graph, HG)也稱為異質信息網絡(Heterogeneous Information Network, HIN),在現實世界中已經無處不在。異質圖嵌入(Heterogeneous Graph Embedding, HGE),旨在在低維的空間中學習節點表示,同時保留異質結構和語義用于下游任務(例如,節點/圖分類,節點聚類,鏈接預測),在近年來受到了廣泛的關注。在綜述中,我們對異質圖嵌入的方法和技術的最新進展進行了全面回顧,探索了異質圖嵌入的問題和挑戰,并預測了該領域的未來研究方向。

該論文的主要貢獻如下:

討論了與同質圖相比,異質圖的異質性帶來的獨特挑戰 。該論文對現有的異質圖嵌入方法進行了全面的調研,并基于它們在學習過程中使用的信息進行分類,以解決異質性帶來的特定的挑戰。 對于每類代表性的異質圖嵌入方法和技術,提供詳細的介紹并進一步分析了其優缺點。此外,該論文首次探索了異質圖嵌入方法在現實工業環境中的可轉換性和適用性。 總結了開源代碼和基準數據集,并對現有的圖學習平臺進行了詳細介紹,以促進該領域的未來研究和應用。 探討異質圖嵌入的其他問題和挑戰,并預測該領域的未來研究方向。

網址:

8、Graph Neural Networks: Taxonomy, Advances and Trends(圖神經網絡)

太原理工最新《圖神經網絡:分類,進展,趨勢》綜述論文,50頁pdf400篇文獻

作者:Yu Zhou,Haixia Zheng,Xin Huang

摘要:圖神經網絡為根據特定任務將真實世界的圖嵌入低維空間提供了一個強大的工具包。到目前為止,已經有一些關于這個主題的綜述。然而,它們往往側重于不同的角度,使讀者看不到圖神經網絡的全貌。本論文旨在克服這一局限性,并對圖神經網絡進行了全面的綜述。首先,我們提出了一種新的圖神經網絡分類方法,然后參考了近400篇相關文獻,全面展示了圖神經網絡的全貌。它們都被分類到相應的類別中。為了推動圖神經網絡進入一個新的階段,我們總結了未來的四個研究方向,以克服所面臨的挑戰。希望有越來越多的學者能夠理解和開發圖神經網絡,并將其應用到自己的研究領域。

網址:

9、Efficient Transformers: A Survey(高效Transformer)

【Google】最新《高效Transformers》綜述大全,Efficient Transformers: A Survey

作者:Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler

摘要:Transformer模型架構最近引起了極大的興趣,因為它們在語言、視覺和強化學習等領域的有效性。例如,在自然語言處理領域,Transformer已經成為現代深度學習堆棧中不可缺少的主要部分。最近,提出的令人眼花繚亂的X-former模型如Linformer, Performer, Longformer等這些都改進了原始Transformer架構的X-former模型,其中許多改進了計算和內存效率。為了幫助熱心的研究人員在這一混亂中給予指導,本文描述了大量經過深思熟慮的最新高效X-former模型的選擇,提供了一個跨多個領域的現有工作和模型的有組織和全面的概述。

圖片

網址:

10、Self-supervised Learning: Generative or Contrastive(自監督學習)

作者:Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, Jie Tang

摘要:深度監督學習在過去的十年中取得了巨大的成功。然而,它依賴于手工標簽的缺陷和易受攻擊的弱點促使人們探索更好的解決方案。作為另一種學習方式,自監督學習以其在表征學習領域的飛速發展吸引了眾多研究者的關注。自監督表示學習利用輸入數據本身作為監督,并使得幾乎所有類型的下游任務從中受益。在這項綜述中,我們著眼于新的自監督學習方法,用于計算機視覺、自然語言處理和圖學習。我們全面回顧了現有的實證方法,并根據它們的目的將它們歸納為三大類:生成型、對比型和生成-對比型(對抗型)。我們進一步研究了相關的理論分析工作,以提供對自監督學習如何工作的更深層次的思考。最后,我們簡要討論了自監督學習有待解決的問題和未來的發展方向。

網址:

付費5元查看完整內容

題目: A Survey of Deep Learning Techniques for Neural Machine Translation

摘要: 近年來,隨著深度學習技術的發展,自然語言處理(NLP)得到了很大的發展。在機器翻譯領域,出現了一種新的方法——神經機器翻譯(NMT),引起了學術界和工業界的廣泛關注。然而,在過去的幾年里提出的大量的研究,很少有人研究這一新技術趨勢的發展過程。本文回顧了神經機器翻譯的起源和主要發展歷程,描述了神經機器翻譯的重要分支,劃分了不同的研究方向,并討論了未來該領域的一些研究趨勢。

付費5元查看完整內容

【簡介】隨著深度表示學習的發展,強化學習(RL)已經成為了一個強大的學習框架,其可以在高維度空間中學習復雜的規則。這篇綜述總結了深度強化學習(DRL)算法,提供了采用強化學習的自動駕駛任務的分類方法,重點介紹了算法上的關鍵挑戰和在現實世界中將強化學習部署在自動駕駛方面的作用,以及最終評估,測試和加強強化學習和模仿學習健壯性的現有解決方案。

論文鏈接: //arxiv.org/abs/2002.00444

介紹:

自動駕駛(AD)系統由多個感知級任務組成,由于采用了深度學習架構,這些任務現在已經達到了很高的精度。除了感知任務之外,自主駕駛系統還包含多個其他任務,傳統的監督學習方法已經不再適用。首先,當對agent行為的預測發生變化時,從自動駕駛agent所處的環境中接收到的未來傳感器觀察到的結果,例如獲取市區最佳駕駛速度的任務。其次,監督信號(如碰撞時間(TTC),相對于agent最佳軌跡的側向誤差)表示agent的動態變化以及環境中的不確定性。這些問題都需要定義隨機損失函數來使其最大化。最后,agent需要學習當前環境新的配置參數,預測其所處的環境中每一時刻的最優決策。這表明在觀察agent和其所處環境的情況下,一個高維度的空間能夠給出大量唯一的配置參數。在這些場景中,我們的目標是解決一個連續決策的問題。在這篇綜述中,我們將介紹強化學習的概念,強化學習是一種很有前景的解決方案和任務分類方法,特別是在驅動策略、預測感知、路徑規劃以及低層控制器設計等領域。我們還重點回顧了強化學習在自動駕駛領域當中各種現實的應用。最后,我們通過闡述應用當前諸如模仿學習和Q學習等強化學習算法時所面臨的算力挑戰和風險來激勵使用者對強化學習作出改進。

章節目錄:

section2: 介紹一個典型的自動駕駛系統及其各個組件。

section3: 對深度強化學習進行介紹,并簡要討論關鍵概念。

section4: 探討在強化學習基本框架上對其進行更深層次,更加復雜的擴展。

section5: 對強化學習用于自動駕駛領域的所面臨的問題提供一個概述。

section6: 介紹將強化學習部署到真實世界自動駕駛系統中所面臨的挑戰。

section7: 總結

付費5元查看完整內容

【導讀】辭九迎零,我們迎來2020,到下一個十年。在2019年機器學習領域繼續快速發展,元學習、遷移學習、小樣本學習、深度學習理論等取得很多進展。在此,專知小編整理這一年這些研究熱點主題的綜述進展,共十篇,了解當下,方能向前。

1、A guide to deep learning in healthcare(醫療深度學習技術指南)

斯坦福&谷歌Jeff Dean最新Nature論文:醫療深度學習技術指南(29頁綜述)

Google 斯坦福 Nature Medicine

作者:Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun & Jeff Dean

摘要:我們介紹了醫療保健的深度學習技術,重點討論了計算機視覺、自然語言處理、強化學習和廣義方法的深度學習。我們將描述這些計算技術如何影響醫學的幾個關鍵領域,并探討如何構建端到端系統。我們對計算機視覺的討論主要集中在醫學成像上,我們描述了自然語言處理在電子健康記錄數據等領域的應用。同樣,在機器人輔助手術的背景下討論了強化學習,并綜述了基因組學的廣義深度學習方法。

網址:

//www.nature.com/articles/s41591-018-0316-z

2、Multimodal Machine Learning: A Survey and Taxonomy(多模態機器學習)

人工智能頂刊TPAMI2019最新《多模態機器學習綜述》

CMU TPAMI

作者:Tadas Baltru?aitis,Chaitanya Ahuja,Louis-Philippe Morency

摘要:我們對世界的體驗是多模態的 - 我們看到物體,聽到聲音,感覺質地,聞到異味和味道。情態是指某種事物發生或經歷的方式,并且當研究問題包括多種這樣的形式時,研究問題被描述為多模式。為了使人工智能在理解我們周圍的世界方面取得進展,它需要能夠將這種多模態信號一起解釋。多模態機器學習旨在構建可以處理和關聯來自多種模態的信息的模型。這是一個充滿活力的多學科領域,具有越來越重要的意義和非凡的潛力。本文不是關注特定的多模態應用,而是研究多模態機器學習本身的最新進展。我們超越了典型的早期和晚期融合分類,并確定了多模式機器學習所面臨的更廣泛的挑戰,即:表示,翻譯,對齊,融合和共同學習。這種新的分類法將使研究人員能夠更好地了解該領域的狀況,并確定未來研究的方向。

網址:

3、Few-shot Learning: A Survey(小樣本學習)

《小樣本學習(Few-shot learning)》最新41頁綜述論文,來自港科大和第四范式

香港科大 第四范式

作者:Yaqing Wang,Quanming Yao

摘要:“機器會思考嗎”和“機器能做人類做的事情嗎”是推動人工智能發展的任務。盡管最近的人工智能在許多數據密集型應用中取得了成功,但它仍然缺乏從有限的數據示例學習和對新任務的快速泛化的能力。為了解決這個問題,我們必須求助于機器學習,它支持人工智能的科學研究。特別地,在這種情況下,有一個機器學習問題稱為小樣本學習(Few-Shot Learning,FSL)。該方法利用先驗知識,可以快速地推廣到有限監督經驗的新任務中,通過推廣和類比,模擬人類從少數例子中獲取知識的能力。它被視為真正人工智能,是一種減少繁重的數據收集和計算成本高昂的培訓的方法,也是罕見案例學習有效方式。隨著FSL研究的廣泛開展,我們對其進行了全面的綜述。我們首先給出了FSL的正式定義。然后指出了FSL的核心問題,將問題從“如何解決FSL”轉變為“如何處理核心問題”。因此,從FSL誕生到最近發表的作品都被歸為一個統一的類別,并對不同類別的優缺點進行了深入的討論。最后,我們從問題設置、技術、應用和理論等方面展望了FSL未來可能的發展方向,希望為初學者和有經驗的研究者提供一些見解。

網址:

4、meta Learning: A Survey(元學習)

元學習(Meta-Learning) 綜述及五篇頂會論文推薦

作者:Joaquin Vanschoren

摘要:元學習,或學習學習,是一門系統地觀察不同機器學習方法如何在廣泛的學習任務中執行的科學,然后從這種經驗或元數據中學習,以比其他方法更快的速度學習新任務。這不僅極大地加快和改進了機器學習管道或神經體系結構的設計,還允許我們用以數據驅動方式學習的新方法取代手工設計的算法。在本文中,我們將概述這一迷人且不斷發展的領域的最新進展。

網址:

5、A Comprehensive Survey on Transfer Learning(遷移學習)

中科院發布最新遷移學習綜述論文,帶你全面了解40種遷移學習方法

作者:Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Senior Member, IEEE, Hui Xiong, Senior Member, IEEE, and Qing He

摘要:遷移學習的目的是通過遷移包含在不同但相關的源域中的知識來提高目標學習者在目標域上的學習表現。這樣,可以減少對大量目標域數據的依賴,以構建目標學習者。由于其廣泛的應用前景,遷移學習已經成為機器學習中一個熱門和有前途的領域。雖然已經有一些關于遷移學習的有價值的和令人印象深刻的綜述,但這些綜述介紹的方法相對孤立,缺乏遷移學習的最新進展。隨著遷移學習領域的迅速擴大,對相關研究進行全面的回顧既有必要也有挑戰。本文試圖將已有的遷移學習研究進行梳理使其系統化,并對遷移學習的機制和策略進行全面的歸納和解讀,幫助讀者更好地了解當前的研究現狀和思路。與以往的文章不同,本文從數據和模型的角度對40多種具有代表性的遷移學習方法進行了綜述。還簡要介紹了遷移學習的應用。為了展示不同遷移學習模型的性能,我們使用了20種有代表性的遷移學習模型進行實驗。這些模型是在三個不同的數據集上執行的,即Amazon Reviews,Reuters-21578和Office-31。實驗結果表明,在實際應用中選擇合適的遷移學習模型是非常重要的。。

網址:

6、Multimodal Intelligence: Representation Learning, Information Fusion, and Applications(多模態智能論文綜述:表示學習,信息融合與應用) 【IEEE Fellow何曉東&鄧力】多模態智能論文綜述:表示學習,信息融合與應用,259篇文獻帶你了解AI熱點技術

京東

作者:Chao Zhang,Zichao Yang,Xiaodong He,Li Deng

【摘要】自2010年以來,深度學習已經使語音識別、圖像識別和自然語言處理發生了革命性的變化,每種方法在輸入信號中都只涉及一種模態。然而,人工智能的許多應用涉及到多種模態。因此,研究跨多種模態的建模和學習的更困難和更復雜的問題具有廣泛的意義。本文對多模態智能的模型和學習方法進行了技術綜述。視覺與自然語言的結合已成為計算機視覺和自然語言處理研究的一個重要領域。本文從學習多模態表示、多模態信號在不同層次上的融合以及多模態應用三個新角度對多模態深度學習的最新研究成果進行了綜合分析。在多模態表示學習中,我們回顧了嵌入的關鍵概念,將多模態信號統一到同一個向量空間中,從而實現了多模態信號的交叉處理。我們還回顧了許多類型的嵌入的性質,構造和學習的一般下游任務。在多模態融合方面,本文著重介紹了用于集成單模態信號表示的特殊結構。在應用方面,涵蓋了當前文獻中廣泛關注的選定領域,包括標題生成、文本到圖像生成和可視化問題回答。我們相信這項綜述可促進未來多模態智能的研究。

網址:

7、Object Detection in 20 Years: A Survey(目標檢測)

密歇根大學40頁《20年目標檢測綜述》最新論文,帶你全面了解目標檢測方法

作者:Zhengxia Zou (1), Zhenwei Shi (2), Yuhong Guo (3 and 4), Jieping Ye

摘要:目標檢測作為計算機視覺中最基本、最具挑戰性的問題之一,近年來受到了廣泛的關注。它在過去二十年的發展可以說是計算機視覺歷史的縮影。如果我們把今天的目標檢測看作是深度學習力量下的一種技術美學,那么讓時光倒流20年,我們將見證冷兵器時代的智慧。本文從目標檢測技術發展的角度,對近四分之一世紀(20世紀90年代至2019年)的400余篇論文進行了廣泛的回顧。本文涵蓋了許多主題,包括歷史上的里程碑檢測器、檢測數據集、度量、檢測系統的基本構建模塊、加速技術以及最新的檢測方法。本文還綜述了行人檢測、人臉檢測、文本檢測等重要的檢測應用,并對其面臨的挑戰以及近年來的技術進步進行了深入分析。

網址:

8、A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications(中文知識圖譜)

作者:Tianxing Wu, Guilin Qi ,*, Cheng Li and Meng Wang

摘要:隨著智能技術的不斷發展,作為人工智能支柱的知識圖譜以其強大的知識表示和推理能力受到了學術界和產業界的廣泛關注。近年來,知識圖譜在語義搜索、問答、知識管理等領域得到了廣泛的應用。構建中文知識圖譜的技術也在迅速發展,不同的中文知識圖譜以支持不同的應用。同時,我國在知識圖譜開發方面積累的經驗對非英語知識圖譜的開發也有很好的借鑒意義。本文旨在介紹中文知識圖譜的構建技術及其應用,然后介紹了典型的中文知識圖譜,此外我們介紹了構建中文知識圖譜的技術細節,并介紹了了中文知識圖譜的幾種應用。

網址:

9、Advances and Open Problems in Federated Learning(聯邦學習)

【重磅】聯邦學習FL進展與開放問題萬字綜述論文,58位學者25家機構聯合出品,105頁pdf438篇文獻

摘要:聯邦學習(FL)是一種機器學習設置,在這種設置中,許多客戶(例如移動設備或整個組織)在中央服務器(例如服務提供商)的協調下協作地訓練模型,同時保持訓練數據分散。FL體現了集中數據收集和最小化的原則,可以減輕由于傳統的、集中的機器學習和數據科學方法所帶來的許多系統隱私風險和成本。在FL研究爆炸性增長的推動下,本文討論了近年來的進展,并提出了大量的開放問題和挑戰。

網址:

10、Optimization for deep learning: theory and algorithms(深度學習優化理論算法)

【2019年末硬貨】深度學習的最優化:理論和算法綜述論文,60頁pdf257篇文獻

摘要:什么時候以及為什么能夠成功地訓練神經網絡?本文概述了神經網絡的優化算法和訓練理論。首先,我們討論了梯度爆炸/消失問題和更一般的不期望譜問題,然后討論了實際的解決方案,包括仔細的初始化和歸一化方法。其次,我們回顧了用于訓練神經網絡的一般優化方法,如SGD、自適應梯度方法和分布式方法,以及這些算法的現有理論結果。第三,我們回顧了現有的關于神經網絡訓練的全局問題的研究,包括局部極值的結果、模式連接、彩票假設和無限寬度分析。

網址:

付費5元查看完整內容

題目: A survey of deep learning techniques for autonomous driving

簡介: 本文目的是研究自動駕駛中深度學習技術的最新技術。首先介紹基于AI的自動駕駛架構、CNN和RNN、以及DRL范例。這些方法為駕駛場景感知、路徑規劃、行為決策和運動控制算法奠定基礎。該文研究深度學習方法構建的模塊化“感知-規劃-執行”流水線以及將傳感信息直接映射到轉向命令的端到端系統。此外,設計自動駕駛AI架構遇到的當前挑戰,如安全性、訓練數據源和計算硬件等也進行了討論。該工作有助于深入了解深度學習和自動駕駛AI方法的優越性和局限性,并協助系統的設計選擇。

付費5元查看完整內容
北京阿比特科技有限公司