這篇文章探討了海軍如何利用水面平臺來應對不斷變化的無人潛航器威脅。
目前,有許多自主/無人駕駛水下潛航器(UUV)項目正在開發中,或可用于軍事和非軍事領域。目前,大多數投入使用的海軍 UUV 都用于水雷戰或水文勘測。許多國家的海軍有更大的雄心壯志來操作更大、更復雜的 XLUUV(如英國皇家海軍的 CETUS 計劃),用于海上偵察并最終執行打擊任務。
無人潛航器可以為有人艦艇提供傳感器和效應器,可以在高風險環境中工作,并能與敵方資產進行非常密切的互動。大型 UUV 的主機平臺可包括潛艇、軍艦或直接從岸上發射。
(1) 用于為其主機/控制單元提供對峙支援的 UUV 和 USV。
無人潛航器開始對傳統反潛戰(ASW)操作人員、方法和系統構成巨大的新威脅。冷戰結束后,作戰重點從海洋轉向了沿岸和淺水環境。這一變化要求反潛戰部隊不斷發展,以便在不利于探測的環境中對付隱形柴電潛艇和 AIP 潛艇。主要在同一瀕海水域活動的 UUV 將為這一挑戰增添另一層復雜性。
UUV 可以相對迅速地加強其薄弱的水下力量,但對手也在競相效仿,因此急需采取有效的反制措施。UUV 對有人潛艇的威脅值得另文討論,但在此將重點討論從水面反擊 UUV 的方法。這種戰爭可稱為 "反 UUV 戰"(AUUVW)的一個新子類型,針對的是難以探測的小型平臺,需要特定的系統來對付它們。
(2) 在此示例中,USV 被部署為對峙反潛武器。這個例子表明,在未來的瀕海戰爭中,UUV 和 USV 實際上可能是最先相遇的對立單元。
有效監視對確保成功執行大多數殺傷鏈階段(探測、分類和跟蹤)至關重要。目前服役的大多數反潛戰傳感器和武器系統都針對有人駕駛潛艇目標進行了優化。被稱為低頻主動聲納(LFAS)的新一代聲學傳感器性能卓越,在探測超靜音 AIP 潛艇方面取得了重大進展。網絡多靜態聲納是探測能力有所提高的另一個領域。UUV 甚至 XLUUV 的目標強度通常較低,尤其是在艇首-艇尾方面,而且輻射噪聲特征很小。因此,瀕海水域的探測將尤其困難,因為探測距離短,幾乎沒有時間做出反應和部署反制措施。
目前,可以認為大多數無人潛航器將用于 ISR 任務,其續航時間和有效載荷要求決定了它們的大小。在探測方面,對 UUV 的大小、類型和作用進行分類和評估也是一個問題。現在,許多行動都必須假定對手的 UUV 可能存在,即使無法探測到它們。只有通過觀察到的有人駕駛的潛艇活動、ORBAT 分析和更廣泛的情報畫面,才能了解威脅的規模。
消除威脅的難度僅次于發現威脅的難度。威脅至少可以部分地通過機動來消除,但這只有在良好的態勢感知和有效的戰術圖景下才能實現。與 UUV 相比,大多數水面資產在速度方面都有很大優勢,但在許多潛在的戰爭場景中,僅靠機動是不夠的,尤其是在保護海底基礎設施等靜止物體時。
由于現有的反潛武器既不適用,又非常昂貴,因此成本效益高的反 UUV 效應器應被視為近期的關鍵需求。目前的空射或水面發射輕型魚雷是當今主要的反潛武器,但它們缺乏足夠的傳感器和制導系統來定位和殺傷 UUV。更合適的反 UUV 武器是微型魚雷。這種新型魚雷將提供一種低成本的解決方案,其適當的機動性、傳感器、速度和彈頭經過優化,可摧毀 XLUUV 尺寸以下的目標。
(3) 萊昂納多 "黑色蝎子 "微型魚雷(1100 毫米 x 127 毫米),用于對付 UUV、微型潛艇和可能的水下運載工具。設計用于在 30 米至 200 米的淺水區作戰,可在空中、水面或水下發射,航速超過 15 節,配備 2.8 公斤彈頭(圖片:萊昂納多公司)。
除了精致的微型魚雷外,還有一種火箭推進深水炸彈。這種深水炸彈射程遠、火力強,而且價格更低廉。俄羅斯和一些前東歐國家仍有裝備這種幾乎過時的反潛武器的軍艦,但它們可能已經找到了新的作用。標準重力深水炸彈如今已很少使用,但也可能提供一種有前途的解決方案。由于傳統重力式深水炸彈很重,不適合從小型 USV 或航空飛行器上大量部署,因此需要新一代小型深水炸彈。BAE 系統公司的新一代深水炸彈概念是目前正在開發的一種解決方案。
(4) 在非盟潛航器水下任務中部署 USV 的潛在方案。目前已經存在執行這一任務的概念 USV,如 Elbit Seagull 和 Atlas Elektronik ACRIMS 的變體。
下圖概述了監視和中和因素,并對典型的反潛和近未來的 AUUVW 進行了簡短比較。這兩個領域在傳感器和效應器方面有許多共同之處,但在探測概率和武器使用方面存在顯著差異和限制。
目前有多種計劃開發用于常規反潛戰的無人駕駛和自主系統,但非盟潛航器似乎不太受重視。面對不斷擴大的 UUV 計劃以及射程、傳感器和人工智能能力不斷增強的潛水器的發展,這種情況可能很快就會改變。
在未來的反潛任務中,反制 XLUUV 極有可能成為首要目標。在其他情況下,同樣的資產將被部署到敵方行動區或其領海進行探測,AUUVW 的重要性可能與今天的反潛任務相同。雙方都使用自主或無人系統的對峙行動使 USV 和航空平臺成為執行 AUUVW 任務的天然候選者。
參考來源:NAVY LOOKOUT
自航空出現以來,技術一直在改變著空戰的面貌。20 世紀 70 年代微電子技術的進步使空戰更具殺傷力和決定性,正如 20 年后 1991 年海灣戰爭的巨大成功所證明的那樣。蘇聯解體后,空中優勢立即成為美國大戰略的工具之一,確保了其對領空和大氣層外空間幾乎無可爭議的統治地位。
為了對抗這種不對稱優勢,俄羅斯等建立了反介入和區域拒止(A2/AD)態勢,主要目的是對抗西方空軍相對優勢,但已逐漸演變為以遠程打擊、防空和反太空資產為基礎,并以網絡戰和電子戰(EW)為手段,建立庇護工具。
烏克蘭戰爭的緊張局勢清楚地表明,國家間的競爭進入了一個以缺乏對使用武力的限制、技術水平的提高和對共同空間的爭奪為特征的時代。在這一新的戰略背景下,對不同環境控制權的爭奪正悄然表明空中力量以其主要形式的回歸,即使用武力實現或爭奪對領空的控制權。與空中環境對抗相伴的技術動態提出了新興技術及其可能對空戰造成的潛在破壞的問題。本文擬通過概述航空航天行動的未來,對此提出一些見解。
烏克蘭沖突中明顯缺乏空中優勢可能會讓人錯誤地認為,未來的高強度交戰可以在沒有空中掩護的情況下進行。然而,面對日益增長的威脅,掌握制空權比以往任何時候都更加重要。首先,因為沒有空中掩護,地面部隊很容易遭到敵人的轟炸,而且空中力量是 C4ISR 鏈中的重要一環,即使在困難的電子戰環境中也能進行深入打擊。在未來可能發生的沖突中,獲得暫時的空中優勢對于在多域作戰(MDO)框架內形成局部 "超優勢氣泡 "仍然至關重要。特別是,空中力量將是多傳感器和多效應器網絡中的一個環節,它將為敵方提供作戰優勢。空中力量非但不會被邊緣化,反而會不斷擴大,以滿足質量和數量優勢、電磁頻譜指揮、MDO 集成和互操作性等方面的需求。
為了應對這些挑戰,對抗 2014 年已達到技術均勢的對手,美國推出了 "第三次補償戰略",利用其技術優勢,從人工智能(AI)和機器人領域的進步中獲益。這一補償戰略尤其依賴于新興能力與新使用概念的結合,其核心是無人機和自主系統的使用。與任何戰略一樣,它也有辯證的因素,因為俄羅斯等大國的裝備戰略可被解讀為對抗美國第三次抵消戰略的運動。由于 C4ISR 架構和連通性在美國作戰概念中的重要性與日俱增,莫斯科等試圖增強其反 C4ISR 和電子戰能力。在智能化戰爭方法中,人工智能、云計算和蜂群作戰等技術將發揮重要作用,甚至改變勝利條件本身。
要充分考慮新興技術和顛覆性技術對空戰的影響,就必須勾勒出清晰的輪廓。首先,需要考慮戰略文化、國家創新體系和可能的交戰場景,同時整合當前的能力趨勢和現有的作戰命令。其次,需要設定一個足夠遙遠的遠景,以便現在仍在出現的技術能夠達到必要的成熟度,從而對空中力量的使用產生重大影響。反之,必須將那些發展過于不確定或其預測成熟度將超出合理范圍的技術排除在外。因此,2040 年似乎是一個明智的選擇。第三,由于空中力量有不同的方面,而且它有助于實現部隊和政治力量所要求的效果,因此似乎應該把重點放在技術密集程度最高的任務上。這并不意味著空中力量其他應用領域的技術中斷不會產生重大的戰略影響,而是說技術構件及其在未來作戰環境中的多重互動構成了可能導致出現新的使用概念和大幅提高戰場軍事效率的因素之一。
到 2040 年,最新一代空戰系統的首批作戰能力應該已經公布。到那時,美國也將把 "下一代空中優勢"(NGAD)計劃及其配套的無人機(被稱為 "協同作戰飛機")納入其庫存,它們將與大約 225 架 B-21 一同服役。屆時,高超音速巡航導彈、反 IADS 導彈和超遠程空對空導彈將擴大空載彈藥的范圍。它們將為美國空軍提供相當于歐洲Meteor、俄羅斯 R-37M 和中國 PL-17 的導彈,估計射程約為 400 公里。
歐洲人及其合作伙伴將開始使用來自全球空中作戰計劃(GCAP)和未來空中作戰系統(FCAS)的首批裝備及其相關無人機。
預計俄羅斯將有不少于 76 架蘇-57 "費倫 "隱形戰斗機和蘇-70 "奧霍特尼克-B "戰斗無人機加入其武器庫。
屆時,各種型號的殲-20 和殲-31 也將在中國空軍和海軍服役。各種各樣的無人機可能會為這一戰斗機群錦上添花,為中國提供全新的能力。WZ-8超音速偵察無人機、GJ-11、WZ-3000和FH-97隱形作戰無人機、FH-95電子戰無人機以及WZ-7 "翔龍 "和 "神鷹 "等高空長航時(HALE)偵察無人機都值得一提。后者有一個雙層機身,機身上裝有一個低頻雙靜態雷達,有可能用于探測隱形飛機。這也將改變美國對武裝對抗代價的戰略計算。決不能忘記衛星群在每個戰略競爭者的 C4ISR、目標定位和預警方面所發揮的主導作用。
在這種戰略環境下,新興技術和顛覆性技術會帶來什么?在確定其前景之前,首先需要了解它們是什么,然后再看它們能給空戰帶來什么變化。新興技術和顛覆性技術有多種定義。歐洲防務局(EDA)和北約就新興技術和顛覆性技術(EDT)的主要應用領域達成了一致,但在解釋上有所不同: 歐洲防務局認為,這些技術將在一兩代人的時間內導致戰爭方式的根本改變,而北約則將破壞性技術與新興技術區分開來。此外,北約還補充說,這些技術可能結合在一起,導致顛覆性應用的發展,并與智能、互聯、分布式數字系統交叉連接。盡管如此,這些詞匯并沒有為這些技術在航空航天領域的顛覆性潛力提供一個實用的視角。因此,不得不求助于其他更具操作性的分類方法,詳細說明技術構件本身。《關鍵技術追蹤》已統計出 44 項,而其他分類則統計出近 200 項可能在未來三十年影響軍事安全的技術。在法國,2022 年國防創新政策參考文件詳細介紹了新興國防技術:量子探測器(如超穩定微型微型原子鐘和頻譜分析儀)、隱形材料、彈道防護、高溫材料、功能性紡織品、制造添加劑、雷達處理、新光電技術(如激光源)、主動式 3D 圖像和能源效率等。
似乎正在演變的航空航天作戰環境是軍事能力轉型復雜動態的一部分。其趨勢是減少火力和防護,以提高速度、射程和精確度,以及有助于贏得探測和規避競爭的能力。因此,可以根據新興技術和顛覆性技術對空中力量以下特征的潛在影響對其進行任意分類:速度、射程、精確度、探測、規避、飽和度、電磁頻譜指揮和力量生成。下表列出了新興技術和顛覆性技術在未來航空航天活動中的可能用途。
表1:用于空戰的新興和顛覆性技術的非詳盡表
雖然不可能對表中所示的每種情況都進行詳細說明,但很明顯,其中一些技術破壞有可能極大地改變空戰的面貌。正如新型材料和推進手段的開發將提高航程、精度和速度一樣,人工智能、自主系統和連通性也將有助于加快交戰周期。它們將共同提升人類決策者在人機協作中的重要性。在這種情況下,人工智能將從能夠收集、計算、解釋、共享并在人類設定的參數限制內采取行動的智能體分布式網絡中產生一個敏捷的群體。
新美國安全中心(CNAS)副總裁兼科學主任保羅-夏爾提醒我們,在數字時代,軍事力量的衡量標準已經發生了變化。艦艇、飛機、坦克和地面部隊仍然重要,但更重要的是它們的數字化能力:探測敵情的傳感器、數據處理算法、傳輸信息的網絡、做出決策的適當 C2(指揮與控制)以及打擊目標的智能彈藥。日本采辦、技術與后勤局(ATLA)GCAP 計劃負責人 Masaki Oyama 將軍指出,雖然綜合通信系統(ICS)和機載電子設備(綜合傳感與非動能效應--ISANKE)的成本可能達到計劃總成本的 25%(而前幾代計劃的成本約為 10%至 15%),但它們對系統整體軍事效能的貢獻可能超過 50%,這就是正在進行的轉型的證明。
隨著 2023 年 3 月 "陣風 "F4.1 標準的認證,空天軍也站在了當前變革的前沿。據說,這一標準尤其能提高數據交換能力,更好地防范網絡威脅。法國現在正站在進入聯網協同作戰時代的前沿,從而為實現 FCAS 鋪平道路。
面對日益加劇的威脅,必須以敏捷性、反應能力和應變能力作為使用空中力量的戰略思想的指導。例如,美國 "敏捷戰斗部署"(Agile Combat Employment)等新后勤概念的發展,可以使部隊的組建和部署更具反應性。在這方面,新興技術也將起到決定性作用,需要在有利于作戰、技術和后勤互操作性的整體方法中加以考慮。
最后,應該牢記的是,任何創新都是技術、用途和意愿三者結合的結果。因此,未來空中作戰的勝利既取決于飛行員對新興技術的運用,也取決于部隊是否愿意進行必要的轉型,以適應新的戰爭現實。在未來的沖突中,數字化轉型將是現代化挑戰的核心,因為它是最具顛覆性技術的催化劑。未來空軍的作戰優勢將取決于此。
參考來源:Rapha?l BRIANT,法國國際關系與戰略總局(DGRIS)
美陸軍計劃采用兩種版本的戰術情報瞄準節點(TITAN)系統,一種是更適合遠征的基本版本,另一種是可直接連接天基情報資產的先進版本。
隨著美陸軍進入戰術情報目標節點(TITAN)計劃的計劃成熟階段,它將要求選定的供應商提供兩種變體,一種是基本的、更遠征的系統,另一種是直接下行到天基數據的高級版本。
12月5日,美國陸軍情報、電子戰和傳感器項目執行官埃德·巴克(Ed Barker)準將主持了一場虛擬媒體圓桌會議,向記者介紹了TITAN及其投資組合中的其他項目。
TITAN是陸軍第一個由人工智能和機器學習支持的情報地面站,被認為是該軍種多域作戰和聯合全域作戰愿景的關鍵組成部分。該系統旨在提供下一代、遠征、可擴展和可機動的梯隊平臺,以解決陸軍在大規模作戰行動中的頭號差距:深度傳感。據陸軍網站稱,通過同時訪問來自太空、高空、空中和地面層的多個傳感器的傳感器數據,TITAN在行動中提供了態勢感知和態勢理解。該網站解釋說,融合這些數據并使用高級分析向致命和非致命網絡提供有針對性的情報,可以縮小傳感器與射手之間的差距,并實現遠程精確射擊、航空和任務指揮。
“這是陸軍內部情報現代化工作的基本要素之一。正如你們中的許多人可能知道的那樣,泰坦是一個可擴展的遠征情報地面站,真正希望提供融合的傳感器數據,以實現遠程精確射擊。它確實是事物深度傳感方面的關鍵組成部分,以及將其存儲在傳感器到射手回路中的能力”,巴克將軍說。
該系統正在根據快速原型設計戰略進行開發,以盡快開發和部署該系統。去年,陸軍向Palantir Technologies和Raytheon Technologies授予了兩份價值3600萬美元的TITAN合同。項目官員允許士兵在 2023 年期間訪問該系統,用于所謂的士兵“接觸點”,允許服役人員就如何改進系統提供反饋。2024 年,該服務打算將原型成熟階段合同授予一家公司,并向尚未選擇的單位發布第一個 TITAN Advanced 系統。
“我們的下一步,在 [20]24 年的第二季度,我們預計會選擇其中一家供應商進入我們所說的原型成熟階段,即 PMP,這是快速原型設計的下一階段。在這個PMP成熟階段,選定的供應商將進一步成熟他們的原型,[具有]更多的士兵接觸點。然后,我們打算在指定單位中增加一些這種能力問題,以使他們能夠完善TPP(戰術,技術和程序)中的反饋,并將其用于其中,”巴克將軍說。
他指出,將包括不同版本的地面站。基本系統和先進系統之間的主要區別在于,后者將包括諾斯羅普·格魯曼公司提供的“太空套件”,該套件提供來自天基資產的直接下行鏈路,從而更快地提供情報數據。“從天基方面來看,這是來自那些國家技術手段的直接下行鏈路。這減少了直接訪問這些天基資產的額外周期時間,”將軍說。
但是,基本版本也將能夠訪問該信息,只是不能直接訪問。相反,它將能夠從國家地理空間情報局等組織的數據設施中獲取信息,“現在,這并不意味著基本人員無法訪問這些天基數據,”他澄清說。
陸軍將繼續通過一系列演習來評估和開發該系統,“從網絡的角度并了解梯隊的發展方向,這將有助于確定不同梯隊需要多少基本和先進的系統。”
剩余的 TITAN 計劃包括 2025 年推出 TITAN Basic 的第一臺產品,以及完成快速原型制作計劃、開始生產和 2026 年發布最終原型。
他補充說,隨著該服務“向主要能力獲取”過渡,它很可能“也將開始走上他們所謂的軟件獲取路徑”,這將有助于應對新出現的威脅,并“使我們能夠繼續保持足夠的敏捷性來滿足新出現的需求”。
巴克將軍的團隊創建了 Project Linchpin,專門用于提供人工智能和機器學習 TITAN 以及許多其他程序。所有 PEO-IEW&S 傳感器現代化都有望利用這些新興功能。
參考來源:AFCEA
第五代(5G)技術目前正在移動網絡中發展。民用的第三代合作伙伴計劃(3GPP)標準是實現這一技術的基礎。與長期演進(LTE)和舊標準相比,更高的吞吐量、網絡容量、用戶密度和更低的延遲是 5G 的主要優勢。因此,這些優勢在關鍵任務和軍事解決方案中得到越來越多的認可。然而,在軍事設備中使用 5G 技術需要對 3GPP 標準進行深入分析,特別是在技術差距、安全性和用例方面。這對于在武裝沖突中使用通信設備尤為重要。與民用設備相比,這類設備必須具有更高的安全性和可靠性。目前,歐洲防務局(EDA)、北大西洋公約組織(NATO)通信和信息局(NCIA)、盟軍指揮轉型(ACT)以及北約科技組織(STO)都在開展這方面的工作和分析。北約科技組織信息系統技術(IST)小組的研究任務組(RTG):IST-187-RTG on 5G Technologies Application to NATO Operations?正在研究這一課題。本文介紹了海軍中的 5G 示例用例。本文指出了在海軍系統中實施 5G 技術之前應解決的潛在優勢、問題和技術差距。
與之前的第二代(2G)和第三代(3G)標準(即全球移動通信系統(GSM)和通用移動通信系統(UMTS))相比,作為第四代(4G)標準的長期演進(LTE)大大提高了移動網絡的服務質量(QoS)。然而,傳輸速度的提高和使用互聯網協議(IP)的數據傳輸服務的普及對其產生了重大影響。因此,新服務開始流行,而語音和視頻傳輸等舊服務則采用優化技術實現,即 LTE 語音(VoLTE)和 LTE 視頻(ViLTE)[1,2]。
目前,LTE 已成為全球移動網絡廣泛使用的標準。同時,幾年來,我們一直在觀察最近開發的第五代(5G)標準--新無線電(NR)--的傳播情況,該標準也被稱為 IMT-2020,即 2020 年及以后的國際移動通信(IMT)[3]。因此,大多數移動網絡運營商(MNOs)也開始停止對老式 2G 和 3G 技術的支持,將釋放的無線電資源用于滿足 4G 和 5G 標準的需求。正因為如此,更新、頻譜效率更高的無線電和網絡技術不僅能提高吞吐量和用戶數量,還能改善 QoS [4,5]。
5G NR 是數字移動網絡的下一代演進。對于 5G,人們經常談論的是一場電信革命,因為 5G 不僅指移動網絡,還包括其他通信標準,如有線、光纖、衛星、無線電鏈路、無線 Wi-Fi 網絡等。為了強調 5G 引入的變革的重要性,人們提到了許多無線電和網絡技術,以確保新標準的高性能。5G 標準與前幾代標準一樣,由第三代合作伙伴計劃(3GPP)制定。3GPP 是一項國際倡議,匯集了許多標準化組織、國家電信監管機構、移動網絡運營商、電信設備供應商、大學和研發中心。開發新的電信標準,特別是協議,是 3GPP 的目標和使命。目前,3GPP 正在制定第六代(6G)標準[6]。
5G NR 是一種民用標準,考慮到了和平時期電信系統運行的特殊性。根據設計,移動網絡運營商和通信系統用戶要遵守特定國家在和平時期適用的電信法。這些法規,特別是有關無線電頻譜的法規,考慮了世界無線電通信大會期間做出的安排。
由于幾個前提條件,軍事系統不可能直接使用民用標準。首先,軍用通信系統顧名思義是戰時專用的,在戰時可能會違反電信法。這主要與使用無線電系統干擾有關,而這在和平時期是被禁止的。因此,軍事通信系統必須高度可靠,并能抵御有意干擾。另一方面,敏感信息的傳輸要求提高系統的安全性。
5G 技術的吸引力和 5G NR 移動系統的高效率使得有必要考慮在軍事系統中實施民用標準 [7-10]。因此,考慮到上述條件,目前正在分析民用 5G 標準在軍事應用中的實用性。幾年來,歐洲防務局(EDA)和北大西洋公約組織(NATO)的多個機構,如北約通信和信息局(NCIA)、北約工業咨詢小組(NIAG)、北約盟軍指揮轉型(ACT)、北約科技組織(STO)、北約網絡防御合作卓越中心(CCDCOE)和北約總部 C3 參謀部(NHQC3S),都開展了這一領域的工作。此外,在北約 STO 的信息系統技術(IST)小組中,關于 "5G 技術在北約行動中的應用 "的研究任務組(RTG)IST-187-RTG 正在研究這一主題。
本文旨在介紹 EDA、北約 STO 和 NCIA 所開展工作的各個方面。我們主要關注海軍中潛在的 5G 用例。我們以 IST-187-RTG 和 NCIA 的工作為基礎。同時,我們強調了波蘭有關民用和軍用 5G 的背景。
本文其余部分安排如下。第 2 節介紹了 5G NR 的優勢、5G 技術和使用場景。第 3 節概述了 EDA 和北約 STO 的工作。第 4 節介紹了海軍中的 5G 使用案例。最后,第 5 節給出了結論。
與 LTE 和老一代移動網絡相比,5G 的高潛力和高效率促使我們對 5G 技術在軍事通信系統中的應用進行分析。軍事行動的特殊性,尤其是武裝沖突期間的特殊性,迫使軍事通信系統必須確保高可靠性和抗故意干擾(即干擾)的能力。民用電信標準和系統不具備這些功能。因此,不可能將民用 3GPP 標準直接應用于軍事通信系統。因此,分析主要集中在兩個方面。首先,指出民用標準中存在的技術差距,這些差距應在軍用系統實施前予以消除。在這種情況下,有必要尋找適當的方法來彌補這些漏洞。其次,一個重要問題是指定 5G 技術的具體使用案例。值得注意的是,軍事使用場景可能不同于民用場景。
2019-2020年,EDA能力技術(CapTech)通信信息系統和網絡(簡稱CapTech信息)小組組織了四次關于?5G用于國防?的研討會。通常情況下,此類研討會旨在啟動特定主題領域的未來 EDA 項目。在這種情況下,研討會有助于編寫 "5G 國防技術 "文件 [21]。
在這份文件中,定義了 5G 在國防領域的應用和益處,包括提升士兵體驗、改善政府共享使用以及 5G 在部署設施、支持和戰區領域的應用。
文獻[21]的作者認為,軍用通信設備的生產存在一個問題,由于接收者群體有限,與民用電信市場的商用系統和組件相比,軍用通信設備相對昂貴且數量較少。
不過,他們指出,現成的 5G 技術構件,如 SON、SDN、NFV、MEC 和 MIMO,可用于軍事系統。另一方面,毫米波、波束成形、D2D 和 IAB 技術的使用可以減少無線電輻射和隱蔽傳輸。因此,在軍事系統中實施 5G 技術的許多好處是顯而易見的。
此外,在民用標準 3GPP 中,白皮書[21]的作者診斷出以下領域存在技術差距:
未來的 5G 軍事項目也將在歐盟委員會(EC)的支持下,由歐洲國防基金(EDF)實施,例如 5G COMPAD [22]。
2020 年,"5G 技術在北約行動中的應用 "IST-187-RTG 開始工作,由北約 STO 的 IST 小組主持成立。該 RTG 將工作到 2024 年,其工作成果將是 "第五代國際移動通信(5G)技術在北約行動中的應用 "報告以及技術試驗和測試。RTG 的工作分四個目標小組(OBJ)進行:
OBJ 3 - 安全機制 每個 OBJ 的工作重點是分析 3GPP 標準的技術差距,并評估在各種使用場景中使用特定 5G 技術的潛力(見圖 6)。
IST-187-RTG工作的起點是探索小組(ET) IST-ET-096關于“遠征5G技術”的技術報告,題為“5G技術:防御視角”[23],以及NCIA員工編寫的題為“5G技術用于軍事應用的潛力”的文件[24]。
圖 6. IST-187-RTG 定義的 5G 軍事用例(來源:IST-187-RTG)。
其他國際組織,包括北約機構: NCIA、NIAG、ACT、CCDCOE 和 NHQC3S 也在分析 5G 技術在軍事行動中的應用。由 ACT 和 CCDCOE 主辦的 2021 年第一屆北約軍事 5G 網絡安全研討會[25]、上述報告[24]以及其中一些機構的員工參與 IST-187-RTG 的工作就是這方面的例子。
波蘭武裝部隊也注意到了使用 5G 技術的潛力。然而,"波蘭 5G 戰略"[14] 文件并未涉及軍事方面。因此,波蘭陸軍總參謀長任命了一個專家組,其任務是制定 "根據波蘭武裝部隊的需求使用 5G 技術的概念"[26]。
波蘭的大學和公司也參與了 EDA CapTech Information 和 NATO STO 的國際活動。軍事技術大學(Military University of Technology)和 ISN 公司(IS-Wireless)的代表參加了 EDA 組織的 5G 研討班,并協助開發 [21]。波蘭也積極參與了 IST-187-RTG 的工作。軍事技術大學、格但斯克技術大學、華沙技術大學、諾基亞解決方案和網絡公司波蘭分公司以及 ISN 都有代表參加該 RTG。
文獻[24]定義了三種海事場景:
在海事場景中,高效的 5G 系統將主要用于視距(LOS)短程通信,這種通信將在多艘艦船、艦船與其他漂浮物(如兩棲車輛)或艦船與沿海陸地基礎設施之間實施。圖 6 還顯示了其中的兩個場景,即場景 1 和場景 2,分別為 ⑥ 和 ⑤。會議期間介紹了這些場景的特點:
前面的工作是描述分析場景的基礎。在第 4 節的最后部分,我們還討論了在海軍中使用 5G 技術的其他方面。
由于海上行動的特殊性,海軍通信系統主要基于遠距離通信,即衛星通信(SATCOM)和視距外高頻通信(BLOS)。圖 7 展示了執行共同作戰任務(即海上行動)的艦艇編隊[24]。
圖 7. 海軍特遣部隊場景(資料來源:[24])。
如果艦艇之間的距離提供了 LOS 條件,那么 5G 系統就能在艦艇之間進行有效通信。為此,需要在每艘艦艇上安裝一個 5G 基站,即下一代節點 B(gNB)。以這種方式排列的 gNB 構成一個網狀 LOS 網絡。在這種情況下,建議使用 IAB 技術和 6 GHz 以下頻段。這種 5G 連接將通過波束成形回傳技術提供高吞吐量和低延遲 [24,28,29]。
圖 8 所示的另一種情況與使用 5G 技術實現船舶與陸地之間的連接有關 [24]。
圖 8. 沿海或港口通信場景(來源:[24])。
場景 2 涉及船舶位于港口或海岸附近的情況,這確保了船舶與 5G 陸地基礎設施之間的 LOS 條件。在這種情況下,5G 技術可以與總部(HQ)、港口指揮部等進行通信。此外,陸地基礎設施元件與船舶之間的通信(5G NR 船岸鏈路)可通過陸地公共或私有宏蜂窩 5G gNB(如多頻段海事接入點)和另一艘船舶的 gNB(即 5G 側向鏈路船-船)(考慮多跳情況)進行。通過這種方式,船舶的 5G 網絡與陸地上的 5G 網絡連接起來,從而可以減輕 SATCOM 的負擔,并快速交換信息,例如與總部交換信息 [24,28,29]。
圖 9 描述了艦艇、兩棲部隊和陸地單元之間使用 5G 通信的情況 [24]。
圖 9. 兩棲通信場景(資料來源:[24])。
在方案 3 中,建議在船上的 5G gNB 使用較低的頻率范圍(如 700 MHz)。這樣,gNB 的范圍就擴大了(例如,相對于 C 波段或北約波段 IV:4.4÷5.0 GHz),并有可能確保與陸上分區(即與歐盟)的連接,這在登陸作戰中至關重要。在這種情況下,通常無法使用離岸 5G 網絡。另一方面,有可能出現非 LOS(NLOS)情況。這樣,戰術衛星(TACSAT)和戰術地面通信就可以得到緩解 [24,29]。
文獻[28]提出了海岸通信場景的其他概念驗證要求,其中考慮了以下方面:
在分析 5G 技術的可能性時,值得注意的還有使用更高的無線電頻率范圍(即 EHF,尤其是毫米波)和光通信(即 VLC)的好處。利用 EHF 和光波段可以顯著減少電磁信號。VLC 是在船舶之間或船舶與近海基礎設施之間提供隱蔽通信的理想解決方案,即適用于情景 1 和情景 2。在這種情況下,必須具備良好的能見度和平靜的海面。船上的連接可以使用毫米波來實現。
鑒于軍事行動的性質,偵察和電子戰 (EW) 系統總是與通信系統一起分析。電子戰系統用于破壞敵方的通信。目前,針對民用和未來軍用 5G 系統開發有效干擾方法的工作正在進行中 [10,31-35]。從電子戰艦艇的角度來看,干擾系統是必不可少的。
文獻[36,37]介紹了在海上通信中使用 5G 和 6G 技術以及使用無人飛行器(UAV)的其他方面。海上運輸的發展方向表明,現代民用船只和軍用艦艇使用越來越多的傳感器,也采用自主無人水面(USV)或無人水下航行器(UUV)的形式。從 5G 系統的角度來看,現代船舶可被視為智能船舶,必須為大規模物聯網提供連接[38]。
目前,我們正目睹民用電信市場發生的一場革命。這與在移動網絡中引入 5G 標準有關。幾種新電信技術(5G 技術)的使用大大提高了電信服務的效率。因此,計劃在未來的軍事通信系統中利用這些優勢。在本文中,我們分析了 5G 標準和技術在軍事解決方案中的應用,特別是在海軍用例中的應用。我們介紹了在幾個海洋場景中使用 5G 的潛在可能性。此外,我們還介紹了負責確定未來軍事系統發展方向的國際和國家機構所開展的工作。
雷達和電子戰(EW)等軍事應用測試和測量系統的設計人員正在加緊使用人工智能(AI)解決方案,以便更好地測試認知功能。同時,現代數字架構的采用也推動了軍事測試需求的增長。
人工智能(AI)和機器學習(ML)工具正在進入國防系統的幾乎每一個領域,從制造、雷達系統開發、航空電子設備到軟件開發和測試測量系統。
NI 公司(德克薩斯州奧斯汀)航空航天、國防與政府研究與原型開發解決方案營銷經理 Jeremy Twaits 說:"人工智能不僅影響測試系統本身的能力,還影響我們的測試方式。"人工智能使系統更具適應性,其行為會根據訓練數據集發生變化。有了人工智能,工程師必須了解系統性能的界限,并使用測試方法來滿足系統部署時可能遇到的最關鍵和最可能的情況。
人工智能工具還能在電子戰系統中實現認知功能。羅德與施瓦茨公司(Rohde & Schwarz,馬里蘭州哥倫比亞市)航空航天與國防市場部雷達與 EW(電子戰)全球市場部門經理 Tim Fountain 說:"通過為客戶配備工具,提供高帶寬、長時間射頻記錄和回放系統,用于在操作相關的射頻環境中訓練認知系統,從而幫助客戶交付支持 AI/ML 的系統"。
他繼續說:"此外,認知系統還可用于提取和分類 ELINT(電子情報)接收器捕獲的寬帶數據中的新型發射器。我們的客戶一再告訴我們,他們面臨的一個挑戰是,他們并不缺少來自采集活動的數據,但對這些信號進行標記、分類、排序和地理定位仍然是一項人工任務,由于時間和預算壓力,分析人員往往會忽略這項任務"。
軍事用戶對數據量的要求只增不減,這給系統設計人員和系統測試人員帶來了更大的壓力。
Keysight 航空航天/國防和政府解決方案集團(加利福尼亞州圣克拉拉市)總經理 Greg Patschke 說:"隨著高速捕獲技術的發展,我們能夠收集的數據量正以指數級速度增長。這些大型數據集帶來了分析信息和得出結果的挑戰。目前,我們正在使用無監督機器學習工具來加快洞察之路。我們可以使用智能算法來識別感興趣的信號,對信息進行分類,并識別數據中的模式和異常。利用這項技術為我們打開了一扇通往全新數據分析世界的大門,而這在以前是不可行的"。
由于系統的復雜性,在定義測試場景的同時,通過人工智能系統實現適應性將至關重要。
Twaits指出:"幾乎不可能在每一種可能的情況下進行測試,但業界必須定義關鍵的測試場景和模型。"由于真正測試和信任人工智能系統的動態性和挑戰性,測試平臺必須具備適應性,以應對未來的測試場景和要求。例如,NI 的 COTS(現成商用)硬件可以與 MathWorks 的軟件工具(如深度學習工具箱)相連接。NI 和 MathWorks 合作展示了如何利用軟件定義無線電 (SDR) 對訓練有素的神經網絡進行空中測試和評估,以對雷達和 5G 新無線電信號進行分類。
人工智能在測試解決方案中的應用得益于在軟件中植入測試和測量系統功能的能力。
Patschke 說:"在測試和測量行業,不斷需要改進測量軟件的功能。EW 測試的專業性往往要求軟件具有一定程度的創新性和靈活性,而這在其他行業通常是看不到的。例如,與雷達/預警機有關的到達角(AOA)測試需要軟件和硬件的無縫配對,以適當應用實時運動學并準確計算 AOA 結果"。
他繼續說:"幾年前,[測試]軟件還不具備這種功能,但隨著客戶要求和需求的變化,像 Keysight 這樣的公司已經進行了調整,以滿足這些需求。客戶要求系統具有靈活性,以便在新的挑戰出現時滿足他們的需求。滿足這些需求的唯一方法就是不斷升級我們的軟件,盡可能增加新的功能,這樣就可以不斷地將硬件重新用于多種用途"。
對標準化和快速周轉的需求也需要更多的軟件功能。
Fountain 說:"客戶告訴 R&S 最緊迫的問題是,他們需要快速、可驗證和可重復的測量,而且通常是基于標準的測量。"客戶通常沒有時間或內部專業知識來開發特定的測量功能,因此可能會依賴供應商將該測量功能作為附加功能提供,或者在某些情況下使用事實上的行業工具集(如 Matlab 和/或 Simlink)來支持快速軟件/硬件功能,特別是隨著 FPGA(現場可編程門陣列)和 GPU(圖形處理器)在測量數據流中變得越來越普遍。(圖 1)。
[圖1 ? 羅德與施瓦茨公司提供集成記錄、分析和回放系統(IRAPS)。IRAPS可用于需要寬帶寬、長時間射頻記錄和回放的實驗室和靶場射頻記錄和回放應用,如雷達測試和靶場電子戰(EW)效果評估。]
NI 雷達/EW 業務開發經理 Haydn Nelson 說:"在軟件中定義測試系統是整個航空航天工業趨勢的體現,通常被稱為基于模型的系統工程。"推動系統級模型和要求的標準化使軟件成為定義自動測試系統不可或缺的一部分。
Nelson 繼續說:"對于雷達和電子戰來說,由于雷達的多任務性質和電子戰的保密性質,這具有挑戰性。定義、開發、評估和部署新方法和技術是一個復雜的過程。隨著威脅的不斷發展,用戶需要更快地獲得新系統,而測試和評估流程不能阻礙這一進程。軟件定義的測試系統對于在保持系統能力和性能敏感性的同時滿足速度要求至關重要。
對更多實驗室測試的需求也在推動軟件定義測試系統的發展。Nelson 說:"我們看到的一個具體要求是,能夠在實驗室中以現實的方式進行更多測試,而無需面對固定和鎖定測試系統的挑戰。在公開范圍測試之前,測試的次數越多,新方法或新技術獲得最終用戶信任的信心就越大。共享數據和證明能力與開發能力本身同樣重要。"
跨越多個領域的復雜對抗性威脅對雷達和預警系統的性能提出了更高的要求,從而給測試系統設計人員帶來了更大的壓力,要求他們提供準確、高效的解決方案。
"總體而言,趨勢是不斷提高測量精度和降低相位噪聲,"Fountain 說。"精度和相位噪聲直接關系到描述雷達性能的能力。在電子戰方面,我們看到,在擁擠和有爭議的作戰環境的推動下,高度復雜的電磁場景正朝著更高保真模擬的方向發展。"
雷達和預警系統的數字架構要求和現代化努力也要求測試系統具有多功能性。
NI 的 Twaits 說:"從高層次上講,測試和評估的要求是由采用現代數字架構驅動的,這些架構要求在單個系統中進行功能、參數和系統級測試,以及分割數字和射頻系統以進行獨立測試的方法。"此外,許多傳統雷達和預警系統正在進行現代化改造,而傳統的測試平臺靈活性太差,無法滿足新系統功能的測試要求。現代化不會帶來無限的測試預算。新系統和升級要不斷平衡預算和時間交付壓力所帶來的限制,而適應不斷變化的要求本身就是一種要求"。
帶寬需求也對測試系統提出了更高的要求。"從技術上講,在電磁頻譜戰(EMSO)領域,實戰系統正朝著更寬的帶寬、更高的頻率、更大的頻率靈活性和更強的抗威脅能力方向發展。因此,[測試和測量]設備必須能夠生成和分析具有適當規格的波形,快速調整,并創建逼真的場景,在接近真實的運行條件下對被測設備施加壓力。"
測試系統還能在系統部署前的設計過程中盡早發現缺陷,從而降低長期生命周期成本。
Twaits說:"按時、按預算交付的一個關鍵方面是制定測試策略,以便在設計過程中及早發現缺陷。露天靶場測試成本高昂,對于測試早期設計既不可行也不實際。例如,在雷達測試中,客戶正在尋找硬件在環系統,該系統可將真實目標注入到正在測試的雷達系統中。這使他們能夠盡早、頻繁地測試系統,盡早消除問題,并針對各種情況對雷達進行評估"。
NI 提供的雷達目標生成 (RTG) 軟件使客戶能夠將 PXI 射頻矢量信號收發器 (VST) 作為閉環實時雷達目標生成器來操作。它為工程師提供了一個單一模塊,既可作為標準雷達參數測量設備,也可作為 RTG,具有很強的能力和靈活性,適合最終用戶的調整。通過完全開放的列表模式,用戶可以定義多達 1000 萬個測試目標,以硬件速度進行排序,從而以在露天靶場上無法實現的方式刺激雷達。
電子戰系統的作用是對抗和探測復雜的敵對威脅,而測試系統的作用則是使作戰人員不僅能高效而且能安全地利用這些系統。
Patschke 指出:"EW 測試的核心是確保人員和設備都做好應對各種電磁威脅的準備,從而保證部隊的安全。隨著 EW 測試環境越來越先進,客戶需要生成盡可能逼真的模擬。要做到這一點,就必須生成能模擬現實條件的高保真動態場景。過去,這需要大量的設備,而這些設備在使用中往往缺乏通用性。現在,客戶不僅希望他們的設備具有更高水平的能力,如更寬的帶寬和更多的輸出端口,而且還希望它能以更緊湊的尺寸提供更大的靈活性。Keysight 推出了包括最新 M9484C 矢量信號發生器在內的可擴展、開放式架構 EW 測試和評估產品組合,滿足了客戶的這些期望。"(圖 2)
[圖2 ? Keysight 的 M9484C 矢量信號發生器是一個四端口信號源,還能產生脈沖對脈沖輸出。這種單一信號發生器能夠取代四個老式信號源]。
Fountain 對發展趨勢的最后評論是:"人們希望從露天靶場測試轉向封閉實驗室,這主要是由于露天測試的復雜性、成本以及測試產生的射頻輻射可能被不受歡迎的聽眾截獲"。
Fountain 說,在測試和測量層面,他并沒有看到這些計劃有多少活動。"測量系統在操作層面有一些利基應用,模塊化架構(如 MOSA[模塊化開放系統方法]和 SOSA[傳感器開放系統架構])的優勢和附加成本將適用于這些應用,但在大多數情況下,測試和測量設備是在實驗室中,需要一個可控的環境來提供高度的測量精度。"
Nelson說:"從許多方面來看,SOSA等標準架構在嵌入式設計中采用的理念與NI在模塊化PXI平臺測試和測量設計中采用的理念非常相似:制造模塊化、靈活和可互操作的系統。模塊化開放式架構的這三個目標是未來軍用嵌入式系統取得成功的關鍵,使系統能夠在今天設計,并在明天進行低成本升級。NI 的測試和測量方法與這一目標不謀而合。擁有模塊化、可擴展、靈活和可升級的嵌入式系統意味著測試系統也必須是模塊化、可擴展、靈活和可升級的,以適應不斷變化的要求、能力和接口。我們相信,與開放式架構計劃的模塊化方向一致的模塊化測試系統將有助于實現這一新嵌入式系統理念的承諾。"
Keysight 的 Patschke 說:"投資新產品的客戶希望確保其傳統設備和系統能夠與升級后的平臺協同運行。"這不僅是一項節約成本的措施,而且還能通過延長舊產品的使用壽命來減少浪費,同時使整個系統保持最新狀態。開放式架構平臺將可持續發展作為優先事項,同時又不犧牲升級能力。Keysight 在設計下一代系統時非常重視開放式架構的實施。"
人工智能和軟件定義的測試系統正在為現在以及未來的雷達和 EW 測試系統的更多能力鋪平道路,例如軟件定義雷達、頻譜共享、數字孿生等領域。
Patschke說:"未來美國國防部(DoD)客戶的系統測試可能發展的一個途徑就是數字孿生技術的進步。"這些系統利用基于模型的系統工程(MBSE)方法生成數字化的真實測試場景,這些場景通常會考慮到外部變量,而以前的虛擬測試方法無法做到這一點。理論上,'數字孿生'概念可以將大多數(如果不是全部)物理系統工程活動轉換為虛擬活動。在進行物理測試不切實際、真實世界的效果難以再現的情況下,"數字孿生 "有可能增加廣泛的價值。隨著客戶尋求更可靠、更具成本效益的測試手段,數字孿生選擇可能會變得更具吸引力。
Fountain 說,未來幾年有四個關鍵領域將推動測試和測量技術的發展:
雷達和預警系統對靈活性和多功能性的需求也成為測試和測量需求的一個特點。
"納爾遜說:"我們已經看到許多要求測試系統像瑞士軍刀一樣的需求:客戶希望測試設備能在單一系統中完成所有功能。
"我們經常收到這樣的請求:要求配置的系統在進行雷達目標生成等系統級測試的同時,還能進行參數測試,并能進行射頻記錄和回放。這些要求結合在一起,就很難在保持可接受的尺寸、重量和功率的同時,以具有成本效益的方式完成測試。只有采用模塊化系統,在封閉的特定功能與使用開放軟件擴展功能之間取得平衡,才能做到這一點。我們看到的趨勢是,現代測試系統必須像它們所測試的系統一樣具有多功能。
無人駕駛和自主系統正在成為武裝部隊的一個內在組成部分。近來,無人機/無人駕駛飛行器(UAV)一直被廣泛討論,這只是由于其在國防和商業市場空間的內在應用而獲得的動力。然而,一些關于海基無人航行器的最新發展已經引起了人們的興趣。世界各地的海軍對無人海基航行器越來越感興趣,以進行探索和開發,并作為軍事行動的力量倍增器。鑒于地緣政治環境和沿海地區未來沖突的范圍,全球海軍的重點正日益轉向海基無人航行器領域的研究和開發。由于它們的自主性和在網絡中心環境中的作業能力,它們正被越來越多地采用,并且正在加速開發。預計人工智能(AI)、群體計算和量子計算等技術的發展,將促進武器化無人水面航行器(USV)和無人水下航行器(UUV)集群控制能力,這將徹底改變海戰。美國國防部高級研究計劃局(DARPA)的可解釋問題回答系統(EQUAS)專注于可解釋人工智能,它建立了用戶對系統的信任,提供了關于如何做出決策的相關信息,以便用戶能夠理解決策過程和系統建議。DARPA的另一個項目是海基物聯網(Ocean of Things),它收集和分析來自浮動傳感器的信息,以訓練USV和UUV人工智能系統的實時運行。
本文試圖概述這一領域的最新進展,描述技術發展、挑戰和未來趨勢。進一步回顧了海基無人航行器,包括USV和UUV,條令和標準、技術趨勢、應用、挑戰、法律問題、政策考慮和多年來的發展。本文還試圖了解全球海軍面臨的最新技術和挑戰,并迫切地關注主要用于軍事用途和戰場的發展。
美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎研究的需求。本報告的目標是定義一個經典的、與陸軍相關的配置,適合于基礎研究,以允許與適當的主題專家的關鍵數量的集中合作。從這種開放的幾何構型研究中獲得的數據和知識可能會受到更多的限制性分配。
美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。
要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎性研究的需求。缺乏對高超音速飛行器周圍發生的復雜物理和化學的預測性知識,抑制了及時的、優化的多部件設計。對邊界層過渡和沖擊-邊界層相互作用等具體現象了解不多。不能正確地對現象進行建模,會產生一些不確定的特征,如表面壓力分布和熱通量,這對飛行器技術,包括穩定性、控制和熱負荷管理,都有負面影響。
幸運的是,有一個先例,即通過定義政府基準飛行器來促進全社會的科學討論,這些飛行器包含功能相關的工件,但對具體的發展計劃不敏感(見陸軍-海軍基本芬納導彈、空軍改良基本芬納導彈、陸軍-海軍旋轉火箭、國家航空航天飛機和NASA研究)。本報告的目標是定義一個典型的、與軍隊相關的配置,適合于基礎研究,以便與足夠數量的適當的主題專家進行重點合作。從這個開放的幾何構型的研究中獲得的數據和知識可能會受到更多的限制性分配。
美國導彈防御局(MDA)和空間發展局(SDA)目前正在開發高超音速導彈防御系統的要素,以防御高超音速武器和其他新興的導彈威脅。這些要素包括國防空間架構(NDSA)的跟蹤和運輸層以及各種攔截器項目。隨著MDA和SDA繼續開發這些系統,國會可能會考慮對監督和國防授權及撥款的影響。
高超音速武器,像彈道導彈一樣,飛行速度至少為5馬赫,或大約每秒1英里。與彈道導彈不同,高超音速武器不遵循彈道軌跡,可以在到達目標的途中進行機動。據報道,俄羅斯在2019年12月出動了其第一批高超音速武器,同時一些專家認為,中國早在2020年就出動了高超音速武器。預計美國在2023年之前不會裝備高超音速武器。(關于俄羅斯、中國和美國的高超音速武器項目的概述,見CRS報告R45811,高超音速武器:國會的背景和問題,作者是凱利-M-賽勒)。
高超音速武器的機動性和低飛行高度可以挑戰現有的探測和防御系統。例如,由于雷達探測的視線限制,大多數地面雷達在武器飛行后期才能探測到高超音速武器。這給防御者留下了極少的時間來發射攔截器,以抵消入境武器的影響。圖1描述了陸基雷達對彈道導彈和高超音速武器探測時間的差異。
圖1. 基于地面的彈道導彈探測與高超音速武器的探測
美國國防官員表示,現有的地面和天基傳感器架構都不足以探測和跟蹤高超音速武器;前國防部負責研究和工程的副部長邁克-格里芬指出,"高超音速目標比美國通常通過地球靜止軌道上的衛星跟蹤的目標要暗淡10到20倍。"
SDA開發了國防空間架構,以 "統一和整合整個[國防部(DOD)]和行業的下一代能力"。NDSA的目標是成為一個 "單一的、連貫的、有七個層次的擴散空間架構",其中包括圖2中描述的數據跟蹤和傳輸層,并在下面討論。其他層包括支持移動地面資產目標的監護層;提供基于空間的指揮和控制的戰斗管理層;提供 "潛在的GPS否認環境的替代定位、導航和授時"的導航層;探測深空潛在敵對行動的威懾層;以及為其他NDSA層促進衛星操作的支持層。一旦全面投入使用,NDSA將包括550顆衛星并提供全面的全球覆蓋。
跟蹤層是為了 "提供全球指示、警告、追蹤和瞄準高級導彈威脅,包括高超音速導彈系統"。作為該層的一部分,SDA正在開發一個寬視場(WFOV)衛星的結構,最終將提供全球覆蓋。SDA要求在2023財政年度為第0階段跟蹤活動提供8130萬美元,為第1階段跟蹤活動提供4.998億美元(也稱為彈性導彈預警導彈跟蹤-低地球軌道)。
與SDA的跟蹤衛星協同工作的將是高超音速和彈道跟蹤空間傳感器(HBTSS),以前被稱為空間傳感器層,它是由MDA與SDA和美國空軍合作開發。與WFOV相比,HBTSS將提供更靈敏,但更有限的(或中視場[MFOV])覆蓋范圍。出于這個原因,WFOV旨在為HBTSS提供提示數據,然后HBTSS可以為地面攔截器提供更具體的目標質量數據。到2023年,SDA計劃擴大跟蹤層,包括70顆WFOV和MFOV衛星,據SDA主任德里克-圖爾尼爾博士說,"這將使我們在低地球軌道上有足夠的覆蓋面,以便我們基本上可以有區域性的持久性"。MDA要求在2023財政年度為HBTSS提供8920萬美元。
2020財年NDAA(P.L. 116-92)第1682條要求導彈防御局局長 "開發一個高超音速和彈道導彈跟蹤空間傳感器有效載荷"。2021財年NDAA(P.L. 116-283)第1645條確認,MDA局長與SDA局長協調,負責開發和采購傳感器有效載荷,"至少到2022財年"。第1645節還要求最遲在2023年12月31日開始對傳感器有效載荷進行在軌測試,并在 "此后技術上可行的情況下 "盡快將傳感器有效載荷納入SDA更廣泛的天基傳感器架構。最后,2022財年NDA(P.L. 117-81)第1662條禁止MDA主任"[授權]或[承諾]為生產衛星或與此類衛星運行相關的地面系統的記錄計劃提供資金"。如果滿足某些條件,包括確定 "由于技術、成本或進度因素,這種限制會延遲交付可運行的[HBTSS]",空軍負責空間采購和集成的助理部長可以放棄對HBTSS的這種限制。
圖2. NDSA的部分內容
美國防部表示,NDSA的傳輸層旨在將跟蹤層與地面的攔截器和其他武器系統連接起來,將 "加強包括導彈防御在內的若干任務領域"。據國防部稱,SDA已經為運輸層的第1階段授予了三個原型協議,"一個由126個光學相互連接的空間飛行器組成的網狀網絡",將于2024年9月開始發射。運輸層最終將包括一個由大約300-500顆衛星組成的星座。SDA要求在2023財政年度為 "數據傳輸層、傳感器能力和備用位置、導航和計時能力 "提供8.164億美元。
MDA已經探索了一些消除對手高超音速武器的方案,包括攔截導彈、超高速彈丸、定向能武器和電子攻擊系統。2020年1月,MDA發布了一份關于高超音速防御區域滑行階段武器系統攔截器的原型提案要求草案。該計劃旨在 "減少攔截器的關鍵技術和集成風險";然而,據當時的MDA主任喬恩-希爾海軍中將稱,它在2030年代的某個時候才會準備好過渡到開發。MDA轉而將重點轉向較近的解決方案,并在2021年4月啟動了滑翔階段攔截器(GPI),它將與宙斯盾武器系統整合,并在2020年代中期至末期提供高超音速導彈防御能力。洛克希德-馬丁公司、諾斯羅普-格魯曼公司和雷神導彈與防御公司已經獲得了GPI的 "加速概念設計 "階段的合同。
此外,2022財年NDAA(P.L. 117-81)第1664條授予MDA主任 "預算、指導和管理適用于 "高超音速導彈防御的定向能源項目的權力。國防高級研究計劃局(DARPA)也正在進行一項名為 "滑翔破壞者 "的計劃,其目的是 "開發關鍵的組件技術,以支持一種輕型飛行器,用于在非常遠的距離上精確對付高超音速威脅。" DARPA要求在2023財年為 "滑翔破壞者 "提供1830萬美元。總體而言,MDA在2023財年為高超音速防御申請了2.255億美元,低于其2.479億美元的2022財年申請和2.878億美元的撥款。
一些分析家認為,天基傳感層--與跟蹤和瞄準系統相結合以引導高性能攔截器或定向能量武器--理論上可以提供防御高超音速武器的可行選擇。2019年導彈防御審查報告指出,"這種傳感器利用了從空間可看到的大面積,以改善跟蹤,并可能瞄準先進的威脅,包括高超音速[武器]。" 其他分析家對高超音速武器防御的可負擔性、技術可行性和/或效用提出質疑。此外,一些分析家認為,美國目前的指揮和控制架構將無法 "快速處理數據,以應對和消除即將到來的高超音速威脅"。
一些分析家還對目前SDA和MDA在高超音速導彈防御方面的分工提出質疑。SDA主任Tournear此前曾對這兩個機構之間可能存在冗余的批評作出回應,稱兩者都向負責研究和工程的國防部副部長報告。然而,從2022年10月1日起,SDA將改為向負責采購和整合的空軍助理部長報告。國會可以監督這種新的報告結構對效率和效能的影響。
加快對高超音速導彈防御方案的研究是否必要且在技術上可行?高超音速導彈防御方案的技術成熟度是否值得目前的資金水平?
SDA和MDA是如何在高超音速導彈防御的各種要素上進行合作的?它們目前的作用是增加還是減少了成本以及技術發展的速度和效率?
國防部是否具備執行高超音速導彈防御所需的能力,如適當的指揮和控制架構?
美國海軍的無人作戰框架和智能自主系統(IAS)戰略解析了美國海軍的愿景,即如何通過迭代實驗來發展無人平臺,重點是發展新的作戰概念和實現這些想法的關鍵技術。美國海軍需要制定一個作戰概念(CONOPS),將無人水面和水下航行器(USV/UUV)納入現有情報、監視和偵察(ISR)流程。無人平臺(UV)面臨著操作和續航方面的挑戰,這將使它們在情報周期的處理和開發功能中成為獨特的難點。本文討論僅限于兩個具有顯著續航能力和收集能力的無人平臺,這兩項能力使無人平臺對作戰具有重大影響。這項工作回顧了關于超大型UUV(XLUUV)和中型USV(MUSV)能力和預期任務的非機密文獻,并與MQ-4C海神偵察機的發展進行了比較。確定了海軍在開發CONOPs時應該考慮的幾個因素和解決方案,如何在戰役層面將XLUUV和MUSV集成到ISR中。
“無人平臺在我們未來的艦隊中發揮著重要作用。成功地整合無人平臺——在海面下、在海面上和海面上空——為我們的指揮官提供了更好的選擇,以便在有爭議的空間里作戰和獲勝。它們將擴大我們的情報、監視和偵察優勢......”--美國海軍作戰司令部,2021年航行計劃
美國海軍目前正在開發一系列無人的空中、水面和水下航行器,以滿足其未來部隊需求。海軍的無人作戰框架和智能自主系統(IAS)戰略解析了海軍的愿景,即如何通過反復實驗來開發這些新平臺,重點是發展新的作戰理念和實現這些理念的關鍵技術。無人平臺將支持海軍的目標,即建立一支更加分散的部隊,能夠在通信退化的環境中作戰,同時在受到反介入和區域拒絕威脅的挑戰時能夠應對。雖然海軍的無人平臺仍處于不同的發展階段,但有足夠的數據表明它們的能力,可以提出新作戰概念,將這些新平臺與海軍長期以來的優先事項相結合。
美國海軍需要制定一個作戰概念(CONOPS),將無人水面和水下航行器(USV/UUV)納入現有情報、監視和偵察(ISR)流程中,無論是在戰斗期間還是在日常的非戰斗行動中。這種CONOPs將支持智能自主系統中至少兩個子類——分布式和持久性傳感器,以及戰斗空間的擴展、清晰化和精確化。無人平臺(UV)雖然有潛在的強大的收集能力,但面臨著操作和續航方面的挑戰,這將使它們在情報周期的處理和開發功能方面成為獨特的麻煩。海軍使用無人平臺作為ISR資產的概念將需要納入這些平臺獨特的適合完成的作戰目標,并且應該在這些平臺能力正在形成和實戰化的時候就開始制定。
為了把重點放在戰爭的戰役層面上,討論將限于兩個具有重要續航能力和收集能力的無人平臺,使它們具有實質性的作戰影響。這項工作回顧了關于超大型UUV(XLUUV)和中型USV(MUSV)能力和預期任務的非機密文獻,并與MQ-4C Triton(一種大型海上無人駕駛飛行器)的發展相比較。它確定了海軍在制定將XLUUV和MUSV整合到作戰層面的ISR的CONOP時,應該考慮的幾個因素和解決方案。分析的重點是在以海洋為中心的戰場上使用這些平臺,對手是在海面下、水面、空中和太空領域使用軍事力量的近鄰或同級對手。提到作戰指揮官時,設想了一個戰區聯合部隊海上分指揮官(JFMCC)和情報人員,在岸上或海上作戰中心(MOC)內運作。
美國海軍的分布式海上作戰(DMO)概念是為了在反介入、區域拒止(A2AD)戰場上擊敗競爭對手,它依賴于分布式、網絡化的ISR平臺。ISR資產將定位對手并為武器使用平臺提供目標支持。無人平臺與多域作戰(DMO)概念極其相關,因為DMO設想在對手的對峙或反介入武器的交戰區域內使用海軍資產。海軍23財年的長期海軍建設計劃指出,海軍預計在45財年擁有89-145個無人平臺,并提到更詳細的信息,可在機密的能力發展計劃中獲得。22財年的建設計劃明確指出,海軍正在尋求59-89艘USV和18-51艘UUV。海軍的資金優先級和迭代式無人平臺開發支持CNO將無人平臺作為分布式作戰的一個重要組成部分。
情報、監視和偵察是三個獨立但密切相關的功能,對于軍事行動至關重要。廣義上講,情報是收集和分析與決策有關的信息。監視是使用收集資產來監測一個地點的相關活動,而偵察是將收集資產部署到一個確定的區域,以定位或確認沒有相關活動。當無人平臺用于ISR功能時,將主要作為收集資產來監視或偵察特定區域,尋找相關活動。這些平臺的 "無人"性質,使平臺本身更具有成本效益,不容易被置于危險之中,但卻使其作為ISR資產的有效性變得復雜。采集行動必須以足夠嚴格的方式進行預規劃,以滿足指揮官在不可能重新分配任務的通信環境中繼續生存。此外,收集到的數據必須傳送給有能力將信息開發成情報的分析人員,以便為作戰決策提供依據。
MQ-4C "海神"是由RQ-4 "全球鷹 "改裝的大型無人機,用于提供持久的海上ISR。"海神"的開發是為了滿足海軍對持久性ISR的需求,最終被確定為廣域海上監視(BAMS),用于A2AD環境。"海神"在一次任務中可以飛行超過24小時,作戰范圍為8,200海里。為了滿足海軍的要求,對RQ-4進行了具體的修改,最明顯的是要求在惡劣的海上天氣下下降和上升,以便目視識別通過電子信號定位的水面航行器。這一要求需要增加除冰能力、防雷和其他強化措施。
2020年1月,海軍對 "海神 "進行了首次早期作戰能力(EOC)部署,向關島的安徒生機場派出了兩架飛機。該飛機作為CTF-72的一部分,向在INDO-PACOM責任區作戰的聯合部隊提供海上巡邏和偵察,這是ISR的一個方面。在飛行行動中,"海神 "由四名飛行員組成的機組控制,他們在地面控制點進行操作。這些操作員駕駛飛機,不進行情報開發,情報開發由一個單獨的專家小組提供。2020年派往關島的機體并不具備整套預期的收集能力,只有光電/紅外(EO/IR)視頻流和一個海上雷達。海軍目前正在測試 "海神 "的升級版、多智能改進版,它增加了信號情報收集能力,是打算取代有人駕駛的EP-3E Aeries II飛機的平臺。
盡管還沒有完全投入使用,但 "海神 "號的早期使用提供了一些經驗,應該為大型無人水面和水下船只的發展提供參考。首先,"海神"和其他無人平臺所收集的信息將需要傳送給人類分析人員進行開發。雖然存在識別感興趣的信號的自動化程序,但它們還不能將這些信息置于當前友軍和敵軍行動的背景下,并告知決策者。其次,大型無人駕駛系統依賴于岸上的維持和維護。像 "海神 "一樣,任何大型的平臺都需要返回基地或港口進行維修、加油和卸載收集的數據。這些岸上的設施是平臺操作的關鍵要求,可能會受到干擾或攻擊。第三,在建造無人平臺時,應了解任務和有效載荷在未來可能發生變化。為平靜的海況和適度的溫度而建造的無人平臺,在大海里、惡劣的天氣或極端的水溫下,可能不那么有效或無法操作。
5個“虎鯨”超大型無人潛航器(XLUUV) 中的第一個,在19財年得到資助。其基于波音公司的Echo Voyager XLUUV進行開發,預計在22財年作為一個測試平臺,用于開發作戰概念和關鍵的使能技術。XLUUV幾乎肯定不會有能力以載人潛艇的保真度來探測、跟蹤和分類聲音。這主要是因為UUV缺乏訓練有素和有經驗的船上潛艇人員的專業知識,而且XLUUV是一個比載人潛艇小得多的平臺,限制了任何船上聲納陣列的能力。然而,XLUUV的模塊化性質擴大了其潛在的收集能力,包括船上攜帶的任何可部署的系統,以及船體安裝或牽引的聲納陣列。下面將討論基于有機傳感器或XLUUV攜帶的有效載荷進行數據收集。
將XLUUV作為ISR資產使用的最重大挑戰是缺乏與地面控制點的頻繁通信。現有的能力并沒有確定XLUUV是否有能力升起一個通信桅桿或浮標來傳輸數據和接收修訂的指令。這樣做會削弱使用水下航行器作為ISR資產的主要優勢,即它的隱蔽性。這為作戰計劃者確定了三種可能的行動方案。第一,XLUUV在其行動期間不能發送或接收任何數據。這將限制XLUUV只執行預先計劃的行動,并剝奪行動指揮官重新分配資產的任何能力。第二,XLUUV可以部署一個僅有接收能力的通信天線。這將允許指揮官重新分配XLUUV的任務,但不允許該資產廣播接收指令,這使得操作人員不確定新的指導是否正在執行。用來傳達這種新指導的廣播有可能揭示UUV或潛艇的行動區域。第三,XLUUV可以采用一個同時具有發射和接收能力的通信浮標。這將使指揮官能夠發布新的指令,并確認XLUUV已經收到并將執行新的任務,但也有可能將UUV的位置暴露給對手。每種方案都是在安全和作戰指揮官的靈活性之間做出的折衷。
繼隱身之后,UUV作為ISR資產的第二個主要優勢是其收集聲學數據的能力。聲學情報,即對這些數據的處理和利用,是一門極富挑戰性的學科。聲學數據需要分析人員花費數年甚至數十年的訓練和經驗來進行分析。由于這門學科的挑戰,海軍應該尋求現有的聲學情報卓越中心來分析XLUUV收集的數據。海軍在弗吉尼亞和華盛頓有兩個海軍海洋處理設施(NOPFs),由聲學和情報專家共同管理。這些設施作為綜合海底監視系統(IUSS)的一部分運作,并對來自海上采集資產的聲學數據進行持續分析使用。對于ISR功能,海軍應考慮將XLUUV作為IUSS資產,并利用NOPFs的常駐聲學情報專家來處理和分析收集的數據。
需記錄的聲學信息通常也會產生大量的數據,覆蓋較長的時間段。可能需要幾周或幾個月的時間來充分開發XLUUV任務的所有記錄數據。當考慮到前面討論的通信挑戰時,使用XLUUV作為ISR資產將需要對XLUUV支持的確切行動目標進行詳細規劃。這種規劃應導致對UUV的反應進行預先規劃,以滿足指揮官意圖的具體檢測。操作員應考慮三種反應,即立即反應、暫時延遲反應,或決定繼續執行任務并在回港后分析數據。
一旦XLUUV檢測到特定的標準,例如特定對手潛艇的聲學特征,它的反應應該由作戰指揮官仔細預先確定。在這種情況下,XLUUV有三種可能的行動。第一,停止其任務,并通過通信桅桿或非系留的單向傳輸浮標,立即向作戰指揮官發出通知,說它已經探測到對手的潛艇。如果敵方潛艇對指揮官的部隊構成危險,并且需要時間敏感的定位信息來使反潛戰(ASW)資產加入戰斗,這種反應可能是適當的。二,XLUUV可以釋放一個單向的通信浮標,在延遲后將探測結果廣播給作戰指揮官。這種折中的反應將為指揮官提供最近的定位數據,并提高他的態勢感知,但也允許UUV離開該地區,繼續執行其任務而不暴露其位置。如果指揮官希望在近乎沖突的時期提高態勢感知,但又不試圖主動瞄準對手的潛艇,這種反應可能是合適的。第三,XLUUV可以簡單地繼續記錄聲學數據,對探測進行日志記錄,并繼續執行其任務。日志記錄將有助于回港后的開發。這種反應在非沖突時期和XLUUV執行一般監視任務或收集作業環境信息時可能是合適的。這些反應選項中的每一個都利用了當今可用的技術,并為作戰指揮官提供了靈活性,以根據作戰需要指揮所需的反應。
波音公司公開的Echo Voyager XLUUV的數據顯示,它的航程為6500海里(NM),最大速度為8.0節,最佳速度為2.5-3.0節。從關島阿普拉港到俄羅斯太平洋艦隊所在地阿瓦查灣約2450海里,到中國南部戰區海軍駐地亞龍灣約2050海里。如果Orca XLUUV的能力與Echo Voyager的能力相近,這將使最有可能收集情報的地點處于部署在關島的XLUUV的行動范圍之內。然而,在離母港很遠的地方使用XLUUV可能會導致在接收和利用收集的數據方面出現重大延誤。根據2.5-8.0節的前進速度,從阿瓦查灣返回關島大約需要13至40天。該平臺漫長的旅行時間,加上分析所收集的數據所需的大量時間,促使XLUUV在ISR中最有可能的用途是對作戰環境的一般性收集,或有可能實施監視任務,將該平臺的長耐久性與前面描述的即時或延遲傳輸通信方法相結合。
作為一個無人平臺,XLUUV在維持和維護方面也將面臨獨特的挑戰,這將影響其作為ISR資產的使用。XLUUV被設想為一種可部署或遠征的能力。對這種能力的討論似乎僅限于單個或少量的船體,然而DMO概念和海軍造船計劃設想了幾十個平臺,所有這些平臺都將需要運輸、地面支持和碼頭空間來運作。任何降低或拒絕完成任務的物質缺陷都需要長時間返回港口或可能返回位于對手威脅范圍之外的水面艦艇。維護和保養的現實需要被納入任何利用無人武器作為ISR資產的作戰計劃中,這可能導致它們主要被用于非戰斗性的情報準備任務,在這些任務中,故障的影響比戰斗行動中要小。
美國海軍的MUSV目前正在基于最初的原型平臺Sea Hunter(SH1)和Seahawk(SH2)的基礎上進行開發。MUSV的具體目的是發揮ISR的作用,提供一個集成到海軍戰術網格中的無人傳感器和電子戰平臺。MUSV計劃目前在平臺能力方面的定義不如XLUUV,但其發展足以考慮具體的ISR功能和作戰概念。將MUSV作為ISR資產使用的關鍵決定是確定它們是作為獨立的收集器還是作為從屬于有人駕駛的水面艦艇的資產。
無論是哪種使用方式,MUSV都將以類似的方式發揮作用--收集現有的電子數據,進行初步的開發和處理,并將收集的結果轉發給岸上和海上的分析人員和系統。區別在于船上的收集系統在尋找什么信號,以及向誰和如何轉發收集的信息。當MUSV作為載人艦艇的支持力量運行時,它的收集系統應集中于探測和跟蹤來襲的威脅,并為被支持的艦艇提供目標定位的幫助。傳感器包應能同時識別和跟蹤反艦巡航導彈、彈道導彈、高超音速導彈、水面艦艇、有人和小型無人駕駛飛機,并提供潛望鏡探測能力。MUSV應該能夠將其收集的結果直接提供給被支持的艦艇,而不依靠干預的地面站或衛星,然后協助選擇和確定防御措施或反擊的目標。
如果作為一個獨立的收集器運行,MUSV最好配備能夠超越基線追蹤多個空中和地面目標的傳感器,并自動將這些追蹤與已知或可疑的對手平臺聯系起來。這些數據應該被轉發給作戰指揮官,以建立共同作戰圖(COP)。這兩項任務,直接支持載人艦艇或提供COP發展的獨立行動,包含了監視和偵察任務的要素。然而,最佳的傳感器和通信能力在不同的任務之間是不同的,這需要在進一步發展MUSV時予以考慮。
作為主要的電子情報(ELINT)收集器,MUSV將需要依靠現有的ELINT分析員來分析所收集的數據。海軍水面艦艇上一般都有可以進行這種分析的密碼學人員,盡管他們目前的任務是操作和利用其艦艇的有機收集能力。如果MUSV上有足夠的通信能力,那么收集到的數據可以被發送到岸上的分析人員進行利用。在這種情況下,海軍信息戰指揮部(NIOCs)是數據利用的合理地點。將需要開發基礎設施和信息技術,以便將MUSV收集的ELINT納入現有的處理系統。此外,水面艦艇和岸上設施的密碼人員配置將需要反映出增加了一個新的收集平臺,提供多個需要分析的數據流。
像“虎鯨”和MUSV這樣的大型無人平臺被設想為未來技術的一個組成部分,它將實現海軍的DMO概念。這一設想聲稱,從無人平臺收集的數據將通過海軍戰術網格和聯合全域指揮與控制(JADC2)網絡傳達給作戰級指揮官。CNO的NAVPLAN 2021指出,建立一個強大的海軍作戰架構(NOA),這將支持將無人平臺收集的數據納入JADC2,是僅次于調整海上戰略威懾力量的第二大發展重點。目前的ISR平臺開發正在將重點從人力密集型部隊轉向自動化能力,以在有爭議的環境中擊敗同行的對手。AI/ML的使用將導致收集的數據處理和利用的速度呈指數級增長,大大增強作戰指揮官的態勢感知,并減少從檢測到對手到使用武器的時間。對收集到的數據進行網絡化、自動化的利用,將是分布式作戰的一個重要推動因素。
網絡化通信和AI/ML的發展必然會導致無人平臺的有效使用,這有三個原因。第一,作戰藝術取決于對作戰環境、敵方和友方部隊以及作戰目標的深入分析和理解。無論提供何種工具,這種理解和部隊的有效使用將始終取決于一個有能力的作戰指揮官。作為一種ISR資產,無人平臺將依賴于指揮官和情報人員的明確行動任務。第二,目前人工智能/ML工具在情報分析中的狀態是有希望的,但離開始復制人類分析的能力可能還有很長的路要走。人工智能/ML工具只能復制人類思維和行動所形成的模式,而且幾乎可以肯定的是,無論開發何種算法,都會錯過與作戰藝術相關的新趨勢和異常數據。海軍在培訓和保留AI/ML專業知識方面也面臨挑戰。第三,大型UV目前正處于迭代實驗階段,在設計平臺能力的同時,現在就需要制定作戰概念。等到無人平臺達到最終的生產狀態,再為這些新的收集資產制定ISR CONOPs,將使海軍情報專家無法在開發過程中告知滿足作戰意圖所需的傳感器和能力。
美國海軍情報界需要充分投資于大型無人平臺的發展,特別是發展將這些平臺用于ISR角色所需的能力和概念。海軍在將無人平臺納入ISR過程中的經驗將為利用無人水面和海底艦艇提供參考,但不能直接轉化為利用無人平臺。在通信惡化或被拒絕的環境中運行的無人平臺可能需要大量的岸邊基礎設施來處理和利用收集的數據,對這種基礎設施和人力的投資應該與平臺的開發同時進行。從無人平臺收集的數據可能需要大量的時間來處理和利用,減少了它們在指示和警告(I&W)任務中的作用,并可能引導最佳傳感器套件來支持作戰環境的收集。由于在處理和利用收集的數據方面的挑戰,無人平臺不會取代現有的載人飛機、水面和水下航行器以及國家高空收集的ISR功能,但如果開發和使用正確的能力和作戰概念組合,無人平臺可能會成為發展指揮官態勢感知的有力工具。
本報告描述了北約STO RTG IST-149無人地面系統和C2內互操作性能力概念演示器的研究和實驗工作。無人地面車輛(UGVs)在現代戰斗空間中正變得越來越重要。這些系統可以攜帶大量的傳感器套件,從前線提供前所未有的數據流。另一方面,這些系統在大多數情況下仍然需要遠程操作。重要的是要認識到,如果沒有適當的方式在聯盟伙伴之間交換信息和/或將其納入C2系統,ISR數據在很大程度上將是無用的。該小組的主要目的是找到改善這種情況的方法,更具體地說,調查從操作員控制單元(OCU)控制UGV和接收數據的可能標準,并在現實世界的場景中測試它們。
該項目的努力有兩個方面。比利時的貢獻是在歐盟項目ICARUS中所做的工作。這個項目涉及一個用于搜索和救援的輔助性無人駕駛空中、地面和海上車輛團隊。互操作性在幾個不同的實驗中得到了驗證。ICARUS聯盟由幾個國際合作伙伴組成,其中比利時是這個小組的鏈接。第二項工作是該小組的聯合努力,在小組內進行實驗,展示UGV和OCU之間的互操作性。該小組于2018年在挪威的Rena進行了最后的演示。
這兩項工作都使用了無人系統聯合架構(JAUS)和互操作性配置文件(IOP),以成功實現系統間的互操作性。試驗表明,有可能相當容易地擴展系統,并在相對較短的時間內實現與部分標準的兼容。弗勞恩霍夫FKIE和TARDEC都開發了軟件,將信息從IOP域傳遞到機器人操作系統(ROS),并從該系統中獲取信息。ROS是一個廣泛使用的軟件,用于開發UGV和其他類型機器人的自主性,并被該小組的許多合作伙伴所使用。Fraunhofer FKIE和TARDEC提供的軟件對試驗的成功至關重要。
報告還討論了如何在采購前利用IOP標準來定義系統的要求。該標準本身定義了一套屬性,可以在采購新系統時作為要求來指定,可以是強制性要求,也可以是選擇性要求。這使得采購部門更容易定義要求,供應商也更容易符合要求,同時也明確了OCU在連接到系統時,在控制系統和可視化系統中的數據方面需要具備哪些能力。
該小組2018年在挪威瑞納的試驗重點是對UGV進行遠程操作,以及接收UGV的位置和視頻反饋。由于這是一次成功的試驗,下一步將是使用更高層次的控制輸入和反饋來測試互操作性,例如,向UGVs發送航點,并根據系統的感知接收系統周圍環境的地圖。