亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。

//www0.cs.ucl.ac.uk/staff/d.barber/brml/

本書結構

本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。

第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。

付費5元查看完整內容

相關內容

本書從根本上重新思考了概率論和統計學第一課的微積分。我們提供廣度優先的方法,其中概率論和統計的要點可以在一個學期教授。通過模擬、數據爭論、可視化和統計程序,統計編程語言R在全文中扮演著核心角色。在示例和練習中使用了來自各種來源的數據集,包括許多來自最近的開放源代碼科學文章的數據集。通過模擬給出了重要事實的證明,也有一些正式的數學證明。

這本書是學習數據科學,統計,工程,計算機科學,數學,科學,商業的學生的一個優秀的選擇,或任何學生想要在模擬實踐課程的基礎上。

這本書假設有一個學期的微積分的數學背景,并且在第三章中有一些無窮級數。在第3章和第4章中,積分和無窮級數被用于表示法和說明,但在其他章節中微積分的使用很少。由于強調通過模擬來理解結果(以及對偏離假設的穩健性),本書的大部分內容(如果不是全部的話)無需微積分也能理解。提供了許多結果的證明,并通過模擬為更多的理由,但本文不打算支持一個基于證明的課程。我們鼓勵讀者遵循證明,但通常只有在首先理解結果和為什么它是重要的之后,才想要理解一個證明。

付費5元查看完整內容

這本書通過探索計算機科學理論和機器學習雙方可以相互傳授的內容,將理論和機器學習聯系起來。它強調了對靈活、易于操作的模型的需求,這些模型更好地捕捉使機器學習變得容易的東西,而不是讓機器學習變得困難的東西。

理論計算機科學家將被介紹到機器學習的重要模型和該領域的主要問題。機器學習研究人員將以一種可訪問的格式介紹前沿研究,并熟悉現代算法工具包,包括矩法、張量分解和凸規劃松弛。

超越最壞情況分析的處理方法是建立對實踐中使用的方法的嚴格理解,并促進發現令人興奮的、解決長期存在的重要問題的新方法。

在這本書中,我們將涵蓋以下主題:

(a)非負矩陣分解

(b)主題建模

(c)張量分解

(d)稀疏恢復

(e)稀疏編碼

(f)學習混合模型

(g)矩陣補全

//www.cambridge.org/core/books/algorithmic-aspects-of-machine-learning/165FD1899783C6D7162235AE405685DB

付費5元查看完整內容

《量子信息理論》這本書基本上是自成體系的,主要關注構成這門學科基礎的基本事實的精確數學公式和證明。它是為研究生和研究人員在數學,計算機科學,理論物理學尋求發展一個全面的理解關鍵結果,證明技術,和方法,與量子信息和計算理論的廣泛研究主題相關。本書對基礎數學,包括線性代數,數學分析和概率論有一定的理解。第一章總結了這些必要的數學先決條件,并從這個基礎開始,這本書包括清晰和完整的證明它提出的所有結果。接下來的每一章都包含了具有挑戰性的練習,旨在幫助讀者發展自己的技能,發現關于量子信息理論的證明。

這是一本關于量子信息的數學理論的書,專注于定義、定理和證明的正式介紹。它主要是為對量子信息和計算有一定了解的研究生和研究人員準備的,比如將在本科生或研究生的入門課程中涵蓋,或在目前存在的關于該主題的幾本書中的一本中。量子信息科學近年來有了爆炸性的發展,特別是在過去的二十年里。對這個問題的全面處理,即使局限于理論方面,也肯定需要一系列的書,而不僅僅是一本書。與這一事實相一致的是,本文所涉及的主題的選擇并不打算完全代表該主題。量子糾錯和容錯,量子算法和復雜性理論,量子密碼學,和拓撲量子計算是在量子信息科學的理論分支中發現的許多有趣的和基本的主題,在這本書中沒有涵蓋。然而,當學習這些主題時,人們很可能會遇到本書中討論的一些核心數學概念。

//www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

付費5元查看完整內容

這本書的目的是介紹計算機科學家所需要的一些基本數學知識。讀者并不期望自己是數學家,我們希望下面的內容對你有用。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

概率論起源于17世紀的法國,當時兩位偉大的法國數學家,布萊斯·帕斯卡和皮埃爾·德·費馬,對兩個來自機會博弈的問題進行了通信。帕斯卡和費馬解決的問題繼續影響著惠更斯、伯努利和DeMoivre等早期研究者建立數學概率論。今天,概率論是一個建立良好的數學分支,應用于從音樂到物理的學術活動的每一個領域,也應用于日常經驗,從天氣預報到預測新的醫療方法的風險。

本文是為數學、物理和社會科學、工程和計算機科學的二、三、四年級學生開設的概率論入門課程而設計的。它提出了一個徹底的處理概率的想法和技術為一個牢固的理解的主題必要。文本可以用于各種課程長度、水平和重點領域。

在標準的一學期課程中,離散概率和連續概率都包括在內,學生必須先修兩個學期的微積分,包括多重積分的介紹。第11章包含了關于馬爾可夫鏈的材料,為了涵蓋這一章,一些矩陣理論的知識是必要的。

文本也可以用于離散概率課程。材料被組織在這樣一種方式,離散和連續的概率討論是在一個獨立的,但平行的方式,呈現。這種組織驅散了對概率過于嚴格或正式的觀點,并提供了一些強大的教學價值,因為離散的討論有時可以激發更抽象的連續的概率討論。在離散概率課程中,學生應該先修一學期的微積分。

為了充分利用文中的計算材料和例子,假設或必要的計算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica語言編寫的。

付費5元查看完整內容

越來越多來自不同領域的計算機科學家使用離散數學結構來解釋概念和問題。在教學經驗的基礎上,作者提供了一個容易理解的文本,強調了離散數學的基礎及其高級課題。這篇文章展示了如何用清晰的數學語言表達精確的思想。學生發現離散數學在描述計算機科學結構和解決問題方面的重要性。他們還學習如何掌握離散數學將幫助他們發展重要的推理技能,這些技能將在他們的職業生涯中繼續發揮作用。

付費5元查看完整內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

這本書的第五版繼續講述如何運用概率論來深入了解真實日常的統計問題。這本書是為工程、計算機科學、數學、統計和自然科學的學生編寫的統計學、概率論和統計的入門課程。因此,它假定有基本的微積分知識。

第一章介紹了統計學的簡要介紹,介紹了它的兩個分支:描述統計學和推理統計學,以及這門學科的簡短歷史和一些人,他們的早期工作為今天的工作提供了基礎。

第二章將討論描述性統計的主題。本章展示了描述數據集的圖表和表格,以及用于總結數據集某些關鍵屬性的數量。

為了能夠從數據中得出結論,有必要了解數據的來源。例如,人們常常假定這些數據是來自某個總體的“隨機樣本”。為了確切地理解這意味著什么,以及它的結果對于將樣本數據的性質與整個總體的性質聯系起來有什么意義,有必要對概率有一些了解,這就是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。

我們在第四章繼續研究概率,它處理隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常發生的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正規、均勻、伽瑪、卡方、t和F等隨機變量。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容
北京阿比特科技有限公司