//www.manning.com/books/advanced-algorithms-and-data-structures
作為一名軟件工程師,您將遇到無數的編程挑戰,這些挑戰最初看起來令人困惑、困難甚至是不可能的。不要絕望!許多這些“新”問題已經有了完善的解決方案。高級算法和數據結構為您提供了強大的方法來應對各種棘手的編碼挑戰,您可以對這些挑戰進行調整并應用于自己的應用程序。本實用指南提供了經典、先進和新的算法的平衡混合,用新的視角和實踐技術升級您的編程工具箱。
《高級算法和數據結構》介紹了一系列算法,用于數據分析、機器學習和圖計算中的復雜編程挑戰。您將發現解決各種棘手情況的尖端方法。您甚至將學習為需要自定義解決方案的項目設計自己的數據結構。
第1部分著重于發現高級數據結構,這些結構允許您改進一些基本操作,例如跟蹤事物或事物組。關鍵是要習慣這樣一種思想,即對數據執行操作有多種方式,而最佳方式取決于上下文和需求。
第2部分介紹了搜索中的另一種特殊情況: 處理多維數據、索引該數據和執行空間查詢。我們將再次展示特別數據結構如何在使用基本搜索算法的基礎上提供巨大的改進。但是,本部分還描述了其他重要的主題:集群、高度利用空間查詢和分布式計算,特別是使用MapReduce編程模型。
第3部分主要關注單個數據結構和圖表,這將是介紹一些優化技術的共同主線,這些技術推動了當今的人工智能和大數據工作。
近年來,在所有科學學科和工業環境中,數據的數量和種類都出現了爆炸式增長。如此龐大的數據集給統計學和機器學習的研究人員帶來了許多挑戰。本書對高維統計領域進行了介紹,針對的是第一年的研究生水平。它包括的章節集中在核心方法論和理論-包括尾邊界,集中不等式,一致定律和經驗過程,和隨機矩陣-以及章節致力于深入探索特定的模型類-包括稀疏線性模型,矩陣模型與秩約束,圖形模型,以及各種類型的非參數模型。通過數百個工作示例和練習,本文旨在為課程和自學的研究生和研究人員在統計,機器學習,以及相關領域誰必須理解,應用和適應現代統計方法適合大規模數據。
//www.manning.com/books/graph-powered-machine-learning
機器學習的核心是有效地識別數據中的模式和關系。許多任務,例如查找詞匯之間的關聯以便您能夠做出準確的搜索建議,或者在社交網絡中定位具有相似興趣的個人,很自然地以圖Graph的形式表達出來。圖驅動機器學習教你如何使用基于圖形的算法和數據組織策略來開發高級的機器學習應用程序。
對這項技術
對于任何涉及到大型數據集中的模式匹配的任務,基于圖的機器學習都是一個非常強大的工具。應用程序包括安全問題,如識別欺詐或檢測網絡入侵,應用程序領域,如社交網絡或自然語言處理,以及更好的用戶體驗,通過準確的推薦和智能搜索。通過將數據組織和分析為圖形,您的應用程序可以更流暢地使用以圖形為中心的算法(如最近鄰算法或頁面排名算法),在這些算法中,快速識別和利用相關關系非常重要。現代圖形數據存儲(如Neo4j或Amazon Neptune)是支持圖形機器學習的現成工具。
關于這本書
圖驅動機器學習向您介紹圖技術概念,強調圖在機器學習和大數據平臺中的作用。您將深入了解各種技術,包括數據源建模、算法設計、鏈接分析、分類和集群。在掌握核心概念之后,您將探索三個端到端項目,它們將演示體系結構、最佳設計實踐、優化方法和常見缺陷。作者亞歷山德羅·內格羅在構建基于圖形的機器學習系統方面的豐富經驗在每一章中都有所體現,你可以從他與真實客戶合作的實例和具體場景中學習!
里面有什么
機器學習項目的生命周期 端到端應用程序 大數據平臺中的圖形 數據源建模 自然語言處理、推薦和相關搜索 優化方法
本書組織
這本書分為四部分,共12章。第一部分介紹了書中的主要主題,從通用機器學習和圖的概念開始,然后轉移到將這些概念結合起來的好處:
第一章介紹了機器學習和圖,涵蓋了理解以下章節所必需的基本概念。
第二章列舉了將大數據作為機器學習輸入的主要挑戰,并討論了如何使用圖模型和圖數據庫來處理這些挑戰。介紹了圖形數據庫的主要特點。
第三章詳細描述了圖在機器學習工作流中的作用,并描述了一個用于大規模圖處理的系統。
第2部分討論了幾個實際用例,在這些用例中,圖形支持了機器學習項目的開發,并改進了最終的結果,特別關注以下:
第四章介紹了最常見的推薦技術,并描述了如何為其中之一設計合適的圖模型:基于內容的推薦引擎。它詳細展示了如何將現有(非圖)數據集導入到圖模型中,并實現基于內容的工作推薦引擎。
第五章描述了如何為協同過濾方法設計合適的圖模型,以及如何實現充分工作的協同過濾推薦引擎。
第六章介紹了基于會話的推薦算法,并描述了一個能夠捕獲用戶會話數據的圖模型。它演示了如何將示例數據集導入到設計的模型中,并在其上實現一個真正的推薦引擎。
第七章通過一個考慮用戶上下文的推薦引擎的實現來驅動讀者。它描述了上下文感知推薦引擎的圖模型,并展示了如何將現有數據集導入到圖模型中。此外,本章還說明了如何在單個引擎中組合多種推薦方法。
第三部分討論了欺詐檢測:
第八章介紹了欺詐檢測,并描述了不同領域的不同類型的欺詐。它還規定了圖形在建模數據中的作用,以便更快更容易地揭示欺詐,以及一些用于打擊欺詐的簡單圖形模型中的技術和算法。
第九章轉向基于異常檢測的更高級的打擊欺詐的算法。它展示了如何使用圖來存儲和分析事務的k-NN,并識別異常事務。
第十章描述了如何使用社會網絡分析(SNA)對欺詐者和欺詐風險進行分類。它列出了基于SNA的欺詐分析的不同圖表算法,并展示了如何從數據中得出正確的圖表。
第四部分介紹了自然語言處理(NLP):
第十一章介紹了基于圖的自然語言處理的相關概念。特別地,它描述了一種通過NLP提取非結構化數據的隱藏結構來分解文本并將其存儲到圖中的簡單方法。
第十二章介紹了知識圖譜,詳細描述了如何從文本中提取實體和關系,并從中創建知識圖譜。它列出了知識圖譜使用的后處理技術,如語義網絡構建和自動主題抽取。
這本書通過探索計算機科學理論和機器學習雙方可以相互傳授的內容,將理論和機器學習聯系起來。它強調了對靈活、易于操作的模型的需求,這些模型更好地捕捉使機器學習變得容易的東西,而不是讓機器學習變得困難的東西。
理論計算機科學家將被介紹到機器學習的重要模型和該領域的主要問題。機器學習研究人員將以一種可訪問的格式介紹前沿研究,并熟悉現代算法工具包,包括矩法、張量分解和凸規劃松弛。
超越最壞情況分析的處理方法是建立對實踐中使用的方法的嚴格理解,并促進發現令人興奮的、解決長期存在的重要問題的新方法。
在這本書中,我們將涵蓋以下主題:
(a)非負矩陣分解
(b)主題建模
(c)張量分解
(d)稀疏恢復
(e)稀疏編碼
(f)學習混合模型
(g)矩陣補全
這本典型的數據結構課程,介紹了基本的數據結構和算法的集合,可以使用任何不同的編程語言進行教學。近年來,越來越多的學院開始采用Python語言向學生介紹編程和問題解決。與c++和Java等其他語言相比,Python提供了一些優勢,其中最重要的是Python有一個簡單的語法,更容易學習。本書通過為數據結構課程提供以Python為中心的文本,擴展了Python的使用。該語言干凈的語法和強大的特性貫穿始終,但這些特性的底層機制也得到了充分的探索,不僅揭示了“魔力”,而且研究了它們的總體效率。正文由14章和4個附錄組成。前四章介紹了與抽象數據類型、數據結構和算法相關的基本概念。后面的章節將在這些早期概念的基礎上介紹更高級的主題,并向學生介紹更多的抽象數據類型和更高級的數據結構。這本書包含了幾個主題的線索,在整個文本中,主題是重新訪問在不同的章節作為適當的。
這本書的目的是全面概述在算法的數學分析中使用的主要技術。涵蓋的材料從經典的數學主題,包括離散數學,基本的真實分析,和組合學,以及從經典的計算機科學主題,包括算法和數據結構。重點是“平均情況”或“概率”分析,但也涵蓋了“最壞情況”或“復雜性”分析所需的基本數學工具。我們假設讀者對計算機科學和實際分析的基本概念有一定的熟悉。簡而言之,讀者應該既能寫程序,又能證明定理。否則,這本書是自成一體的。
這本書是用來作為算法分析高級課程的教科書。它也可以用于計算機科學家的離散數學課程,因為它涵蓋了離散數學的基本技術,以及組合學和重要的離散結構的基本性質,在計算機科學學生熟悉的背景下。傳統的做法是在這類課程中有更廣泛的覆蓋面,但許多教師可能會發現,這里的方法是一種有用的方式,可以讓學生參與到大量的材料中。這本書也可以用來向數學和應用數學的學生介紹與算法和數據結構相關的計算機科學原理。
盡管有大量關于算法數學分析的文獻,但該領域的學生和研究人員尚未直接獲得廣泛使用的方法和模型的基本信息。本書旨在解決這種情況,匯集了大量的材料,旨在為讀者提供該領域的挑戰的欣賞和學習正在開發的先進工具以應對這些挑戰所需的背景知識。補充的論文從文獻,這本書可以作為基礎的介紹性研究生課程的算法分析,或作為一個參考或基礎的研究人員在數學或計算機科學誰想要獲得這個領域的文獻自學。
第 1 章:算法 分析考慮算法分析的一般動機以及研究算法性能特征的各種方法之間的關系。
第 2 章:遞歸關系 專注于各種類型的 遞歸關系的基本數學屬性,這些遞歸關系在通過從程序的遞歸表示到描述其屬性的函數的遞歸表示的直接映射來分析算法時經常出現。
第 3 章:生成函數 在算法的平均情況分析中介紹了一個核心概念:生成函數 ——作為我們研究對象的算法與發現其屬性所必需的分析方法之間的必要且自然的聯系。
第 4 章:漸近逼近 研究了推導問題的近似解或逼近精確解的方法,這使我們能夠 在分析算法時對感興趣的數量進行 簡潔而精確的估計。
第 5 章:分析組合 學介紹了一種研究組合結構的現代方法,其中生成函數是研究的中心對象。這種方法是通過本書其余部分研究特定結構的基礎。
第 6 章:樹 研究了許多不同類型的 樹的屬性,以及在許多實際算法中隱含和顯式出現的基本結構。我們的目標是提供對樹組合分析的廣泛文獻結果的訪問,同時為大量算法應用提供基礎。
第 7 章:排列 調查了排列的組合屬性(數字1到N的排序),并展示了它們如何以自然的方式與基本的和廣泛使用的排序算法相關聯。
第 8 章:字符串和嘗試 研究 字符串、字符序列或從固定字母表中提取的字母的基本組合屬性,并介紹處理字符串的算法,從計算理論核心的基本方法到實用的文本處理方法重要應用程序的主機。
第 9 章:單詞和映射 涵蓋單詞的全局屬性( 來自M 字母字母表的 N 字母字符串),這些屬性在經典組合學(因為它們模擬獨立伯努利試驗的序列)和經典應用算法(因為它們散列算法的模型輸入序列)。本章還涵蓋了隨機映射 ( N個字母表中的N個字母單詞),并討論了與樹和排列的關系。
高效數據結構的設計和分析長期以來被認為是計算機領域的一個重要學科,是計算機科學和計算機工程本科學位的核心課程的一部分。Python中的數據結構和算法介紹了數據結構和算法,包括它們的設計、分析和實現。本書適用于入門級數據結構課程,或中級算法入門課程。我們將在本序言后面更詳細地討論它在此類課程中的使用。
為了促進魯棒的和可重用的軟件的開發,我們試圖在整本書中采取一致的面向對象的觀點。面向對象方法的主要思想之一是,數據應該被封裝在訪問和修改它們的方法中。也就是說,不是簡單地將數據看作字節和地址的集合,而是將數據對象看作抽象數據類型(ADT)的實例,ADT包含了對這種類型的數據對象執行操作的一整套方法。然后我們強調,對于特定的ADT可能有幾種不同的實現策略,并探討這些選擇的優缺點。我們為幾乎所有討論過的數據結構和算法提供了完整的Python實現,我們還引入了重要的面向對象設計模式,將這些實現組織成可重用的組件。
我們書的讀者期望的結果包括: 他們了解最常見的數據集合抽象(如堆棧、隊列、列表、樹、地圖)。 他們理解算法產生有效的實現策略常見的數據結構。 他們可以從理論上和實驗上分析算法性能,并識別競爭策略之間的共同權衡。 他們可以明智地使用現代編程語言庫中現有的數據結構和算法。 他們有處理大多數基本數據結構和算法的具體實現的經驗。 他們可以運用數據結構和算法來解決復雜的問題。
//www.wiley.com/en-us/Data+Structures+and+Algorithms+in+Python-p-9781118290279
《數據科學與機器學習概論》的創建目標是為尋求了解數據科學的初學者、數據愛好者和經驗豐富的數據專業人士提供從頭到尾對使用開源編程進行數據科學應用開發的深刻理解。這本書分為四個部分: 第一部分包含對這本書的介紹,第二部分涵蓋了數據科學、軟件開發和基于開源嵌入式硬件的領域; 第三部分包括算法,是數據科學應用的決策引擎; 最后一節匯集了前三節中共享的概念,并提供了幾個數據科學應用程序示例。
^
By Pakize Erdogmus and Fatih Kayaalp
By Deanne Larson
數據科學和大數據項目的數量正在增長,當前的軟件開發方法受到了挑戰,以支持和促進這些項目的成功和頻率。關于如何使用數據科學算法以及大數據的好處已經有了很多研究,但是關于可以利用哪些最佳實踐來加速和有效地交付數據科學和大數據項目的研究卻很少。大數據的數量、種類、速度和準確性等特點使這些項目復雜化。數據科學家可利用的開源技術的激增也會使情況變得復雜。隨著數據科學和大數據項目的增加,組織正在努力成功交付。本文討論了數據科學和大數據項目過程,過程中的差距,最佳實踐,以及這些最佳實踐如何在Python中應用,Python是一種常見的數據科學開源編程語言。
正如人們所期望的那樣,技術書籍的大部分時間都集中在技術方面。然而,這造成了一種錯覺,即技術在某種程度上是沒有偏見的,總是中性的,因此適合每個人。后來,當產品已經存在時,現實會證明我們不是這樣的。包含和表示在設計和建模階段是至關重要的。在本章中,我們將從架構的角度分析,哪些非功能性需求是最敏感的,以及如何開始討論它們以最大限度地提高我們的軟件產品成功的可能性。
Embedded Systems Based on Open Source Platforms By Zlatko Bundalo and Dusanka Bundalo
The K-Means Algorithm Evolution By Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar
“Set of Strings” Framework for Big Data Modeling By Igor Sheremet
Investigation of Fuzzy Inductive Modeling Method in Forecasting Problems By Yu. Zaychenko and Helen Zaychenko
Segmenting Images Using Hybridization of K-Means and Fuzzy C-Means Algorithms By Raja Kishor Duggirala
The Software to the Soft Target Assessment By Lucia Mrazkova Duricova, Martin Hromada and Jan Mrazek
The Methodological Standard to the Assessment of the Traffic Simulation in Real Time By Jan Mrazek, Martin Hromada and Lucia Duricova Mrazkova
Augmented Post Systems: Syntax, Semantics, and Applications By Igor Sheremet
Serialization in Object-Oriented Programming Languages By Konrad Grochowski, Micha? Breiter and Robert Nowak
本章描述了將對象狀態轉換為一種格式的過程,這種格式可以在當前使用的面向對象編程語言中傳輸或存儲。這個過程稱為序列化(封送處理);相反的稱為反序列化(反編組)進程。它是一種低級技術,應該考慮一些技術問題,如內存表示的大小、數字表示、對象引用、遞歸對象連接等。在本章中,我們將討論這些問題并給出解決辦法。我們還簡要回顧了當前使用的工具,并指出滿足所有需求是不可能的。最后,我們提供了一個新的支持向前兼容性的c++庫。
Manning最暢銷的Java 8書籍已經被修訂為Java 9和Java 10!在Modern Java In Action中,讀者可以使用最新的特性和技術,在已有的Java語言技能的基礎上進行構建。
Java 9的發布建立在Java 8令人激動的基礎之上。除了Java 8的lambdas和streams之外,Java 9還添加了許多自己的新特性。它包含了新的庫特性來支持響應式編程,這為用戶提供了一種新的方式來思考編程和編寫更易于閱讀和維護的代碼。
數據結構和算法的更新、創新方法
這個權威的指南由其領域的專家組成的作者團隊編寫,它甚至解釋了最困難的數學概念,這樣您就可以清楚地理解c++中的數據結構和算法。
權威的作者團隊采用面向對象的設計范式,使用c++作為實現語言,同時還提供基本算法的直覺和分析。
本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。
這個備忘單有兩個顯著的優點:
清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。
更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。