ConvNets和其他神經體系結構在計算機視覺方面的成功應用是過去十年人工智能革命的核心。對于可擴展視覺架構的強烈需求是既小又大。小型模型代表了對效率的需求,因為視覺識別系統通常部署在邊緣設備上;大型模型強調了對可擴展性的追求——利用日益豐富的計算和數據實現更高精度的能力。這兩個方向的研究都是卓有成效的,產生了許多有用的設計原則,對更多性能模型的追求從未停止。同時,文獻中非常快的發展速度有時會掩蓋某些方法取得良好結果的主要機制**。在本論文中,我們將從兩個方面展開研究:(1)開發高效靈活的ConvNet模型推理直觀算法;(2)研究基線方法,揭示流行可擴展方法成功背后的原因**。首先,我們將介紹我們對第一個隨時密集預測算法之一的工作。然后,我們將通過將模型修剪算法與一個極其簡單的基線進行比較來檢驗它們的有效性,并論證它們的真正價值可能在于學習架構。最后,通過采用《Transformers》中的設計技術對傳統的ConvNet進行現代化改造,我們提出了關于自注意力是否導致了Transformer最近出色的視覺擴展性的問題。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-205.html
深度學習的基本原理[103]可以追溯到幾十年前,20世紀80年代提出了基于梯度的反向傳播學習算法[151],而ConvNets從早期就被應用于手寫數字識別等計算機視覺任務[105]。然而,深度學習的真正威力直到2012年才被揭示出來,那年AlexNet[99]贏得了ImageNet大規模圖像分類挑戰賽[34]。數據可用性的提高[34,110]、計算技術的進步[124,134]和改進的算法[64,181,95]是深度學習在各個應用領域持續成功的三大支柱[93,159]。隨著最近大型模型的興起,這一領域的快速發展還沒有顯示出放緩的跡象[13,144]。
深度學習不僅對我們的日常生活產生了顯著的影響,還改變了機器學習從業者和研究人員的工作流程——社區已經從使用手工制作的淺層模型特征123,32,轉向使用多層深度神經網絡自動提取特征表示。手工制作的特性通常是高度特定于任務的,而且不能一般化,設計它們的過程通常很乏味。這種轉變極大地解放了研究人員的雙手和思想,允許他們更多地專注于建模方面。
自動表示學習的前景令人鼓舞,但實際情況并非如此光明。在實踐中,網絡結構對學習到的表征的質量有很大的影響。當網絡在各種下游任務上進行微調時,學習表征的質量也會傳播到準確性。因此,設計正確的神經網絡架構現在是至關重要的,因此人類的任務是設計架構,而不是功能。在計算機視覺中,經典的AlexNet是一個復雜的手工設計卷積神經網絡的例子——層、內核大小、特征映射大小、深度、寬度和其他配置都是由人類精心選擇和平衡的。從那時起,各種各樣的神經網絡架構被提出,不僅本身作為特征提取器有用,而且帶來了新的設計原則。VGGNet[161]填充了3 × 3內核卷積的使用,是同構網絡設計的先驅例子。ResNet[64]引入了剩余連接,使數百層的訓練網絡成為可能。Transformers [181,39]采用多頭自注意力作為一種新的網絡內部信息交換方式,在大規模訓練中表現優異。神經體系結構搜索方法[2189]試圖實現神經體系結構設計的自動化,同時從人類設計的網絡中借鑒搜索空間設計的智慧[141]。這一領域的不斷創新,加上其他訓練技術,已經將ImageNet上排名前1的圖像分類精度從AlexNet的62.5%提高到現在的近90%。在架構設計的各種目標中,效率和可擴展是兩個重要的概念。
這兩個方向的研究進展都是卓有成效的,許多有用的架構設計原則被后來的工作所采用。這是一段非凡的旅程,該領域仍在以驚人的速度發展。同時,部分由于在實驗中有太多詳細的設計選擇和超參數,在性能基準上進行系統范圍的比較是很常見的,研究人員可以選擇有利的配置,并為他們的方法配備額外的技術。這可能導致無法確定實證收益的來源[112]。基線方法有時沒有被充分地調整或調整,導致我們無法理解所提議的方法的真正有效性。在本論文中,除了提出一種新的高效架構框架外,我們還采取了批判性的視角,對那些被認為是瑣碎或過時的基線的方法或模型進行了實證研究。我們發現,當提供正確的技術時,它們具有驚人的競爭力。這使我們對某些新方法的潛在機制有了更深入的理解,并幫助我們更公平、更準確地評價它們的有效性。
在大量標記語音數據上使用監督學習算法訓練的深度神經網絡在各種語音處理應用中取得了顯著的性能,往往在相應的排行榜上處于領先地位。然而,訓練這些系統依賴于大量帶注釋的語音這一事實,為繼續發展最先進的性能造成了可擴展性瓶頸,而且對在語音領域部署深度神經網絡構成了更根本的障礙,因為標記數據本質上是罕見的,昂貴的,或耗時的收集。
與帶注釋的語音相比,未轉錄的音頻通常積累起來要便宜得多。在這篇論文中,我們探索使用自我監督學習——一種學習目標由輸入本身產生的學習范式——來利用這種易于擴展的資源來提高口語技術的性能。提出了兩種自監督算法,一種基于"未來預測"的思想,另一種基于"從未被掩碼中預測被掩碼"的思想,用于從未標記語音數據中學習上下文化語音表示。我們證明了我們的自監督算法能夠學習表征,將語音信號的高級屬性,如語音內容和說話人特征轉換為比傳統聲學特征更容易獲得的形式,并證明了它們在提高深度神經網絡在廣泛的語音處理任務中的性能方面的有效性。除了提出新的學習算法,我們還提供了廣泛的分析,旨在理解學習的自監督表示的屬性,以及揭示使一個自監督模型不同于另一個的設計因素。 //dspace.mit.edu/handle/1721.1/144761
如今,深度神經網絡或深度學習技術為最先進的人工智能系統提供了能力,用于各種數據類型的廣泛應用——圖像分類(He et al.,2016;Liu et al.,2022)、機器翻譯(Vaswani et al.,2017)和語音識別(Gulati et al.,2020)等等。然而,訓練這些系統的傳統范式一直是監督學習,其中系統的性能隨著用于訓練它們的標記數據的大小大致呈對數增長(Sun et al.,2017)。獲取這種帶注釋的數據的成本已經被證明是最先進系統持續開發的可擴展瓶頸,而且對于在數據和注釋收集本來就很少、昂貴或耗時的應用領域部署深度神經網絡來說,這是一個更根本的障礙。
上述情況激發了一波關于自監督表征學習的研究浪潮,其中,由精心設計的前置任務生成的免費標簽被用作監督信號,以預訓練深度神經網絡。然后,從預訓練的深度神經網絡的參數全部或部分用于初始化任務特定的深度神經網絡的參數,以解決下游的任務,使用比傳統監督學習相對較少的注釋數據。自監督指的是要求深度神經網絡預測給定的輸入數據的一部分(或通過編程派生的標簽)的學習任務。
自監督學習技術已被成功地用于提高各種模式下學習的樣本效率,包括圖像(Chen et al., 2020; Grill et al., 2020; Caron et al., 2020),視頻(Xu et al., 2019; Alwassel et al., 2020),語音和音頻(Baevski et al., 2020b; Gong et al., 2022),文本(Mikolov et al., 2013; Peters et al., 2018b; Devlin et al., 2019; Liu et al., 2019),到圖表(Velickovic et al.,2019年),舉幾個例子。一些結果表明,自監督表示的質量也是未標記訓練前數據量的對數函數(Goyal等人,2019)。如果這一趨勢保持不變,那么隨著時間的推移,可實現的性能可能會“免費”提高,因為數據收集和計算能力的改進允許使用越來越大的預訓練集,而不需要手動注釋新數據。在本論文中,我們著重于將自監督學習策略應用于語音領域,目的是推動口語技術的最先進性能,并提高訓練它們的數據效率。我們致力于開發新的自監督語音表征學習方法,并分析其學習表征的特性。
論文貢獻:
1. 介紹了最早成功的自監督語音表征學習框架之一。我們利用了“未來預測”的思想,并提出了一個簡單而有效的自監督目標,稱為自回歸預測編碼(APC),用于訓練深度神經網絡。設計的未來幀預測任務能夠利用未標記的語音數據學習表示,使語音的高級屬性,如語音內容和說話人的特征更容易被下游任務訪問(定義為線性可分性)。APC是最早展示自監督表征優于傳統手工制作的聲學特征(如Mel-frequency倒譜系數(MFCCs)和log Mel 聲譜圖)的工作之一,表明使用自監督學習來提高口語技術表現的潛力。
2. 介紹了目前最先進的自監督語音表示學習框架之一。我們利用了“從未掩碼中預測掩碼”的想法,并提出了w2v-BERT,這是目前最先進的框架之一,用于對語音應用的深度神經網絡進行預訓練。我們訓練一個語音離散器(通過優化對比損失)來將連續語音信號表示為鑒別標記,并使用它們來訓練一個類似BERT的模型。與vq-wav2vec和HuBERT等現有框架相比,w2v-BERT可以以端到端方式優化離散化器和上下文網絡,避免了多個訓練階段之間的協調,這些階段往往涉及脆弱的建模選擇。我們展示了w2v-BERT的有效性,在基準良好的語音識別數據集和谷歌收集的語音搜索數據集上,它優于包括HuBERT和wav2vec 2.0在內的最新技術。
3.引入一種分析方法,能夠在自監督的目標和他們學習表示的屬性之間建立連接。我們探索使用矢量量化來控制深度神經網絡內部的信息流量,以獲得具有相同的自監督目標但模型容量下降的模型譜。我們將這種分析方法應用于APC的研究,并診斷了APC在模型容量受限時保存信息的偏好。我們的分析結果解釋了為什么APC可以學習捕捉高級語音和說話人信息的表征。該分析方法具有普適性,也可用于其他自監督目標的分析。
4. 不同自監督模型的幾個共享性質的演示。在分析我們自己和其他已有的自監督模型時,我們發現,盡管這些模型在訓練目標和神經網絡結構上存在差異,但它們都存在一些共同的特性。這類屬性之一就是隱式發現有意義的聲音單元庫存的能力。我們發現,在自監督模型中通常存在一些層,其中表示與英語電話具有相當高的互信息(當模型在英語語料庫上訓練時),即使模型沒有明確地訓練以發現它們。大多數自監督模型共有的另一個特性是,不同層次的語音信息被捕獲在不同的層中,盡管信息分布可能因模型而異。例如,在APC中,較低的層次往往對說話者更具辨別能力,而較高層提供更多的語音內容。意識到這一點有助于選擇適當的層,從中提取表示,以便在感興趣的任務中獲得最佳性能。
5. 識別訓練影響其表征相似性的自監督模型的建模因素的重要性順序。我們在訓練過程中比較了一組具有不同建模選擇的自監督模型,并使用諸如典型相關分析(CCA)等措施來量化它們的兩兩相似性。我們考慮了三個建模因素: 訓練目標、模型的方向性(即模型是單向的還是雙向的)和神經網絡構建塊(CNN/RNN/Transformer),并表明這三個因素在使一個自監督表示不同于另一個方面具有不同的權重。具體而言,我們發現在所有因素中,訓練目標對表征相似性的影響最大;在相同的訓練目標下,模型的方向性對表征相似性的影響大于其神經網絡構件。
快速增長的現實世界網絡,擁有數十億個頂點,需要可擴展的、快速的和高效的圖算法。幸運的是,商業化的多核、多處理器和多機環境可以處理如此大量的數據。不幸的是,盡管有這樣的資源,許多目前的圖算法并沒有充分利用這些并行和分布式環境,或者有非最佳的理論保證,在實踐中轉化為更慢和更不有效的算法。本論文的目的是在理論上改進現代機器中以前的圖算法。我們通過實驗證明,這種理論上的改進也會轉化為實際的收益。
為了實現這一目標,本論文采取了雙管齊下的方法。首先,我們在模仿大規模數據處理環境的計算模型中制定算法。這種模型中的算法利用了機器集群和一個機器的多個核和處理器的優勢。第二,我們在設計算法時使用了現實世界網絡的特殊屬性。退化就是這樣一個特性;雖然一個網絡可能有數十億個頂點,但其退化可能只有幾百個。
本論文由三部分組成。
第一部分介紹了靜態圖算法。我們首先介紹了一套新的編輯算法,該框架通過將圖編輯成所需的結構化類別,針對難以解決的優化問題來逼近其解決方案。然后,我們提出了新的小子圖計數算法,在大規模并行計算模型中具有更好的理論空間和回合保證;我們的實驗證實了我們的理論成果,并顯示在現實世界的圖中,與以前的最先進的算法相比,回合數和近似系數都有所改善。在這一部分的最后,我們提出了一個近乎線性的時間調度算法,用于在具有通信延遲的相同機器上進行調度,其中優先權受限的工作被建模為有向無環圖。
第二部分主要討論動態圖算法。我們首先展示了一個??(1)的攤銷時間,高概率的(?+1)-頂點著色的動態算法。然后,我們為批量動態更新下的??核分解問題提供了一個新的并行級數據結構(其中動態邊緣更新是分批進行的)。我們表明,我們的數據結構可以證明對每個頂點的核心性提供了(2+??)的近似值,改進了以前已知的(4+??)的最佳約束。最后,我們提出了新的三角形和團計數的并行、高效批處理動態算法。我們對批處理動態算法的廣泛實驗,結果表明,在現實世界的網絡中,我們的性能比以前最好的多核算法實現了數量級的提高。
最后一部分是關于下限的結論。我們通過硬實例展示了在外部存儲器模型中,在有向無環計算圖上獲得最優計算時間表的困難性。然后,我們證明這種圖可以用來構建靜態-內存-硬哈希函數,使用磁盤內存來阻止大規模密碼破解攻擊。
現代深度強化學習(RL)算法,盡管處于人工智能能力的最前沿,但通常需要大量的訓練樣本才能達到與人類相當的性能水平。這種嚴重的數據效率低下是深度RL實際應用的主要障礙:在沒有模擬器的情況下,深度RL幾乎不可能應用于任何領域。為了解決這種關鍵數據效率低下的問題,在本論文中,我們致力于設計能夠快速適應新環境的元學習智能體。與標準的強化學習相比,元學習在特定的環境分布上進行學習,從這些環境中采樣特定的任務,并直接優化元學習器,以提高策略改進的速度。通過利用與感興趣任務具有共同子結構的任務分布,元學習器可以調整自己的歸納偏見,使其能夠在測試時快速適應。
本論文的重點是設計元學習算法,利用記憶作為驅動快速適應新環境的主要機制。具有情景間記憶的元學習是一類元學習方法,利用基于特定環境的整個交互歷史的記憶架構來產生策略。因此,在特定任務中驅動策略改進的學習動態被包含在序列模型的計算過程中,本質上把學習算法的設計交給了體系結構。雖然概念簡單,但使用情景間記憶的元學習非常有效,仍然是最先進的方法。我們提出并討論了幾種通過記憶進行元學習的技術。
論文的第一部分集中在“具身”類環境,其中一個主體在一個類似自然世界的環境中有物理表現。我們利用這種高度結構化的環境集來設計具有快速記憶、規劃和狀態推斷能力的整體嵌入式代理體系結構。在論文的第二部分,我們將重點放在沒有強公共子結構的一般環境中應用的方法。首先,我們重新檢查元學習代理與環境的交互模式:提出用一個并行執行框架來取代典型的順序處理交互歷史,其中多個智能體并行地在環境中行動。接下來,我們討論了一個通用的和強大的序列模型的使用片段間存儲器,門控transformer,展示了性能和數據效率的巨大改進。最后,我們開發了一種方法,可以顯著降低(元)強化學習設置中transformer模型的訓練成本和作用延遲,目的是(1)使它們在研究社區中更廣泛地使用,(2)解鎖它們在實時和延遲受限的應用中使用,如機器人。
//www.ml.cmu.edu/research/phd-dissertation-pdfs/eparisot_phd_mld_2021.pdf
一些相互競爭的擔憂是,深度學習在“邊緣”設備上的計算機視覺應用緩慢。邊緣設備僅為設備上的算法提供有限的資源,從而限制了功耗、內存和存儲使用。例如,移動電話、自動駕駛汽車和虛擬現實耳機都需要高精度和低延遲,這兩個目標會爭奪資源。
為了解決這個西西弗式的任務,現代方法花費了大量的計算來設計解決方案,超過了數千個小時或數年的GPU計算來設計一個單一的神經網絡。更不用說,在單一的一組資源約束下,這些工作只最大化了一個性能指標——準確性。如果資源約束的集合改變了怎么辦?如果額外的性能指標出現在前面,比如可解釋性或泛化?設計高效神經網絡的現代方法由于目標過于單一和狹隘而需要過多的計算而受到限制。
本文直接解決了現代方法的瓶頸,通過高效設計高效的深度神經網絡實現了最先進的性能。這些改進不僅減少了計算量或提高了精度;相反,我們的方法提高了性能,減少了計算需求,盡管增加了搜索空間大小的數量級。我們還展示了被錯過的機會,表現指標超越了準確性,重新設計任務,使準確性、可解釋性和泛化共同提高,這是傳統智慧不可能實現的,這表明,可解釋性和準確性參與了零和游戲。
這篇的論文最終提出了一組模型,為生產就緒的模型設置了新的靈活性和性能標準:這些模型是最先進的,精確的,可解釋的,可概括的,并且可以在CPU時間內配置任何資源約束。
深度神經網絡在計算機視覺、機器學習和人工智能等許多領域都取得了顯著的經驗成功。隨著經驗上的成功,深度學習在理論上已被證明在表達能力方面具有吸引力。即具有一個隱層的神經網絡可以近似任意連續函數,而具有更深層次的神經網絡可以近似具有較少參數的特定類函數。表達理論指出,在一定規模的神經網絡中,存在近似目標函數的最優參數向量。然而,在神經網絡優化過程中,表達理論并不能保證能夠有效地找到這樣的最優向量。優化是深度學習的關鍵步驟之一,因為對數據的學習是通過優化來實現的,即對深度神經網絡的參數進行優化,使網絡與數據保持一致的過程。這個過程通常需要非凸優化,這對于一般的高維問題來說是不可擴展的。事實上,一般來說,神經網絡的優化是不可擴展的,除非對其架構做額外的假設。
本文通過研究可擴展性中的一些基本瓶頸,如次最優局部極小值和鞍點,研究了各種深度神經網絡體系結構的非凸優化問題。特別地,對于深度神經網絡,我們給出了局部極小值和臨界點的各種保證,以及梯度下降找到的點。證明了在深度神經網絡非凸優化中,對實際度進行適度的過參數化可以保證梯度下降找到全局最小值。此外,即使沒有過度參數化,我們表明,無論是理論還是經驗,增加參數的數量,改善臨界點和局部極小值的值向全局最小值。我們還證明了殘差神經網絡局部極小值的理論保證。此外,本文提出了一個統一的理論來分析這些特定架構之外的各種深度神經網絡的臨界點和局部極小值。這些結果表明,盡管在理論的最壞情況和最壞的架構中存在可伸縮性問題,但我們可以避免這個問題,并在實踐中對各種有用架構的大型問題進行良好的可擴展性。
幾十年來,不斷增長的計算能力一直是許多技術革命背后的推動力,包括最近在人工智能方面的進步。然而,由于集成電路進程規模的放緩,對于系統架構師來說,要繼續滿足當今應用不斷增長的計算需求,他們現在必須采用具有專門加速器的異構系統。
然而,建構這些加速器系統是極其昂貴和耗時的。首先,硬件的開發周期是出了名的長,這使得它很難跟上算法的快速發展。同時,現有的編譯器無法導航由新型加速器架構暴露的棘手映射空間。最后算法的設計通常沒有將硬件效率作為關鍵指標,因此,在設計高效硬件方面提出了額外的挑戰。
本文解決了聯合設計和優化算法、調度和加速硬件設計的重大挑戰。我們的目標是通過三管齊下的方法來推進最先進的技術: 開發從高層抽象自動生成加速器系統的方法和工具,縮短硬件開發周期; 適應機器學習和其他優化技術,以改進加速器的設計和編譯流程; 以及協同設計算法和加速器,以開發更多的優化機會。
本文的目標應用領域是深度學習,它在計算機視覺、神經語言處理等廣泛的任務中取得了前所未有的成功。隨著智能設備的普及,可以預見,深度學習將成為我們日常生活中的主要計算需求。因此,本文旨在通過硬件加速進行端到端系統優化,釋放前沿深度學習算法的普遍采用,改變生活的各個方面。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-202.html
隨著表示學習在提供強大的預測和數據洞察方面取得的顯著成功,我們見證了表示學習技術在建模、分析和網絡學習方面的快速擴展。生物醫學網絡是相互作用系統的通用描述,從蛋白質相互作用到疾病網絡,一直到醫療保健系統和科學知識。
在本綜述論文中,我們提出了一項觀察,即長期存在的網絡生物學和醫學原理(在機器學習研究中經常未被提及)可以為表示學習提供概念基礎,解釋其目前的成功和局限,并為未來的發展提供信息。我們整合了一系列算法方法,其核心是利用拓撲特征將網絡嵌入緊湊的向量空間。我們還提供了可能從算法創新中獲益最多的生物醫學領域的分類。
表示學習技術在識別復雜特征背后的因果變異、解開單細胞行為及其對健康的影響、用安全有效的藥物診斷和治療疾病等方面正變得至關重要。
引言
網絡,或稱圖表,在生物學和醫學中非常普遍,從分子相互作用圖到一個人疾病之間的依賴關系,一直到包括社會和健康相互作用的人群。根據網絡中編碼的信息類型,兩個實體之間“交互”的含義可能不同。例如,蛋白質-蛋白質相互作用(PPI)網絡中的邊緣可以表明實驗中測量到的物理相互作用,如酵母雙雜交篩選和質譜分析(例如,[148,197]);調節網絡中的邊緣可以指示通過動態單細胞表達測量的基因之間的因果相互作用(例如,[174]);電子健康記錄(EHR)網絡中的邊緣可以表明在醫療本體中發現的層次關系(例如,[182,190])。從分子到醫療保健系統,網絡已經成為代表、學習和推理生物醫學系統的主要范式。
生物醫學網絡上表示學習的案例。捕捉生物醫學系統中的交互作用會帶來令人困惑的復雜程度,只有通過整體和集成系統的觀點才能完全理解[17,28,164]。為此,網絡生物學和醫學在過去二十年中已經確定了一系列管理生物醫學網絡的組織原則(例如,[16,86,106,262])。這些原則將網絡結構與分子表型、生物學作用、疾病和健康聯系起來。我們認為,長期存在的原則——雖然在機器學習研究中經常未被提及——提供了概念基礎,可以解釋表示學習在生物醫學網絡建模中的成功(和局限性),并為該領域的未來發展提供信息。特別是,當對網絡中邊緣的解釋取決于上下文時,相互作用的實體往往比非相互作用的實體更相似。例如,疾病本體的結構是這樣的:通過邊緣連接的疾病術語往往比不連接的疾病術語更相似。在PPI網絡中,相互作用的蛋白質突變常常導致類似的疾病。相反,與同一疾病有關的蛋白質之間相互作用的傾向增加。在細胞網絡中,與特定表型相關的成分往往聚集在同一網絡鄰居。
表示學習實現網絡生物學和醫學的關鍵原理。我們假設表示學習可以實現網絡生物學和醫學的關鍵原則。這個假設的一個推論是表示學習可以很好地適用于生物醫學網絡的分析、學習和推理。表示學習的核心是向量空間嵌入的概念。其思想是學習如何將網絡中的節點(或更大的圖結構)表示為低維空間中的點,該空間的幾何結構經過優化,以反映節點之間的交互結構。表示學習通過指定(深度的、非線性的)轉換函數,將節點映射到緊湊的向量空間(稱為嵌入)中的點,從而形式化了這一思想。這些函數被優化以嵌入輸入圖,以便在學習空間中執行代數運算反映圖的拓撲結構。節點被映射到嵌入點,這樣具有相似網絡鄰域的節點被緊密地嵌入到嵌入空間中。值得注意的是,嵌入空間對于理解生物醫學網絡(例如,PPI網絡)的意義在于空間中點的鄰近性(例如,蛋白質嵌入之間的距離)自然地反映了這些點所代表的實體的相似性(例如,蛋白質表型的相似性),提示嵌入可被認為是網絡生物醫學關鍵原理的可微表現。
算法范式(圖1)。網絡科學和圖論技術促進了生物醫學的發現,從揭示疾病之間的關系[91,135,159,200]到藥物再利用[41,42,96]。進一步的算法創新,如隨機游走[40,229,242]、核函數[83]和網絡傳播[214],也在從網絡中捕獲結構和鄰域信息以生成下游預測的嵌入信息方面發揮了關鍵作用。特征工程是生物醫學網絡上機器學習的另一個常用范例,包括但不限于硬編碼網絡特征(例如,高階結構、網絡主題、度計數和共同鄰居統計),并將工程特征向量輸入預測模型。這種策略雖然強大,但并不能充分利用網絡信息,也不能推廣到新的網絡類型和數據集[255]。
近年來,圖表示學習方法已成為生物醫學網絡深度學習的主要范式。然而,對圖的深度學習具有挑戰性,因為圖包含復雜的拓撲結構,沒有固定的節點排序和參考點,它們由許多不同類型的實體(節點)和各種類型的相互關系(邊)組成。傳統的深度學習方法無法考慮生物醫學網絡的本質——多樣性的結構特性和豐富的交互作用。這是因為經典的深度模型主要是為固定大小的網格(例如,圖像和表格數據集)設計的,或者是為文本和序列優化的。因此,它們在計算機視覺、自然語言處理、語音和機器人技術方面取得了非凡的成就。就像對圖像和序列的深度學習徹底改變了圖像分析和自然語言處理領域一樣,圖表示學習也將改變生物學和醫學中復雜系統的研究。
我們的重點是表示學習,特別是流形學習[27]、圖變壓器網絡[250]、微分幾何深度學習[25]、拓撲數據分析(TDA)[34,224]和圖神經網絡(GNN)[125]。圖2描述了這次評審的結構和組織。我們首先提供流行的圖學習范式的技術說明,并描述其在加速生物醫學研究的關鍵影響。在圖表示學習的每個當前應用領域(圖4),我們展示了圖表示學習的潛在方向,可以通過四個獨特的前瞻性研究,每個研究至少解決以下圖機器學習的關鍵預測任務之一:節點、邊緣、子圖和圖級預測、連續嵌入和生成。
深度學習在許多領域都取得了重大突破和進展。這是因為深度學習具有強大的自動表示能力。實踐證明,網絡結構的設計對數據的特征表示和最終的性能至關重要。為了獲得良好的數據特征表示,研究人員設計了各種復雜的網絡結構。然而,網絡架構的設計在很大程度上依賴于研究人員的先驗知識和經驗。因此,一個自然的想法是盡量減少人為的干預,讓算法自動設計網絡的架構。因此,這需要更深入到強大的智慧。
近年來,大量相關的神經結構搜索算法(NAS)已經出現。他們對NAS算法進行了各種改進,相關研究工作復雜而豐富。為了減少初學者進行NAS相關研究的難度,對NAS進行全面系統的調查是必不可少的。之前的相關調查開始主要從NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類。這種分類方法比較直觀,但是讀者很難把握中間的挑戰和標志性作品。因此,在本次調查中,我們提供了一個新的視角:首先概述最早的NAS算法的特點,總結這些早期NAS算法存在的問題,然后為后續的相關研究工作提供解決方案。并對這些作品進行了詳細而全面的分析、比較和總結。最后,提出了今后可能的研究方向。
概述
深度學習已經在機器翻譯[1-3]、圖像識別[4,6,7]和目標檢測[8-10]等許多領域展示了強大的學習能力。這主要是因為深度學習對非結構化數據具有強大的自動特征提取功能。深度學習已經將傳統的手工設計特征[13,14]轉變為自動提取[4,29,30]。這使得研究人員可以專注于神經結構的設計[11,12,19]。但是神經結構的設計很大程度上依賴于研究者的先驗知識和經驗,這使得初學者很難根據自己的實際需要對網絡結構進行合理的修改。此外,人類現有的先驗知識和固定的思維范式可能會在一定程度上限制新的網絡架構的發現。
因此,神經架構搜索(NAS)應運而生。NAS旨在通過使用有限的計算資源,以盡可能少的人工干預的自動化方式設計具有最佳性能的網絡架構。NAS- RL[11]和MetaQNN[12]的工作被認為是NAS的開創性工作。他們使用強化學習(RL)方法得到的網絡架構在圖像分類任務上達到了SOTA分類精度。說明自動化網絡架構設計思想是可行的。隨后,大規模演化[15]的工作再次驗證了這一想法的可行性,即利用演化學習來獲得類似的結果。然而,它們在各自的方法中消耗了數百天的GPU時間,甚至更多的計算資源。如此龐大的計算量對于普通研究者來說幾乎是災難性的。因此,如何減少計算量,加速網絡架構的搜索[18-20,48,49,52,84,105]就出現了大量的工作。與NAS的提高搜索效率,NAS也迅速應用領域的目標檢測(65、75、111、118),語義分割(63、64、120),對抗學習[53],建筑規模(114、122、124),多目標優化(39、115、125),platform-aware(28日34、103、117),數據增加(121、123)等等。另外,如何在性能和效率之間取得平衡也是需要考慮的問題[116,119]。盡管NAS相關的研究已經非常豐富,但是比較和復制NAS方法仍然很困難[127]。由于不同的NAS方法在搜索空間、超參數技巧等方面存在很多差異,一些工作也致力于為流行的NAS方法提供一個統一的評估平臺[78,126]。
隨著NAS相關研究的不斷深入和快速發展,一些之前被研究者所接受的方法被新的研究證明是不完善的。很快就有了改進的解決方案。例如,早期的NAS在架構搜索階段從無到有地訓練每個候選網絡架構,導致計算量激增[11,12]。ENAS[19]提出采用參數共享策略來加快架構搜索的進程。該策略避免了從頭訓練每個子網,但強制所有子網共享權值,從而大大減少了從大量候選網絡中獲得性能最佳子網的時間。由于ENAS在搜索效率上的優勢,權值共享策略很快得到了大量研究者的認可[23,53,54]。不久,新的研究發現,廣泛接受的權重分配策略很可能導致候選架構[24]的排名不準確。這將使NAS難以從大量候選架構中選擇最優的網絡架構,從而進一步降低最終搜索的網絡架構的性能。隨后DNA[21]將NAS的大搜索空間模塊化成塊,充分訓練候選架構以減少權值共享帶來的表示移位問題。此外,GDAS-NSAS[25]提出了一種基于新的搜索架構選擇(NSAS)損失函數來解決超網絡訓練過程中由于權值共享而導致的多模型遺忘問題。
在快速發展的NAS研究領域中,類似的研究線索十分普遍,基于挑戰和解決方案對NAS研究進行全面、系統的調研是非常有用的。以往的相關綜述主要根據NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類[26,27]。這種分類方法比較直觀,但不利于讀者捕捉研究線索。因此,在本次綜述查中,我們將首先總結早期NAS方法的特點和面臨的挑戰。基于這些挑戰,我們對現有研究進行了總結和分類,以便讀者能夠從挑戰和解決方案的角度進行一個全面和系統的概述。最后,我們將比較現有的研究成果,并提出未來可能的研究方向和一些想法。
作者Jacob Andreas是自然語言處理的研究者,研究興趣為用語言作為更有效學習的支架和理解模型行為的探針,以及結合深度表示和離散組合性優點的結構化神經方法。近期公開發布了他的博士論文。
博士論文介紹:
本文探討了語言結構在結構和參數化中用于語言處理和其他應用的機器學習模型的方法。作者將該模型應用于問答系統,指令跟蹤,圖像分類等多種任務。
作者首先介紹一類稱為神經模塊網絡(NMN)的模型,并介紹它們在自然語言問答中的應用。NMN旨在實現同時利用深層網絡的表征能力和構成問題的語言結構。我們的方法將問題分解為語言子結構,并使用這些子結構動態地從可重復使用的模塊庫構建網絡。由此產生的復合網絡是共同訓練的。作者并在含有圖像和結構化知識庫的問答數據集上的方法評估模型。隨后,作者將這種思想轉移到策略學習中,研究在面對不同但相似的問題時,怎么組合策略。