主題: Concept to Code: Aspect Sentiment Classification with Deep Learning
摘要: 在情感分析中,方面情感分類(ASC)比文檔或句子級別的任務更細粒度。神經網絡緩解了特征工程,特別是注意機制解決了有針對性的上下文檢測問題。LSTM和記憶網絡是近年來研究ASC的兩種模型。在過去5年中,NLP社區進行了大量充滿活力的研究。我們不僅回顧了來自多個研究小組的論文中的相關概念,而且還展示了說明這些技術的代碼片段,并可在Flipkart等在線市場的用例中適時加以利用,因為產品評論會影響用戶的購買。
邀請嘉賓: Mohit Gupta,印度 Gurgaon, Haryana的首席程序員。等
主題: Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph Neural Networks
摘要: 基于目標的情感分析(TBSA)旨在檢測意見方面(方面提取)和針對他們的情感極性(情感檢測)。先前的管道和集成方法都無法精確地建模這兩個目標之間的固有聯系。在本文中,我們提出了一種新穎的動態異構圖,以顯式方式對兩個目標進行聯合建模。普通單詞和情感標簽都被視為異質圖中的節點,以便方面單詞可以與情感信息進行交互。該圖使用多種類型的依賴項進行初始化,并在實時預測期間進行動態修改。在基準數據集上進行的實驗表明,我們的模型優于最新模型。進一步的分析表明,在多意見方面和無意見方面的情況下,我們的模型在具有挑戰性的實例上均獲得了顯著的性能提升。
人類從反饋中學習得最好——我們被鼓勵采取導致積極結果的行動,而被具有消極后果的決定所阻礙。這種強化過程可以應用到計算機程序中,使它們能夠解決經典編程所不能解決的更復雜的問題。深度強化學習實戰教你基本概念和術語的深度強化學習,以及實踐技能和技術,你將需要把它落實到你自己的項目。
對這項技術
深度強化學習是一種機器學習的形式,人工智能智能體從自己的原始感官輸入中學習最優行為。系統感知環境,解釋其過去決策的結果,并使用這些信息優化其行為以獲得最大的長期回報。眾所周知,深度強化學習對AlphaGo的成功做出了貢獻,但這并不是它所能做的全部!更令人興奮的應用程序等待被發現。讓我們開始吧。
關于這本書
深度強化學習實戰中教你如何編程的代理人,學習和改善的直接反饋,從他們的環境。您將使用流行的PyTorch深度學習框架構建網絡,以探索從深度Q-Networks到策略梯度方法再到進化算法的強化學習算法。在你進行的過程中,你會將你所知道的應用到實際操作項目中,比如控制模擬機器人、自動化股票市場交易,甚至構建一個可以下圍棋的機器人。
里面有什么
講座題目
深強化學習及其在交通運輸中的應用:Deep Reinforcement Learning with Applications in Transportation
講座簡介
交通領域,特別是移動共享領域,有許多傳統上具有挑戰性的動態決策問題,這些問題有很長的研究文獻,很容易從人工智能(AI)中受益匪淺。一些核心例子包括在線乘車命令調度,它將可用的駕駛員與在共享平臺上請求乘客的行程實時匹配;路線規劃,它規劃行程的起點和終點之間的最佳路線;交通信號控制,它動態和自適應地調整實現低延遲的區域。所有這些問題都有一個共同的特點,即當我們關注某一特定時間范圍內的一些累積目標時,需要做出一系列的決定。強化學習(RL)是一種機器學習范式,它通過與環境的交互和獲取反饋信號,訓練agent學會在環境中采取最佳行動(以獲得的總累積回報衡量)。因此,它是一類求解序列決策問題的優化方法。
講座嘉賓
Jen-Tzung Chien在臺灣新竹國立清華大學取得電機工程博士學位。現任職于臺灣新竹國立交通大學電子及電腦工程學系及電腦科學系講座教授。2010年,他擔任IBM沃森研究中心的客座教授。他的研究興趣包括機器學習、深度學習、自然語言處理和計算機視覺。在2011年獲得了IEEE自動語音識別和理解研討會的最佳論文獎,并在2018年獲得了AAPM Farrington Daniels獎。2015年,劍橋大學出版社出版《貝葉斯語音與語言處理》;2018年,學術出版社出版《源分離與機器學習》。他目前是IEEE信號處理技術委員會機器學習的當選成員。
Aspect-based sentiment analysis (ABSA) is to predict the sentiment polarity towards a particular aspect in a sentence. Recently, this task has been widely addressed by the neural attention mechanism, which computes attention weights to softly select words for generating aspect-specific sentence representations. The attention is expected to concentrate on opinion words for accurate sentiment prediction. However, attention is prone to be distracted by noisy or misleading words, or opinion words from other aspects. In this paper, we propose an alternative hard-selection approach, which determines the start and end positions of the opinion snippet, and selects the words between these two positions for sentiment prediction. Specifically, we learn deep associations between the sentence and aspect, and the long-term dependencies within the sentence by leveraging the pre-trained BERT model. We further detect the opinion snippet by self-critical reinforcement learning. Especially, experimental results demonstrate the effectiveness of our method and prove that our hard-selection approach outperforms soft-selection approaches when handling multi-aspect sentences.
The emerging technique of deep learning has been widely applied in many different areas. However, when adopted in a certain specific domain, this technique should be combined with domain knowledge to improve efficiency and accuracy. In particular, when analyzing the applications of deep learning in sentiment analysis, we found that the current approaches are suffering from the following drawbacks: (i) the existing works have not paid much attention to the importance of different types of sentiment terms, which is an important concept in this area; and (ii) the loss function currently employed does not well reflect the degree of error of sentiment misclassification. To overcome such problem, we propose to combine domain knowledge with deep learning. Our proposal includes using sentiment scores, learnt by regression, to augment training data; and introducing penalty matrix for enhancing the loss function of cross entropy. When experimented, we achieved a significant improvement in classification results.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.