隨著教育信息化程度的不斷加深,以預測學生知識狀態為目標的知識追蹤正成為個性化教育中一項重要且富有挑戰性的任務。知識追蹤作為一項教育數據挖掘的時間序列任務,與深度學習模型強大的特征提取和建模能力相結合,在處理順序任務時具有得天獨厚的優勢。為此,簡要分析傳統知識追蹤模型的特點及局限性,以深度知識追蹤發展歷程為主線,總結基于循環神經網絡、記憶增強神經網絡、圖神經網絡的知識追蹤模型及其改進模型,并對該領域的已有模型按照方法策略歸類整理。同時梳理了可供研究者使用的公開數據集和模型評估指標,比較和分析不同建模方法的特點。對基于深度學習的知識追蹤的未來發展方向進行探討和展望,奠定進一步深入基于深度知識追蹤研究的基礎。
群體行為識別是計算機視覺領域應用廣泛且亟待解決的重要研究問題。伴隨著深度神經網絡的發展,群體行為識別與理解的寬度與深度也在不斷擴展。通過調研近十年來群體行為識別的研究文獻,確定了目前群體行為識別研究的問題定義;指出了群體行為識別研究現存的問題與挑戰;在深度學習網絡架構下,描述了從早期僅僅對群體行為進行分類識別,到如今更加側重于對行為群體中活動細節理解的群體行為識別算法的發展歷程;重點介紹了以卷積神經網絡CNN/3DCNN、雙流網絡Two-Stream Network、循環神經網絡RNN/LSTM 和Transformer等網絡架構為基礎的,主流群體行為識別算法的核心網絡架構和主要研究思路,對各算法在常用公共數據集上的識別效果進行了對比;對標注了群體行為類型和個體行為類別等多級標簽的常用的群體行為數據集進行了梳理和對比。期望通過客觀的對各種算法優缺點的討論分析,引發讀者提出群體行為識別研究的新思路或新問題。在結論中對群體行為分析的未來發展進行了展望,期待能夠啟發新的研究方向。
基于人工智能技術的人機對話系統在人機交互、智能助手、智能客服、問答咨詢等多個領域應用日益廣泛,這極大地促進了自然語言理解及生成、對話狀態追蹤和端到端的深度學習模型構建等相關理論與技術的發展,并成為目前工業界與學術界共同關注的研究熱點之一。該文聚焦特定場景下的任務型對話系統,在對其基本概念進行形式化定義的基礎上,圍繞著以最少的對話輪次來獲得最佳用戶需求相匹配的對話內容為目標,針對目前存在的復雜業務場景下基于自然語言的用戶意圖的準確理解和識別、針對訓練數據的標注依賴及模型結果的可解釋性不足,以及多模態條件下對話內容的個性化生成這三個重大的技術問題和挑戰,對當前的技術與研究進展進行系統地對比分析和綜述,為進一步的研究工作奠定基礎。同時,對新一代的面向任務型的人機對話系統未來的關鍵研究方向與任務進行總結。
新聞推薦(NR)可以有效緩解新聞信息過載,是當今人們獲取新聞資訊的重要方式,而深度學習(DL)成為近年來促進新聞推薦發展的主流技術,使新聞推薦的效果得到顯著提升,受到研究者們的廣泛關注。主要對基于深度學習的新聞推薦方法研究現狀進行分類梳理和分析歸納。根據對新聞推薦的核心對象——用戶和新聞的建模思路不同,將基于深度學習的新聞推薦方法分為“兩段式”方法、“融合式”方法和“協同式”方法三類。在每類方法中,根據建模過程中的具體子任務或基于的數據組織結構進行更進一步細分,對代表性模型進行分析介紹,評價其優點和局限性等,并詳細總結每類方法的特點和優缺點。另外還介紹了新聞推薦中常用數據集、基線算法和性能評價指標,最后分析展望了該領域未來可能的研究方向及發展趨勢。
全球定位、移動通信技術迅速發展的背景下涌現出了海量的時空軌跡數據,這些數據是對移動對象在時空環境下的移動模式和行為特征的真實寫照,蘊含了豐富的信息,這些信息對于城市規劃、交通管理、服務推薦、位置預測等領域具有重要的應用價值,而這些過程通常需要通過對時空軌跡數據進行序列模式挖掘才能得以實現。時空軌跡序列模式挖掘旨在從時空軌跡數據集中找出頻繁出現的序列模式,挖掘時空數據中隱藏的信息,例如: 位置模式(頻繁軌跡、熱點區域)、活動周期模式、語義行為模式。綜述近來年時空軌跡序列模式挖掘的研究進展,先介紹時空軌跡序列的數據特點及應用,再描述時空軌跡模式的挖掘過程:從基于時空軌跡序列來挖掘位置模式、周期模式、語義模式三個方面來介紹該領域的研究情況,最后闡述現有時空軌跡序列模式挖掘方法存在的問題,展望其未來的發展趨勢。
摘要 在線社交網絡中的消息流行度預測研究,對推薦、廣告、檢索等應用場景都具有非常重要的作用。近年來,深度學習的蓬勃發展和消息傳播數據的積累,為基于深度學習的流行度預測研究提供了堅實的發展基礎。現有的流行度預測研究綜述,主要是圍繞傳統的流行度預測方法展開的,而基于深度學習的流行度預測方法目前仍未得到系統性地歸納和梳理,不利于流行度預測領域的持續發展。鑒于此,該文重點論述和分析現有的基于深度學習的流行度預測相關研究,對近年來基于深度學習的流行度預測研究進行了歸納梳理,將其分為基于深度表示和基于深度融合的流行度預測方法,并對該研究方向的發展現狀和未來趨勢進行了分析展望。
摘要: 圖像修復是計算機視覺領域中極具挑戰性的研究課題。近年來,深度學習技術的發展推動了圖像修復性能的顯著提升,使得圖像修復這一傳統課題再次引起了學者們的廣泛關注。文章致力于綜述圖像修復研究的關鍵技術。由于深度學習技術在解決“大面積缺失圖像修復”問題時具有重要作用并帶來了深遠影響,文中在簡要介紹傳統圖像修復方法的基礎上,重點介紹了基于深度學習的修復模型,主要包括模型分類、優缺點對比、適用范圍和在常用數據集上的性能對比等,最后對圖像修復潛在的研究方向和發展動態進行了分析和展望。
隨著人臉表情識別任務逐漸從實驗室受控環境轉移至具有挑戰性的真實世界環境,在深度學習技術的迅猛發展下,深度神經網絡能夠學習出具有判別能力的特征,逐漸應用于自動人臉表情識別任務。目前的深度人臉表情識別系統致力于解決以下兩個問題:1)由于缺乏足量訓練數據導致的過擬合問題;2)真實世界環境下其他與表情無關因素變量(例如光照、頭部姿態和身份特征)帶來的干擾問題。本文首先對近十年深度人臉表情識別方法的研究現狀以及相關人臉表情數據庫的發展進行概括。然后,將目前基于深度學習的人臉表情識別方法分為兩類:靜態人臉表情識別和動態人臉表情識別,并對這兩類方法分別進行介紹和綜述。針對目前領域內先進的深度表情識別算法,對其在常見表情數據庫上的性能進行了對比并詳細分析了各類算法的優缺點。最后本文對該領域的未來研究方向和機遇挑戰進行了總結和展望:考慮到表情本質上是面部肌肉運動的動態活動,基于動態序列的深度表情識別網絡往往能夠取得比靜態表情識別網絡更好的識別效果。此外,結合其他表情模型如面部動作單元模型以及其他多媒體模態,如音頻模態和人體生理信息能夠將表情識別拓展到更具有實際應用價值的場景。
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。
我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1
行人再識別的主要任務是利用計算機視覺對特定行人進行跨視域匹配和檢索。相比于傳統算法,由數據驅 動的深度學習方法所提取的特征更能表征行人之間的區分性。對行人再識別的背景及研究歷史、主要面臨的挑 戰、主要方法、數據集及評價指標進行了梳理和總結。主要從特征表達、局部特征、生成對抗網絡三個方面對行人 再識別的算法進行分析,列舉了行人再識別9個常用數據集、3個評價標準和14種典型方法在 Market1501數據集 上取得的準確率,最后對行人再識別的未來研究方向進行展望。