亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

我們介紹了一個新的大規模NLI基準數據集,它是通過一個迭代的、對抗性的循環人工模型過程收集的。在這個新數據集上的訓練模型可以在各種流行的NLI基準上獲得最先進的性能,同時我們提出了一個更具有困難挑戰的新測試集。我們的分析揭示了當前最先進模型的缺點,并顯示了非專業的注釋者能夠成功地發現它們的弱點。數據收集方法可以應用于永久學習的場景,成為NLU的一個可變化推進的目標,而不是一個很快就會飽和的靜態基準。

付費5元查看完整內容

相關內容

自然語言處理(N LP , Natural Language Processing)是使用自然語言同計算機進行通訊的技術, 因為處理自然語言的關鍵是要讓計算機“理解”自然語言,所以自然語言處理又叫做自然語言理解(NLU ,Natural Language Understanding), 也稱為計算語言學(Computational Ling uistics)。一方面它是語言信息處理的一個分支 , 另一方面它是人工智能(AI , Artificial Intelligence)的核心課題之一 。

摘要

圖神經網絡(GNNs)已被證明在建模圖結構的數據方面是強大的。然而,訓練GNN通常需要大量指定任務的標記數據,獲取這些數據的成本往往非常高。減少標記工作的一種有效方法是在未標記數據上預訓練一個具有表達能力的GNN模型,并進行自我監督,然后將學習到的模型遷移到只有少量標記的下游任務中。在本文中,我們提出了GPT-GNN框架,通過生成式預訓練來初始化GNN。GPT-GNN引入了一個自監督屬性圖生成任務來預訓練一個GNN,使其能夠捕獲圖的結構和語義屬性信息。我們將圖生成的概率分解為兩部分:1)屬性生成和2)邊生成。通過對兩個組件進行建模,GPT-GNN捕捉到生成過程中節點屬性與圖結構之間的內在依賴關系。在10億規模的開放學術圖和亞馬遜推薦數據上進行的綜合實驗表明,GPT-GNN在不經過預訓練的情況下,在各種下游任務中的表現顯著優于最先進的GNN模型,最高可達9.1%。

**關鍵詞:**生成式預訓練,圖神經網絡,圖表示學習,神經嵌入,GNN預訓練

付費5元查看完整內容

文本生成在過去幾年中取得了重大進展。然而,評估指標卻落后了,因為最流行的選擇(如BLEU 和ROUGE)可能與人類的判斷關系不大。我們提出了BLEURT,一種基于BERT的學習評價指標,它可以用幾千個可能有偏見的訓練例子來模擬人類的判斷。我們的方法的一個關鍵方面是一個新的預訓練方案,它使用了數百萬的綜合例子來幫助模型泛化。BLEURT提供了過去三年WMT指標共享任務和WebNLG競賽數據集的最先進的結果。與基于普通BERT的方法相比,即使在訓練數據稀少且分布不均勻的情況下,它也能產生更好的結果。

付費5元查看完整內容

自回歸文本生成模型通常側重于局部的流暢性,在長文本生成過程中可能導致語義不一致。此外,自動生成具有相似語義的單詞是具有挑戰性的,而且手工編寫的語言規則很難應用。我們考慮了一個文本規劃方案,并提出了一個基于模型的模仿學習方法來緩解上述問題。具體來說,我們提出了一種新的引導網絡來關注更長的生成過程,它可以幫助下一個單詞的預測,并為生成器的優化提供中間獎勵。大量的實驗表明,該方法具有較好的性能。

付費5元查看完整內容

題目: Adversarial Training for Large Neural Language Models

簡介: 泛化性和魯棒性都是設計機器學習方法的關鍵要求。對抗性訓練可以增強魯棒性,但是過去的工作常常發現它不利于推廣。在自然語言處理(NLP)中,預訓練大型神經語言模型(例如BERT)在針對各種任務的通用化方面顯示出令人印象深刻的收益,而從對抗性微調中得到了進一步的改進。但是,這些模型仍然容易受到對抗性攻擊。在本文中,我們表明對抗性預訓練可以同時提高泛化性和魯棒性。我們提出了一種通用算法ALUM(大型神經語言模型的專家訓練),該算法通過在嵌入空間中應用擾動來最大化訓練目標,從而使對抗性損失最大化。我們將對所有階段的對抗訓練進行全面的研究,包括從頭開始進行預訓練,在訓練有素的模型上進行連續的預訓練以及針對特定任務的微調。在常規和對抗性方案中,在各種NLP任務上,ALUM都比BERT獲得了可觀的收益。即使對于已經在超大型文本語料庫上進行過良好訓練的模型(例如RoBERTa),ALUM仍可以通過連續的預訓練獲得可觀的收益,而傳統的非對抗方法則不能。可以將ALUM與特定于任務的微調進一步結合以獲取更多收益。

付費5元查看完整內容

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

題目: IMAGEBERT: CROSS-MODAL PRE-TRAINING WITH LARGE-SCALE WEAK-SUPERVISED IMAGE-TEXT DATA

摘要: 本文介紹了一種新的用于圖像-文本聯合嵌入的視覺語言預訓練模型圖像BERT。我們的模型是一個基于Transformer的模型,它以不同的模態作為輸入,對它們之間的關系進行建模。該模型同時進行了四項任務的預訓練:掩蔽語言建模(MLM)、掩蔽對象分類(MOC)、掩蔽區域特征回歸(MRFR)和圖像文本匹配(ITM)。為了進一步提高預訓練的質量,我們從Web上收集了一個大規模的弱監督圖像-文本(LAIT)數據集。我們首先在這個數據集上對模型進行預訓練,然后對概念字幕和SBU字幕進行第二階段的預訓練。實驗結果表明,多階段預訓練策略優于單階段預訓練策略。我們還在圖像檢索和文本檢索任務上對預先訓練好的ImageBERT模型進行了調優和評估,并在MSCOCO和Flickr30k數據集上獲得了最好的效果。

付費5元查看完整內容

論文題目: Unsupervised Pre-training for Natural Language Generation

論文摘要: 最近,由于無監督預訓練在促進自然語言理解(NLU)方面取得了令人驚訝的成功以及有效利用大規模未標記語料庫的潛力,因此在計算語言學領域正變得越來越受歡迎。但是,無論NLU是否成功,當涉及自然語言生成(NLG)時,無監督預訓練的功能只能被部分挖掘。 NLG特質的主要障礙是:文本通常是基于特定的上下文生成的,可能會因目標應用程序而異。結果,像在NLU場景中一樣,設計用于預訓練的通用體系結構是很難的。此外,在目標任務上學習時保留從預訓練中學到的知識也是不容置疑的。這篇綜述總結了近期在無監督的預訓練下增強NLG系統的工作,特別著重于催化將預訓練的模型集成到下游任務中的方法。根據它們處理上述障礙的方式,它們分為基于體系結構的方法和基于策略的方法。還提供了討論,以提供這兩種工作方式之間的進一步相互了解,一些有益的經驗現象以及未來工作可能涉及的一些方向。

付費5元查看完整內容

We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司