隨著智能化水平的不斷提高, 每時每刻都有大量的新知識產生, 知識圖譜逐漸成為我們管理知識的工具之一. 但現有的知識圖譜仍然存在屬性缺失、關系稀疏等問題, 同時還存在大量噪聲信息, 導致圖譜質量不佳, 易對自然語言處理領域中的各類任務造成影響. 面向知識圖譜的知識推理技術作為目前的研究熱點, 是解決該問題的主要方法, 其通過模擬人的推理過程完成對圖譜信息的完善, 在眾多應用中有較好表現. 以知識圖譜為切入點, 將知識推理技術按類別劃分并分別闡釋, 詳細分析該技術的幾種應用任務, 例如智能問答、推薦系統等, 最后對未來主要研究方向進行展望, 提出幾種研究思路.
面向知識圖譜的知識推理旨在通過已有的知識圖譜事實,去推斷新的事實,進而實現知識庫的補全。近年來,盡管基于分布式表示學習的方法在推理任務上取得了巨大的成功,但是他們的黑盒屬性使得模型無法為預測出的事實做出解釋。所以,如何設計用戶可理解、可信賴的推理模型成為了人們關注的問題。本文從可解釋性的基本概念出發,系統梳理了面向知識圖譜的可解釋知識推理的相關工作,具體介紹了事前可解釋推理模型和事后可解釋推理模型的研究進展;根據可解釋范圍的大小,本文將事前可解釋推理模型進一步細分為全局可解釋的推理和局部可解釋的推理;在事后解釋模型中,本文回顧了推理模型的代表方法,并詳細介紹提供事后解釋的兩類解釋方法。此外,本文還總結了可解釋知識推理在醫療、金融領域的應用。隨后,本文對可解釋知識推理的現狀進行概述,最后展望了可解釋知識推理的未來發展方向,以期進一步推動可解釋推理的發展和應用。
//www.jos.org.cn/jos/article/abstract/6522
知識圖譜(Knowledge Graph)本質是一種語義網絡,通常用 (頭實體,關系,尾實體)/ ( ,r, t) h 這樣 的三元組來表達事物屬性以及事物之間的語義關系。自谷歌提出知識圖譜概念以來,知識圖譜已經為智能 問答、對話生成、個性化推薦等多個 NLP 任務領域提供了有力支撐。雖然目前的知識圖譜中存在大量的實 體和事實數據,但是這樣大規模的數據仍然不完整,大量缺失的三元組嚴重限制了這些下游任務的性能。知識推理,這一旨在根據一定的推理機制去預測圖譜中缺失三元組的任務,也吸引了學術界越來越多的目光。
早在 2013 年,Li 等人[1] 提出利用表示學習的方法去做知識推理,通過將實體和關系映射到低維連續 的向量空間,將推理預測任務轉化為實體與關系所關聯的簡單的向量/矩陣操作。鑒于該方法的自由度高、 可計算性好、推理效率高等優點,該類方法在近幾年得到了廣泛關注和發展,并且廣泛的應用在推薦系統、 對話生成等互聯網場景。在這些場景下,研究者們更多的關注如何提高知識推理的性能,忽略知識推理發 生錯誤時的風險問題。即便推理模型在這些場景下產生錯誤推理時,通常來說,并不會招致非常嚴重的后果。然而,在當今人工智能技術應用的大趨勢下,知識推理不僅可以應用在上述互聯網場景,而且越來越 多的被應用在和人類的生產生活息息相關的一些領域(例如,智能醫療[98,99,100]、軍事[112] 、金融[90,111]、交 通運輸[113,114]),這些領域往往對模型的安全性能要求較高,風險高度敏感。例如,在醫療領域,推理的可 靠性會關系到人的生命安全。通常來說,在這些領域,僅僅獲得預測結果是不夠的,模型還必須解釋是怎 么獲得這個預測的,來建立用戶和推理模型之間的信任。
隨著深度學習的發展,知識推理方法的模型結構越來越復雜,僅僅一個網絡就可能包含幾百個神經元、 百萬個參數。盡管這些推理模型在速度、穩定性、可移植性、準確性等諸多方面優于人類,但由于用戶無 法對這類模型里的參數、結構、特征產生直觀理解,對于模型的決策過程和模型的推理依據知之甚少,對 于模型的決策過程知之甚少,不知道它何時會出現錯誤,在風險敏感的領域中,用戶仍然無法信任模型的 預測結果。因此,為了建立用戶和推理模型之間的信任,平衡模型準確率和可解釋性之間的矛盾,可解釋 性知識推理在近幾年的科研會議上成為關注熱點。
盡管有很多學者對知識推理領域進行了深入的研究,并從不同的角度(如分布式表示角度[120] 、圖神 經網絡角度[121] 、神經-符號角度[119] 等)對推理模型進行梳理和總結。然而,在推理模型的可解釋性方面 卻缺少深入的對比和總結。為了促進可解釋知識推理的研究與發展,本文對現有的可解釋推理模型進行了 系統梳理、總結和展望。本文首先闡述可解釋性的定義和可解釋性在推理任務中的必要性,并介紹常見的 可解釋模型劃分標準;然后,根據解釋產生的方式,對現有的可解釋知識推理模型進行總結和歸類,并討 論相關方法的局限性;接著,簡單介紹可解釋知識推理在金融領域和醫療領域的應用。最后,本文討論可 解釋知識推理面臨的挑戰以及可能的研究方向。
1 可解釋的知識推理
在詳細介紹現有的可解釋知識推理模型之前,首先介紹知識推理的基本概念,接著對什么是可解釋性 (Interpretability),以及為什么要在推理任務中注重可解釋性進行介紹,最后對本文的劃分標準做簡要說明。
1.1 知識推理的基本概念
2012 年,谷歌正式提出知識圖譜的概念,用于改善自身的搜索質量。知識圖譜通常用 ( ,r, t) h 這樣 的三元組表達實體及其實體之間的語義關系,其中 h 代表頭實體, r 代表實體之間的關系, t 代表尾實體。例如(詹姆斯·卡梅隆,執導,泰坦尼克號)即是一個三元組,其中頭實體和尾實體分別為“詹姆斯·卡梅隆” 和“泰坦尼克號”,“執導”是兩個實體之間的關系。代表性的知識圖譜,如 DBpedia[108] 、Freebase[53] 、 Wikidata[55] 、YAGO[107] 等,雖然包含數以億計的三元組,但是卻面臨非常嚴重的數據缺失問題。據 2014 年的統計,在 Freebase 知識庫中,有 75%的人沒有國籍信息,DBpedia 中 60% 的人缺少沒有出生地信息 [125] 。知識圖譜的不完整性嚴重制約了知識圖譜在下游任務中的效能發揮。因此,如何讓機器自動基于知 識圖譜中的已有知識進行推理,從而補全和完善知識圖譜,成為了工業界和學術界都亟待解決的問題。
總的來說,面向知識圖譜的知識推理實質上是指利用機器學習或深度學習的方法,根據知識圖譜中已 有的三元組去推理出缺失的三元組,從而對知識圖譜進行補充和完善。例如,已知(詹姆斯·卡梅隆,執導, 泰坦尼克號)和(萊昂納多·迪卡普里奧,出演,泰坦尼克號),可以得到(詹姆斯·卡梅隆,合作,萊昂納 多·迪卡普里奧)。知識推理主要包含知識圖譜去噪[12] 和知識圖譜補全(又稱之為鏈接預測)[1,27,94,95]兩個 任務[117] ,其中,知識圖譜去噪任務專注于知識圖譜內部已有三元組正確性的判斷;而知識圖譜補全專注 于擴充現有的圖譜。根據要推理元素的不同,知識圖譜補全任務可以進一步細分為實體預測和關系預測。其中,實體預測是指給定查詢 ( ,r,?) h ,利用已有事實的關系,推理出另一個實體并由此構成完整三元組, 同理,關系預測則是指給定查詢 ( ,?, t) h ,推理給定的頭尾實體之間的關系。由于知識圖譜中大多數三元組 都是正確的,知識圖譜去噪任務通常采用對已有三元組進行聯合建模并進一步判斷特定三元組是否成立的 方法。在這種情況下,知識圖譜補全任務可以轉化為知識圖譜去噪任務[123,124]。為此,在下面的內容里,本 文以知識圖譜補全任務為中心,對相關的可解釋性方法進行梳理和總結。
1.2 可解釋性及其在知識推理中的必要性
目前學術界和工業界對于可解釋性沒有明確的數學定義[62] ,不同的研究者解決問題的角度不同,為 可解釋性賦予的涵義也不同,所提出的可解釋性方法也各有側重。目前被廣泛接受的一種定義由 Miller (2017)[2,42]所提出,指可解釋性是人們能夠理解決策原因的程度。如果一個模型比另一個模型的決策過程 更簡單、明了、易于理解,那么它就比另一個模型具有更高的可解釋性。
在某些情況下,我們不必關心模型為什么做出這樣的預測,因為它們是在低風險的環境中使用的,這 意味著錯誤不會造成嚴重后果(例如,電影推薦系統),但是對于某些問題或任務,僅僅獲得預測結果是 不夠的。該模型還必須解釋是怎么獲得這個預測的,因為正確的預測只部分地解決了原始問題。通常來說, 以下三點原因推動了對可解釋性的需求:
1、高可靠性要求。盡管可解釋性對于一些系統來說并不是不可或缺的,但是,對于某些需要高度可靠 的預測系統來說很重要,因為錯誤可能會導致災難性的結果(例如,人的生命、重大的經濟損失)。可解釋性可以使潛在的錯誤更容易被檢測到,避免嚴重的后果。此外,它可以幫助工程師查明根 本原因并相應地提供修復。可解釋性不會使模型更可靠或其性能更好,但它是構建高度可靠系統 的重要組成部分。
2、道德和法律要求。第一個要求是檢測算法歧視。由于機器學習技術的性質,經過訓練的深度神經網 絡可能會繼承訓練集中的偏差,這有時很難被注意到。在我們的日常生活中使用 DNN 時存在公 平性問題,例如抵押資格、信用和保險風險評估。人們要求算法能夠解釋作出特定預測或判斷的 原因,希望模型的解釋能夠使“算法歧視”的受害者訴諸人權。此外,推理模型目前也被用于新 藥的發現和設計[124] 。在藥物設計領域,除了臨床測試結果以外,新藥還需要通常還需要支持結 果的生物學機制,需要具備可解釋性才能獲得監管機構的批準,例如國家藥品監督管理局 (NMPA)。
3、科學發現的要求。推理模型本身應該成為知識的來源,可解釋性使提取模型捕獲的這些額外知識成 為可能。當深度網絡達到比舊模型更好的性能時,它們一定發現了一些未知的“知識”。可解釋性 是揭示這些知識的一種方式。
1.3 本文的劃分標準
根據不同的劃分標準,知識推理模型可以被劃分成不同的類別。其中,根據解釋產生的方法,可以將 推理模型劃分為兩大類:事前可解釋和事后可解釋[41,62,96,97,102,118]。其中,事前可解釋模型主要指不需要額 外的解釋方法,解釋蘊含在自身架構之中的模型。事后可解釋性是指模型訓練后運用解釋方法進行推理過 程和推理結果的解釋,解釋方法自身是不包含在模型里面的。一種方法被看作能夠對黑盒模型進行解釋, 是指該方法可以:(1)通過可解釋和透明的模型(例如,淺決策樹、規則列表或者稀疏線性模型)對模型 的行為進行近似,可以為模型提供全局的可解釋;(2)能夠解釋模型在特定輸入樣例上進行預測的原因;(3)可以對模型進行內部檢查,了解模型的某些特定屬性,譬如模型敏感性或深度學習中神經元在某一特 定決策中起到的作用[41] 。值得注意的是,可以將事后解釋方法應用于事前可解釋的模型上,例如,可以 從敏感性分析的角度對事前模型進行剖析。此外,根據可解釋的范圍大小----是否解釋單個實例預測或整個 模型行為,可以將模型劃分為局部可解釋和全局可解釋兩大類[97,96];根據解釋方法是否特定于模型,可以 將模型劃分為特定于模型和模型無關兩種類別[96] 。在接下來的內容里,本文按照解釋產生的方式,對知 識推理模型進行總結和歸類。
摘要:隨著自然語言處理(NLP)領域中預訓練技術的快速發展,將外部知識引入到預訓練語言模型的知識驅動方法在NLP任務中表現優異,知識表示學習和預訓練技術為知識融合的預訓練方法提供了理論依據。概述目前經典預訓練方法的相關研究成果,分析在新興預訓練技術支持下具有代表性的知識感知的預訓練語言模型,分別介紹引入不同外部知識的預訓練語言模型,并結合相關實驗數據評估知識感知的預訓練語言模型在NLP各個下游任務中的性能表現。在此基礎上,分析當前預訓練語言模型發展過程中所面臨的問題和挑戰,并對領域發展前景進行展望。
針對知識圖譜(KG)在知識驅動的人工智能研究中發揮的強大支撐作用,分析并總結了現有知識圖譜和知識超圖技術。首先,從知識圖譜的定義與發展歷程出發,介紹了知識圖譜的分類和架構;其次,對現有的知識表示與存儲方式進行了闡述;然后,基于知識圖譜的構建流程,分析了各類知識圖譜構建技術的研究現狀。特別是針對知識圖譜中的知識推理這一重要環節,分析了基于邏輯規則、嵌入表示和神經網絡的三類典型的知識推理方法。此外,以異構超圖引出知識超圖的研究進展,并提出三層架構的知識超圖,從而更好地表示和提取超關系特征,實現對超關系數據的建模及快速的知識推理。最后,總結了知識圖譜和知識超圖的典型應用場景并對未來的研究作出了展望。
隨著計算機科學相關領域研究的不斷深入,人工智能的 研究重心由感知智能轉向認知智能。專家系統和語義網絡作 為認知智能的早期代表,提出“將知識引入人工智能領域”,在 某些特定領域具備一定的問題解決能力,但仍存在規模較小、 自動化構建能力不足、知識獲取困難等一系列問題。知識圖譜(Knowledge Graph,KG)的出現,改變了傳統的 知識獲取模式,將知識工程“自上而下”方式轉變為挖掘數據、 抽取知識的“自下而上”方式。經過長期的理論創新與實踐探 索,知識圖譜已經具備體系化的構建與推理方法。然而,對于 實體關系,知識圖譜雖然有較強的建模能力,但難以表達普遍存在的多元關系。知識超圖通過引入超邊關系,能夠完整表 達各種復雜的關系類型,得到學術界和工業界的高度關注。此 外 ,知 識 圖 譜 和 知 識 超 圖 能 夠 結 合 深 度 學 習(Deep Learning,DL)等人工智能技術,實現高效推理。
近年來,知識圖譜問答在醫療、金融、政務等領域被廣泛應用。用戶不再滿足于關于實體屬性的單跳問答,而是更多地傾向表達復雜的多跳問答需求。為了應對上述復雜多跳問答,各種不同類型的推理方法被陸續提出。系統地介紹了基于嵌入、路徑、邏輯的多跳知識問答推理的最新研究進展以及相關數據集和評測指標,并重點圍繞前沿問題進行了討論。最后總結了現有方法的不足,并展望了未來的研究方向。
近些年,知識圖譜的構建技術得到了極大的發展,構建好的知識圖譜已經被應用到眾多領域。在此基礎上,研究者將目光從知識圖譜轉向事件圖譜。事件圖譜以事件為核心,準確地描述了事件信息以及事件之間的關聯關系。基于此,總結了事件圖譜在構建、推理與應用方面的關鍵技術,主要包括事件抽取、事件信息補全、事件關系推斷以及事件預測技術。給出了事件圖譜的具體應用場景,并且針對事件圖譜研究中存在的挑戰,對未來的研究趨勢進行了展望。
隨著信息技術的飛速發展,目前整個社會已經邁入了大數據時代。大數據時代下每時每刻都在產生龐大的數據。在龐大數據的背后,蘊含著眾多有價值的信息。但是由于數據種類繁多、數據量龐大,難以高效、準確地獲取有用的信息。為了更加高效地獲取數據背后的信息,提高獲取信息的效率,研究人員開始研究并使用自動化的工具從原始數據中抽取有價值的信息。這種自動化的技術被稱為信息抽取技術[1],可以極大地提高工作效率,節省時間。與此同時,由于信息抽取技術逐漸走向成熟,一種新的數據組織形式逐漸形成,實現了知識互聯,適應了用戶的認知需求,其被稱為知識圖譜。
知識圖譜的概念由Google公司在2012年正式提出[2],目的是提高搜索引擎的性能,提供更加友好的搜索結果。隨后知識圖譜在學術界受到了極大的關注,其構建技術也在飛速發展。目前,知識圖譜已經被廣泛地應用到知識問答、智能搜索、個性化推薦、軟件復用[3]、政府治理[4]等多個領域。隨著技術的不斷發展,現有研究內容已經從知識圖譜的實體識別[5]、關系抽取[6]技術擴展到了事件圖譜的構建與推理技術。事件圖譜刻畫了現實世界中發生的事件,對事件信息進行了準確描述。事件圖譜中蘊含眾多事件知識,事件知識的特點是擁有眾多維度,例如時間維度、邏輯維度、關系維度等。
本文對現有的關于事件知識的研究做了總結,從事件圖譜的構建、推理與應用3個方面闡述了相關技術的研究現狀。最后,本文展望了事件圖譜的發展方向。
近年來,深度學習技術得到了快速發展。在自然語言處理(NLP)任務中,隨著文本表征技術從詞級上升到了文檔級,利用大規模語料庫進行無監督預訓練的方式已被證明能夠有效提高模型在下游任務中的性能。首先,根據文本特征提取技術的發展,從詞級和文檔級對典型的模型進行了分析;其次,從預訓練目標任務和下游應用兩個階段,分析了當前預訓練模型的研究現狀,并對代表性的模型特點進行了梳理和歸納;最后,總結了當前預訓練模型發展所面臨的主要挑戰并提出了對未來的展望。
隨著網絡空間安全情報在網絡犯罪、網絡戰和網絡反恐等領域的作用日益凸顯,迫切需要對網絡空間安全情報的基本理論和綜合分析方法進行深入研究。當前,安全情報在實際應用中主要面臨著數據類型多樣、分布離散、內容不一致等問題,因此引入知識圖譜技術框架,旨在利用知識圖譜面向海量數據時信息收集及加工整合的思想,提高安全情報的收集效率、情報質量,同時拓展情報的使用范圍。本文首先簡要回顧安全情報和知識圖譜的研究現狀,同時介紹知識圖譜在安全領域的應用。其次給出面向安全情報的知識圖譜構建框架。然后介紹安全情報知識圖譜構建的關鍵技術,包括信息抽取、本體構建和知識推理等。最后,對安全情報知識圖譜發展面臨的問題進行了討論。
//jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20200505&flag=1
隨著大數據時代的到來,海量數據不斷涌現,從中尋找有用信息,抽取對應知識的需求變得越來越強烈。針對該需求,知識圖譜技術應運而生,并在實現知識互聯的過程中日益發揮重要作用。信息抽取作為構建知識圖譜的基礎技術,實現了從大規模數據中獲取結構化的命名實體及其屬性或關聯信息。同時,由于具有多樣化的實現方法,擴充了信息抽取技術的應用領域和場景,也提升了對信息抽取技術研究的價值和必要性的認可度。本文首先以知識圖譜的構建框架為背景。探討信息抽取研究的意義;然后從MUC、ACE和ICDM三個國際測評會議的角度回顧信息抽取的發展歷史;接著,基于面向限定域和開放域兩個方面,介紹信息抽取的關鍵技術,包括實體抽取技術、關系抽取技術和屬性抽取技術。
推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.