亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這本書的目的是全面概述在算法的數學分析中使用的主要技術。涵蓋的材料從經典的數學主題,包括離散數學,基本的真實分析,和組合學,以及從經典的計算機科學主題,包括算法和數據結構。重點是“平均情況”或“概率”分析,但也涵蓋了“最壞情況”或“復雜性”分析所需的基本數學工具。我們假設讀者對計算機科學和實際分析的基本概念有一定的熟悉。簡而言之,讀者應該既能寫程序,又能證明定理。否則,這本書是自成一體的。

這本書是用來作為算法分析高級課程的教科書。它也可以用于計算機科學家的離散數學課程,因為它涵蓋了離散數學的基本技術,以及組合學和重要的離散結構的基本性質,在計算機科學學生熟悉的背景下。傳統的做法是在這類課程中有更廣泛的覆蓋面,但許多教師可能會發現,這里的方法是一種有用的方式,可以讓學生參與到大量的材料中。這本書也可以用來向數學和應用數學的學生介紹與算法和數據結構相關的計算機科學原理。

盡管有大量關于算法數學分析的文獻,但該領域的學生和研究人員尚未直接獲得廣泛使用的方法和模型的基本信息。本書旨在解決這種情況,匯集了大量的材料,旨在為讀者提供該領域的挑戰的欣賞和學習正在開發的先進工具以應對這些挑戰所需的背景知識。補充的論文從文獻,這本書可以作為基礎的介紹性研究生課程的算法分析,或作為一個參考或基礎的研究人員在數學或計算機科學誰想要獲得這個領域的文獻自學。

第 1 章:算法 分析考慮算法分析的一般動機以及研究算法性能特征的各種方法之間的關系。

第 2 章:遞歸關系 專注于各種類型的 遞歸關系的基本數學屬性,這些遞歸關系在通過從程序的遞歸表示到描述其屬性的函數的遞歸表示的直接映射來分析算法時經常出現。

第 3 章:生成函數 在算法的平均情況分析中介紹了一個核心概念:生成函數 ——作為我們研究對象的算法與發現其屬性所必需的分析方法之間的必要且自然的聯系。

第 4 章:漸近逼近 研究了推導問題的近似解或逼近精確解的方法,這使我們能夠 在分析算法時對感興趣的數量進行 簡潔而精確的估計。

第 5 章:分析組合 學介紹了一種研究組合結構的現代方法,其中生成函數是研究的中心對象。這種方法是通過本書其余部分研究特定結構的基礎。

第 6 章:樹 研究了許多不同類型的 樹的屬性,以及在許多實際算法中隱含和顯式出現的基本結構。我們的目標是提供對樹組合分析的廣泛文獻結果的訪問,同時為大量算法應用提供基礎。

第 7 章:排列 調查了排列的組合屬性(數字1到N的排序),并展示了它們如何以自然的方式與基本的和廣泛使用的排序算法相關聯。

第 8 章:字符串和嘗試 研究 字符串、字符序列或從固定字母表中提取的字母的基本組合屬性,并介紹處理字符串的算法,從計算理論核心的基本方法到實用的文本處理方法重要應用程序的主機。

第 9 章:單詞和映射 涵蓋單詞的全局屬性( 來自M 字母字母表的 N 字母字符串),這些屬性在經典組合學(因為它們模擬獨立伯努利試驗的序列)和經典應用算法(因為它們散列算法的模型輸入序列)。本章還涵蓋了隨機映射 ( N個字母表中的N個字母單詞),并討論了與樹和排列的關系。

付費5元查看完整內容

相關內容

在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。

//www0.cs.ucl.ac.uk/staff/d.barber/brml/

本書結構

本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。

第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。

付費5元查看完整內容

這本書的第三版繼續演示如何應用概率論,以獲得洞察到真實的,日常統計問題和情況。這種方法最終導致了對統計程序和策略的直觀理解,最常用的是實踐工程師和科學家。這本書是為統計學或概率和統計的入門課程而寫的,為工程、計算機科學、數學、統計學和自然科學的學生而寫。因此,它假定你有初等微積分知識。

第一章簡要介紹統計學,介紹它的兩個分支,描述性統計和推理統計學,并簡要介紹該學科的歷史和一些人的早期工作為今天所做的工作奠定了基礎。描述性統計的主題將在第二章中討論。描述數據集的圖和表在本章中給出,以及用于總結數據集某些關鍵屬性的數量。要想從數據中得出結論,就必須了解數據的來源。例如,通常假設數據是來自某些總體的“隨機樣本”。為了準確理解這意味著什么,以及將樣本數據屬性與總體屬性相關聯的結果是什么,有必要對概率有一些了解,這是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。我們的概率研究將在第四章繼續,這一章涉及隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常出現的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正態、均勻、伽馬、卡方、t和F等隨機變量。在第6章中,我們研究了樣本均值和樣本方差等抽樣統計量的概率分布。我們將展示如何使用一個著名的概率理論結果,即中心極限定理,來近似樣本均值的概率分布。此外,我們還介紹了關節基礎數據來自正態分布總體的重要特殊情況下的樣本均值和樣本方差的概率分布。第7章展示了如何使用數據來估計感興趣的參數。第8章介紹了統計假設檢驗的重要主題,它涉及到使用數據來檢驗特定假設的可信性。第9章討論回歸的重要課題。簡單線性回歸(包括回歸到均值、殘差分析和加權最小二乘等子主題)和多元線性回歸都被考慮在內。第10章是方差分析。考慮了單向和雙向(有或沒有交互的可能性)問題。第11章是關于擬合優度檢驗,它可以用來檢驗所提出的模型是否與數據一致。文中給出了經典的卡方擬合優度檢驗,并將其應用于列聯表的獨立性檢驗。本章的最后一節介紹了Kolmogorov-Smirnov程序,用于測試數據是否來自特定的連續概率分布。第12章討論了非參數假設檢驗,當人們無法假設潛在的分布具有某些特定的參數形式(如正態分布)時,可以使用非參數假設檢驗。第13章考慮質量控制的主題,一個關鍵的統計技術在制造和生產過程。我們考慮了各種控制圖,不僅包括休哈特控制圖,還包括基于移動平均線和累積總和的更復雜的控制圖。第14章討論與壽命試驗有關的問題。在本章中,指數分布,而不是正態分布,起著關鍵作用。

付費5元查看完整內容

//www.worldscientific.com/page/pressroom/2018-07-31-01

這本書提供了一個機器學習和數據挖掘領域的數學分析。典型的計算機科學數學課程的數學分析部分省略了這些非常重要的思想和技術,這些思想和技術對于機器學習的專門領域是不可缺少的,以優化為中心,如支持向量機,神經網絡,各種類型的回歸,特征選擇和聚類。本書適用于研究者和研究生,他們將從書中討論的這些應用領域獲益。

數學分析可以被松散地描述為數學的一個領域,其主要對象是研究函數及其關于極限的行為。術語“函數”指的是實參數實函數的廣義集合,包括函數、運算符、測度等。在數學分析中,有幾個發展良好的領域對機器學習產生了特殊的興趣:拓撲(具有不同的風格:點集拓撲、組合拓撲和代數拓撲),賦范和內積空間的泛函分析(包括巴拿赫和希爾伯特空間),凸分析,優化,等等。此外,像測量和集成理論這樣的學科在統計學中發揮著至關重要的作用,這是機器學習的另一個支柱,在計算機科學家的教育中缺乏。我們的目標是為縮小這一差距做出貢獻,這是對研究感興趣的人的一個嚴重障礙。機器學習和數據挖掘文獻非常廣泛,包括各種各樣的方法,從非正式的到復雜的數學展示。然而,接近研究主題所需要的必要的數學背景通常以一種簡潔和無動機的方式呈現,或者干脆就不存在。本卷機器學習的通常介紹,并提供(通過其應用章節,討論優化,迭代算法,神經網絡,回歸,和支持向量機)的數學方面的研究。

付費5元查看完整內容

大量大維度數據是現代機器學習(ML)的默認設置。標準的ML算法,從支持向量機這樣的內核方法和基于圖的方法(如PageRank算法)開始,最初的設計是基于小維度的,在處理真實世界的大數據集時,即使不是完全崩潰的話,往往會表現失常。隨機矩陣理論最近提出了一系列廣泛的工具來幫助理解這種新的維數詛咒,幫助修復或完全重建次優算法,最重要的是提供了處理現代數據挖掘的新方向。本編著的主要目的是提供這些直覺,通過提供一個最近的理論和應用突破的隨機矩陣理論到機器學習摘要。針對廣泛的受眾,從對統計學習感興趣的本科生到人工智能工程師和研究人員,這本書的數學先決條件是最小的(概率論、線性代數和真實和復雜分析的基礎是足夠的):與隨機矩陣理論和大維度統計的數學文獻中的介紹性書籍不同,這里的理論重點僅限于機器學習應用的基本要求。這些應用范圍從檢測、統計推斷和估計,到基于圖和核的監督、半監督和非監督分類,以及神經網絡: 為此,本文提供了對算法性能的精確理論預測(在不采用隨機矩陣分析時往往難以實現)、大維度的洞察力、改進方法,以及對這些方法廣泛適用于真實數據的基本論證。該專著中提出的大多數方法、算法和圖形都是用MATLAB和Python編寫的,讀者可以查閱(//github.com/Zhenyu-LIAO/RMT4ML)。本專著也包含一系列練習兩種類型:短的練習與修正附加到書的最后讓讀者熟悉隨機矩陣的基本理論概念和工具分析,以及長期指導練習應用這些工具進一步具體的機器學習應用程序。

付費5元查看完整內容

《量子信息理論》這本書基本上是自成體系的,主要關注構成這門學科基礎的基本事實的精確數學公式和證明。它是為研究生和研究人員在數學,計算機科學,理論物理學尋求發展一個全面的理解關鍵結果,證明技術,和方法,與量子信息和計算理論的廣泛研究主題相關。本書對基礎數學,包括線性代數,數學分析和概率論有一定的理解。第一章總結了這些必要的數學先決條件,并從這個基礎開始,這本書包括清晰和完整的證明它提出的所有結果。接下來的每一章都包含了具有挑戰性的練習,旨在幫助讀者發展自己的技能,發現關于量子信息理論的證明。

這是一本關于量子信息的數學理論的書,專注于定義、定理和證明的正式介紹。它主要是為對量子信息和計算有一定了解的研究生和研究人員準備的,比如將在本科生或研究生的入門課程中涵蓋,或在目前存在的關于該主題的幾本書中的一本中。量子信息科學近年來有了爆炸性的發展,特別是在過去的二十年里。對這個問題的全面處理,即使局限于理論方面,也肯定需要一系列的書,而不僅僅是一本書。與這一事實相一致的是,本文所涉及的主題的選擇并不打算完全代表該主題。量子糾錯和容錯,量子算法和復雜性理論,量子密碼學,和拓撲量子計算是在量子信息科學的理論分支中發現的許多有趣的和基本的主題,在這本書中沒有涵蓋。然而,當學習這些主題時,人們很可能會遇到本書中討論的一些核心數學概念。

//www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

付費5元查看完整內容

我的目標是撰寫一本既可以作為教程又能夠參考的書。這本書最初是為我在Mount St. Mary大學的編程入門課上的學生準備的大約30頁筆記。這些學生中大多數沒有編程經驗,這促使我改進方法。我省略了很多技術細節,有時我過度簡化了事情。其中一些細節在書的后面被補充,盡管其他細節從未被補充。但是這本書并不打算涵蓋所有內容,我推薦閱讀其他書籍和Python文檔來填補這些空白。

這本書第一部分的大部分內容都是基礎。前四章非常重要。第五章是有用的,但不是所有的都是關鍵的。第6章(字符串)應該在第7章(列表)之前完成。第8章包含一些更高級的列表主題。雖然這些內容都很有趣,也很有用,但大部分內容都可以跳過。特別是,那一章涵蓋了列表理解,我在書中后面會大量使用。雖然您可以不使用列表理解,但它們提供了一種優雅而有效的做事方式。第9章(while循環)很重要。第10章包含了各種各樣的主題,它們都很有用,但是如果需要的話,可以跳過很多。第一部分的最后四章是關于字典、文本文件、函數和面向對象編程的。

第二部分是關于圖形的,主要是用Tkinter進行GUI編程。您可以很快地使用Tkinter編寫一些很好的程序。例如,第15.7節呈現了一款20行的井字游戲。第二部分的最后一章介紹了一些關于Python圖像庫的內容。

第三部分包含了許多您可以用Python做的有趣的事情。如果你要圍繞這本書組織一個學期的課程,你可能想在第三部分中選擇一些主題來復習。這本書的這一部分也可以作為一個參考或作為一個地方,有興趣和積極的學生學習更多。書中這一部分的所有主題都是我在某一點或另一點上發現有用的東西。雖然這本書是為入門編程課程而設計的,但是對于那些有編程經驗想要學習Python的人來說,這本書也很有用。如果你是這些人中的一員,你應該能夠輕松地讀完前幾章。您應該發現,第2部分對GUI編程進行了簡明而非膚淺的論述。第三部分包含了關于Python特性的信息,這些特性允許您用很少的代碼完成大任務。

付費5元查看完整內容

本書是信息論領域中一本簡明易懂的教材。主要內容包括:熵、信源、信道容量、率失真、數據壓縮與編碼理論和復雜度理論等方面的介紹。

本書還對網絡信息論和假設檢驗等進行了介紹,并且以賽馬模型為出發點,將對證券市場研究納入了信息論的框架,從新的視角給投資組合的研究帶來了全新的投資理念和研究技巧。

本書適合作為電子工程、統計學以及電信方面的高年級本科生和研究生的信息論基礎教程教材,也可供研究人員和專業人士參考。

本書是一本簡明易懂的信息論教材。正如愛因斯坦所說:“凡事應該盡可能使其簡單到不能再簡單為止。''雖然我們沒有深人考證過該引語的來源(據說最初是在幸運蛋卷中發現的),但我們自始至終都將這種觀點貫穿到本書的寫作中。信息論中的確有這樣一些關鍵的思想和技巧,一旦掌握了它們、不僅使信息論的主題簡明,而且在處理新問題時提供重要的直覺。本書來自使用了十多年的信息論講義,原講義是信息論課程的高年級本科生和一年級研究生兩學期用的教材。本書打算作為通信理論.計算機科學和統計學專業學生學習信息論的教材。

信息論中有兩個簡明要點。第一,熵與互信息這樣的特殊量是為了解答基本問題而產生的。例如,熵是隨機變量的最小描述復雜度,互信息是度量在噪聲背景下的通信速率。另外,我們在以后還會提到,互信息相當于已知邊信息條件下財富雙倍的增長。第二,回答信息理論問邀的答案具有自然的代數結構。例如,熵具有鏈式法則,因而,謫和互信息也是相關的。因此,數據壓縮和通信中的問題得到廣泛的解釋。我們都有這樣的感受,當研究某個問題時,往往歷經大量的代數運算推理得到了結果,但此時沒有真正了解問題的全莪,最終是通過反復觀察結果,才對整個問題有完整、明確的認識。所以,對一個問題的全面理解,不是靠推理,而是靠對結果的觀察。要更具體地說明這一點,物理學中的牛頓三大定律和薛定諤波動方程也許是最合適的例子。誰曾預見過薛定諤波動方程后來會有如此令人敬畏的哲學解釋呢?

在本書中,我們常會在著眼于問題之前,先了解一下答案的性質。比如第2章中,我們定義熵、相對熵和互信息,研究它們之間的關系,再對這些關系作一點解釋·由此揭示如何融會貫通地使用各式各樣的方法解決實際問題。同理,我們順便探討熱力學第二定律的含義。熵總是增加嗎?答案既肯定也否定。這種結果會令專家感興趣,但初學者或i午認為這是必然的而不會深人考慮。

在實際教學中.教師往往會加人一自己的見解。事實上,尋找無人知道的證明或者有所創新的結果是一件很愉快的事情。如果有人將新的思想和已經證明的內容在課堂上講解給學生,那么不僅學生會積極反饋“對,對,對六而且會大大地提升教授該課程的樂崆我們正是這樣從研究本教材的許多新想法中獲得樂趣的。

本書加人的新素材實例包括信息論與博弈之間的關系,馬爾可夫鏈背景下熱力學第二定律的普遍性問題,信道容量定理的聯合典型性證明,赫夫曼碼的競爭最優性,以及關于最大熵譜密度估計的伯格(回定理的證明。科爾莫戈羅夫復雜度這一章也是本書的獨到之處。面將費希爾信息,互信息、中心極限定理以及布倫一閔可夫斯基不等式與熵冪不等式聯系在一起,也是我們引以為豪之處。令我們感到驚訝的是.關于行列式不等式的許多經典結論,當利用信息論不等式后會很容易得到證明。

自從香農的奠基性論文面世以來,盡管信息論已有了相當大的發展,但我們還是要努力強調它的連貫性。雖然香農創立信息論時受到通信理論中的問題啟發,然而我們認為信息論是一門獨立的學科,可應用于通信理論和統計學中。我們將信息論作為一個學科領域從通信理論、概率論和統計學的背景中獨立出來因為明顯不可能從這些學科中獲得難以理解的信息概念。由于本書中絕大多數結論以定理和證明的形式給出,所以,我們期望通過對這些定理的巧妙證明能說明這些結論的完美性。一般來講,我們在介紹問題之前先描述回題的解的性質,而這些很有的性質會使接下來的證明順理成章。

使用不等式串、中間不加任何文字、最后直接加以解釋,是我們在表述方式上的一項創新希望讀者學習我們所給的證明過程達到一定數量時,在沒有任何解釋的情況下就能理解其中的大部分步,并自己給出所需的解釋這些不等式串好比模擬到試題,讀者可以通過它們確認自己是否已掌握證明那些重要定理的必備知識。這些證明過程的自然流程是如此引人注目,以至于導致我們輕視了寫作技巧中的某條重要原則。由于沒有多余的話,因而突出了思路的邏輯性與主題思想u我們希望當讀者閱讀完本書后,能夠與我們共同分亨我們所推崇的,具有優美、簡潔和自然風格的信息論。

本書廣泛使用弱的典型序列的方法,此概念可以追溯到香農1948年的創造性工作,而它真正得到發展是在20世紀70年代初期。其中的主要思想就是所謂的漸近均分性(AEP),或許可以粗略地說成“幾乎一切事情都是等可能的"

第2章闡述了熵、相對熵和互信息之同的基本代數關系。漸近均分性是第3章重中之重的內容,這也使我們將隨機過程和數據壓縮的熵率分別放在第4章和第5章中論述。第6章介紹博弈,研究了數據壓縮的對偶性和財富的增長率。可作為對信息論進行理性思考基礎的科爾莫戈羅夫復雜度,擁有著巨大的成果,放在第14章中論述。我們的目標是尋找一個通用的最矩描述,而不是平均意義下的次佳描述。的確存在這樣的普遍性概念用來刻畫一個對象的復雜度。該章也論述了神奇數0,揭示數學上的不少奧秘,是圖靈機停止運轉概率的推廣。第7章論述信道容量定理。第8章敘述微分熵的必需知識,它們是將早期容量定理推廣到連續噪聲信道的基礎。基本的高斯信道容量問題在第9章中論述。第il章闡述信息論和統計學之間的關系,20世紀年代初期庫爾貝克首次對此進行了研究,此后相對被忽視。由于率失真理論比無噪聲數據壓縮理論需要更多的背景知識,因而將其放置在正文中比較靠后的第10章。

網絡信息理論是個大的主題,安排在第巧章,主要研究的是噪聲和干擾存在情形下的同時可達的信息流。有許多新的思想在網絡信息理論中開始活躍起來,其主要新要素有干擾和反饋第16章講述股票市場,這是第6章所討論的博弈的推廣,也再次表明了信息論和博弈之間的緊密聯系。第17章講述信息論中的不等式,我們借此一隅把散布于全書中的有趣不等式重新收攏在一個新的框架中,再加上一些關于隨機抽取子集熵率的有趣新不等式。集合和的體積的布倫一閔可夫斯基不等式,獨立隨機變量之和的有效方差的熵冪不等式以及費希爾信息不等式之間的美妙關系也將在此章中得到詳盡的闡述。

本書力求推理嚴密,因此對數學的要求相當高·要求讀者至少學過一學期的概率論課程且有扎實的數學背景,大致為本科高年級或研究生一年級水平。盡管如此,我們還是努力避免使用測度論。因為了解它只對第16章中的遍歷過程的AEP的證明過程起到簡化作用。這符合我們的觀點,那就是信息論基礎與技巧不同,后者才需要將所有推廣都寫進去。

本書的主體是第2,3,4,5,7,8,9,10,11和巧章,它們自成體系,讀懂了它們就可以對信息論有很好的理解。但在我們看來,第14章的科爾莫戈羅夫復雜度是深人理解信息論所需的必備知識。余下的幾章,從博弈到不等式.目的是使主題更加連貫和完美。

付費5元查看完整內容

數據挖掘和機器學習的基本算法構成了數據科學的基礎,利用自動化方法分析各種數據的模式和模型,應用范圍從科學發現到商業分析。本教材面向本科和研究生課程,全面深入地介紹了數據挖掘、機器學習和統計學,為學生、研究人員和實踐者提供了堅實的指導。這本書奠定了數據分析、模式挖掘、聚類、分類和回歸的基礎,集中在算法和潛在的代數、幾何和概率概念上。新的第二版是一個完整的部分致力于回歸方法,包括神經網絡和深度學習。

  • 涵蓋核心方法和前沿研究,包括深度學習

  • 提供了一種基于開源實現的算法方法

  • 包含了經過類測試的例子和練習,允許課程設計的靈活性和現成的參考

數據挖掘和機器學習使人能夠從數據中獲得基本的見解和知識。它們允許發現深刻的、有趣的和新穎的模式,以及從大規模數據中描述的、可理解的和可預測的模型。在這個領域有幾本好書,但其中很多不是太高級就是太高級。這本書是一個介紹性的文本,奠定了機器學習和數據挖掘的基本概念和算法的基礎。重要的概念在第一次遇到時就會被解釋,并附有詳細的步驟和推導。本書的主要目標是通過對數據和方法的幾何、(線性)代數和概率解釋的相互作用,建立公式背后的直覺。這第二版在回歸上增加了一個完整的新部分,包括線性和邏輯回歸,神經網絡,和深度學習。其他章節的內容也進行了更新,已知的勘誤表也得到了修正。本書的主要部分包括數據分析基礎、頻繁模式挖掘、聚類、分類和回歸。這些課程涵蓋了核心方法以及尖端主題,如深度學習、核方法、高維數據分析和圖分析。

深度學習,核方法,高維數據分析,圖分析。這本書包括許多例子來說明概念和算法。它也有結束語練習,在課堂上使用過。書中所有的算法都是由作者實現的。為了幫助實際理解,我們建議讀者自己實現這些算法(例如,使用Python或R)。如幻燈片、數據集和視頻等補充資源可以在該書的同伴站點在線獲得:

//dataminingbook.info

目錄內容: Front Matter Contents Preface

PART I. DATA ANALYSIS FOUNDATIONS

1 Data Mining and Analysis 2 Numeric Attributes 3 Categorical Attributes 4 Graph Data 5 Kernel Methods 6 High-dimensional Data 7 Dimensionality Reduction

PART II. FREQUENT PATTERN MINING

8 Itemset Mining 9 Summarizing Itemsets 10 Sequence Mining 11 Graph Pattern Mining 12 Pattern and Rule Assessment

PART III. CLUSTERING

13 Representative-based Clustering 14 Hierarchical Clustering 15 Density-based Clustering 16 Spectral and Graph Clustering 17 Clustering Validation PART IV. CLASSIFICATION

18 Probabilistic Classification 19 Decision Tree Classifier 20 Linear Discriminant Analysis 21 Support Vector Machines 22 Classification Assessment

PART V. REGRESSION

23 Linear Regression 24 Logistic Regression 25 Neural Networks 26 Deep Learning 27 Regression Evaluation

Index

圖片

付費5元查看完整內容

如果您是用Python編程的新手,并且正在尋找可靠的介紹,那么這本書就是為您準備的。由計算機科學教師開發,在“為絕對初學者”系列叢書通過簡單的游戲創造教授編程的原則。您將獲得實際的Python編程應用程序所需的技能,并將了解如何在真實場景中使用這些技能。在整個章節中,你會發現一些代碼示例來說明所提出的概念。在每一章的結尾,你會發現一個完整的游戲,展示了這一章的關鍵思想,一章的總結,以及一系列的挑戰來測試你的新知識。當你讀完這本書的時候,你將非常精通Python,并且能夠將你所學到的基本編程原理應用到你要處理的下一種編程語言。

付費5元查看完整內容

本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。

這個備忘單有兩個顯著的優點:

  1. 清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。

  2. 更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。

付費5元查看完整內容
北京阿比特科技有限公司