亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,張量分解模型憑借模型簡潔、計算速度快等優點在知識圖譜補全任務上取得了令人矚目的成就。但是,這些模型較易受到過擬合的影響,在性能上通常落后于其他類型的模型。為解決過擬合問題,包括 L2 正則,N3 正則 [1] 在內的多種正則項被提出,但這些正則項又在性能或者適用范圍上存在明顯缺陷。為此,我們基于知識圖譜補全模型之間的對偶性,為張量分解模型提出了一種新的正則項---DURA。該正則項可以廣泛地應用于多種不同的張量分解知識圖譜補全模型,且能夠顯著提升模型性能。

//arxiv.org/abs/2011.05816

付費5元查看完整內容

相關內容

人工智能的一個基本問題是對知識圖譜(KG)捕獲的事實執行復雜的多跳邏輯推理。這個問題是具有挑戰性的,因為KGs可能是不完備的。最近的方法是將KG實體嵌入到低維空間中,然后利用這些嵌入來尋找答案實體。然而,如何處理任意一階邏輯(FOL)查詢一直是一個突出的挑戰,因為目前的方法僅限于FOL操作符的一個子集。特別地,不支持否定運算符。現有方法的另一個限制是它們不能自然地建模不確定性。在這里,我們提出了一種用于回答KGs中任意FOL查詢的概率嵌入框架BETAE。BETAE是第一種可以處理完整的一階邏輯運算的方法:合取(∧)、析取(不確定)和否定(ed)。BETAE的一個關鍵觀點是使用有界支持的概率分布,特別是Beta分布,以及嵌入查詢/實體作為分布,這使得我們也能建模不確定性。邏輯操作由概率嵌入的神經算子在嵌入空間中執行。我們演示了BETAE在三個大的、不完整的KG上回答任意的FOL查詢時的性能。雖然BETAE更加通用,但相對于目前最先進的KG推理方法(僅能處理不含否定的連接查詢),它的相對性能提高了25.4%。

//arxiv.org/pdf/2010.11465

付費5元查看完整內容

【導讀】機器學習頂會 NeurIPS 2020, 是人工智能領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。據官方統計,今年NeurIPS 2020 共收到論文投稿 9454 篇,接收 1900 篇(其中 oral 論文 105 篇、spotlight 論文 280 篇),論文接收率為 20.1%。近期,所有paper list 放出,小編發現**對比學習(Contrastive Learning)**相關的投稿paper很多,這塊研究方向這幾年受到了學術界的廣泛關注,并且在CV、NLP等領域也應用頗多。

為此,這期小編為大家奉上NeurIPS 2020必讀的七篇對比學習相關論文——對抗自監督對比學習、局部對比學習、難樣本對比學習、多標簽對比預測編碼、自步對比學習、有監督對比學習

NeurIPS 2020 Accepted Papers://neurips.cc/Conferences/2020/AcceptedPapersInitial

1. Adversarial Self-Supervised Contrastive Learning

作者: Minseon Kim, Jihoon Tack, Sung Ju Hwang

摘要: 現有的對抗性學習方法大多使用類別標簽來生成導致錯誤預測的對抗性樣本,然后使用這些樣本來增強模型的訓練,以提高魯棒性。雖然最近的一些工作提出了利用未標記數據的半監督對抗性學習方法,但它們仍然需要類別標簽。然而,我們真的需要類別標簽來進行反向的深度神經網絡的健壯訓練嗎?本文提出了一種新的針對未標記數據的對抗性攻擊,使得該模型混淆了擾動數據樣本的實例級身份。此外,我們還提出了一種自監督對比學習(Contrastive Learning)框架來對抗性地訓練未標記數據的魯棒神經網絡,其目的是最大化數據樣本的隨機擴充與其實例對抗性擾動之間的相似度。我們在多個基準數據集上驗證了我們的方法-魯棒對比學習(RoCL),在這些數據集上,它獲得了與最新的有監督對抗性學習方法相當的魯棒準確率,并且顯著地提高了對黑盒和不可見類型攻擊的魯棒性。此外,與單獨使用自監督學習相比,RoCL進一步結合有監督對抗性損失進行聯合微調,獲得了更高的魯棒精度。值得注意的是,RoCL在穩健的遷移學習方面也顯示出令人印象深刻的結果。

網址:

2. Contrastive learning of global and local features for medical image segmentation with limited annotations

作者: Krishna Chaitanya, Ertunc Erdil, Neerav Karani, Ender Konukoglu

摘要: 有監督深度學習成功的一個關鍵要求是一個大的標記數據集——這是醫學圖像分析中難以滿足的條件。自監督學習(SSL)可以在這方面提供幫助,因為它提供了一種用未標記的數據預訓練神經網絡的策略,然后用有限的樣本標注對下游任務進行微調。對比學習是SSL的一種特殊變體,是一種學習圖像級表征的強大技術。在這項工作中,我們提出了一種策略,通過利用領域內一些特點,在標注有限的半監督場景下來擴展volumetric 醫療圖像分割的對比學習框架。具體地,我們提出了:(1)新穎的對比策略,它利用volumetric 醫學圖像之間的結構相似性(領域特定線索);(2)對比損失的局部信息來學習對每個像素分割有用的局部區域的獨特表示(問題特定線索)。我們在三個磁共振成像(MRI)數據集上進行了廣泛的評估。在有限的標注環境下,與其他的自監督和半監督學習技術相比,本文提出的方法有了很大的改進。當與簡單的數據增強技術相結合時,該方法僅使用兩個標記的MRI體積用于訓練,達到基準性能的8%以內,相當于用于訓練基準的訓練數據ACDC的4%。

網址:

3. LoCo: Local Contrastive Representation Learning

作者: Yuwen Xiong, Mengye Ren, Raquel Urtasun

摘要: 深度神經網絡通常執行端到端反向傳播來學習權重,該過程在跨層的權重更新步驟中創建同步約束(synchronization constraints),并且這種約束在生物學上是不可信的。無監督對比表示學習的最新進展指出一個問題,即學習算法是否也可以是局部的,即下層的更新不直接依賴于上層的計算。雖然Greedy InfoMax分別學習每個塊的局部目標,但我們發現,在最新的無監督對比學習算法中,可能是由于貪婪的目標以及梯度隔離,會一直損害readout的準確性。在這項工作中,我們發現,通過重疊局部塊堆疊在一起,我們有效地增加了解碼器的深度,并允許較高的塊隱式地向較低的塊發送反饋。這種簡單的設計首次縮小了局部學習算法和端到端對比學習算法之間的性能差距。除了標準的ImageNet實驗,我們還展示了復雜下游任務的結果,例如直接使用readout功能進行對象檢測和實例分割。

網址:

4. Hard Negative Mixing for Contrastive Learning

作者: Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, Diane Larlus

摘要: 對比學習已成為計算機視覺中自監督學習方法的重要組成部分。通過學習將同一圖像的兩個增強版本相互靠近地圖像嵌入,并將不同圖像的嵌入分開,可以訓練高度可遷移的視覺表示。最近的研究表明,大量的數據增強和大量的負樣本集對于學習這樣的表征都是至關重要的。同時,無論是在圖像層面還是在特征層面,數據混合策略都通過合成新的示例來改進監督和半監督學習,迫使網絡學習更健壯的特征。在這篇文章中,我們認為對比學習的一個重要方面,即hard negatives的影響,到目前為止被忽視了。為了獲得更有意義的負樣本,目前最流行的對比自監督學習方法要么大幅增加batch sizes大小,要么保留非常大的內存庫;然而,增加內存需求會導致性能回報遞減。因此,我們從更深入地研究一個表現最好的框架開始,并展示出證據,為了促進更好、更快的學習,需要更難的難樣本(harder negatives)。基于這些觀察結果,并受到數據混合策略成功的激勵,我們提出了特征級別的難例混合策略,該策略可以用最小的計算開銷在運行中進行計算。我們在線性分類、目標檢測和實例分割方面對我們的方法進行了詳盡的改進,并表明使用我們的難例混合過程提高了通過最先進的自監督學習方法學習的視覺表示的質量。

代碼:

網址:

5. Multi-label Contrastive Predictive Coding

作者: Jiaming Song, Stefano Ermon

摘要: 變量互信息(mutual information, MI)估計器廣泛應用于對比預測編碼(CPC)等無監督表示學習方法中。MI的下界可以從多類分類問題中得到,其中critic試圖區分從潛在聯合分布中提取的正樣本和從合適的建議分布中提取的(m?1)個負樣本。使用這種方法,MI估計值超過log m,因此有效下界可能會嚴重低估,除非m非常大。為了克服這一局限性,我們引入了一種新的基于多標簽分類問題的估計器,其中critic需要同時聯合識別多個正樣本。我們證明了在使用相同數量的負樣本的情況下,多標簽CPC能夠超過log m界,同時仍然是互信息的有效下界。我們證明了所提出的方法能夠帶來更好的互信息估計,在無監督表示學習中獲得經驗上的改進,并且在13個任務中超過了最先進的10個知識提取方法。

網址:

6. Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

作者: Yixiao Ge, Feng Zhu, Dapeng Chen, Rui Zhao, Hongsheng Li

摘要: 域自適應目標Re-ID旨在將學習到的知識從已標記的源域轉移到未標記的目標域,以解決開放類(open-class)的重識別問題。雖然現有的基于偽標簽的方法已經取得了很大的成功,但是由于域的鴻溝和聚類性能的不理想,它們并沒有充分利用所有有價值的信息。為了解決這些問題,我們提出了一種新的具有混合記憶的自適應對比學習框架。混合存儲器動態地生成用于學習特征表示的源域類級、目標域簇級和未聚類實例級監督信號。與傳統的對比學習策略不同,該框架聯合區分了源域類、目標域簇和未聚類實例。最重要的是,所提出的自適應方法逐漸產生更可靠的簇來提煉混合記憶和學習目標,這被證明是我們方法的關鍵。我們的方法在目標 Re-ID的多域適配任務上的性能優于現有技術,甚至在源域上不需要任何額外的標注就能提高性能。在Market1501和MSMT17數據上,我們的無監督目標Re-ID的通用版本分別比最先進的算法高出16.7%和7.9%。

代碼:

網址:

7. Supervised Contrastive Learning

作者: Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, Dilip Krishnan

摘要: 交叉熵是圖像分類模型監督訓練中應用最廣泛的損失函數。在本文中,我們提出了一種新的訓練方法,該方法在不同的體系結構和數據增強的監督學習任務中始終優于交叉熵。我們修正了批量對比損失,它最近被證明在自監督環境下學習強大的表示是非常有效的。因此,我們能夠比交叉熵更有效地利用標簽信息。屬于同一類的點簇在嵌入空間中被拉在一起,同時推開來自不同類的樣本簇。除此之外,我們還利用了大的batch sizes和標準化嵌入等關鍵因素,這些因素已被證明有利于自監督學習。在ResNet-50和ResNet-200上,我們的性能都比交叉熵高出1%以上,在使用 AutoAugment數據增強的方法中創造了78.8%的新技術水平。在校準和準確度方面,這一損失也顯示出在標準基準上對自然損壞的穩健性有明顯的好處。與交叉熵相比,我們的監督對比損失對諸如優化器或數據增強等超參數設置更穩定。

網址:

付費5元查看完整內容

在關系抽取任務中,注釋大量的句子集是費時且昂貴的,因此標記數據的數量非常有限。通常的解決方法是采用遠程監督,然而遠程監督的缺陷是生成的數據噪聲較多。因為兩個實體之間可能存在多種關系,很難確定實體對在特定的上下文中屬于哪一種關系,或者句子是否表達了某種關系。

目前人們傾向于使用元學習的方法來提取關系。元學習的思想是用大量不同的任務來訓練模型,每個任務都有幾個例子來演示,這樣學習的模型就可以快速推廣到只有幾個例子的新任務。但該方法訓練數據的信息量仍然有限,其性能仍然不盡人意。為了更有效地推廣到新的關系和任務,作者提出了利用全局圖的方法建模不同的關系。全局關系圖提供了不同關系之間關系的先驗知識,允許我們在關系之間轉移監督以及在沒有擴充帶標簽的句子的情況下推廣這些關系。此外,作者提出了一種新的貝葉斯元學習方法,通過學習基于標記句子的關系原型向量(即支持集)和全局關系圖實現小樣本關系抽取。

//arxiv.org/abs/2007.02387

付費5元查看完整內容

關系數據中的表示學習和鏈接預測算法大多是針對靜態數據設計的。然而,它們所應用的數據通常會隨著時間的推移而變化,比如社交網絡中的朋友圖,或者推薦系統中的用戶與條目的交互。這也是知識庫的情況,其中包含的事實,如(美國,有總統,B.奧巴馬,[2009-2017]),只是在特定的時間點有效。對于時間約束下的鏈路預測問題,即,回答諸如(US, has president, ?, 2012)之類的問題時,我們提出了一個受4階張量的正則分解啟發的解決方案。我們引入了新的正則化方案,并提出了一個復雜的擴展(Trouillon et al., 2016),實現了最先進的性能。此外,我們還提出了一個新的Wikidata構建的知識庫完成數據集,比以前的基準要大一個數量級,作為評估時間和非時間鏈接預測方法的新參考。

付費5元查看完整內容

知識圖譜補全的目的是預測知識圖譜中實體之間的缺失關系。雖然已經提出了許多不同的方法,但缺乏一個統一的框架產生SOTA的結果。在這里,我們開發了PathCon,這是一種知識圖譜補全方法,它利用四個新穎的見解來超越現有的方法。PathCon通過以下方法預測一對實體之間的關系: (1)通過捕獲實體附近的關系類型,并通過基于邊緣的消息傳遞模式建模,來考慮每個實體的關系上下文; (2)考慮獲取兩個實體之間所有路徑的關系路徑; (3)通過可學習的注意力機制,自適應地整合關系上下文和關系路徑。重要的是,與傳統的基于節點的表示不同,PathCon僅使用關系類型表示上下文和路徑,這使得它適用于歸納設置。在知識圖譜基準上的實驗結果以及我們新提出的數據集表明,PathCon在很大程度上優于最先進的知識圖譜補全方法。最后,PathCon能夠通過識別對給定的預測關系很重要的上下文和路徑關系來提供可解釋的說明。

付費5元查看完整內容
北京阿比特科技有限公司