亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖是一種普遍存在的數據結構,它可以表示不同實體之間豐富的關系信息。在社交網絡中建立友好關系,預測蛋白質與蛋白質的相互作用,學習分子指紋,以及分類疾病,這些都是通過通過圖表數據進行學習而成為可能的任務。在過去的幾年里,隨著圖深度學習模型——圖神經網絡(graph neural network, GNNs)的出現,圖機器學習研究發生了革命性的變化。圖神經網絡在各種下游任務的圖表示自動學習方面表現出了卓越的性能。然而,當圖形代表敏感互動或包含個人信息時,通過圖學習可能會引起隱私問題。先前關于保護隱私的機器學習的工作已經在處理歐幾里得數據(如圖像、音頻和文本)時提出了保護用戶隱私的有效解決方案,但由于圖節點之間存在連接性,在圖上應用深度學習算法涉及的隱私問題往往更具挑戰性。本講座旨在介紹圖神經網絡,以及在敏感圖上應用GNNs的潛在隱私風險。然后,將概述可能的隱私攻擊的GNN和建立隱私保護GNN的最新嘗試。

//sajadmanesh.com/talks/2020-12-09-IPCLab/

付費5元查看完整內容

相關內容

機器學習模型容易受到成員推斷攻擊,目的是推斷目標樣本是否屬于目標模型的訓練數據集。由于成員推理而引起的嚴重的隱私問題引發了對成員推理攻擊的多種防御,例如差分隱私和對抗性正則化。不幸的是,這些防御方法產生的機器學習模型的實用性低得令人無法接受,例如,分類準確性。我們提出了一種新的基于知識蒸餾的防御,稱為成員隱私蒸餾(DMP),以對抗成員推理攻擊,這種攻擊比先前的防御更有效地保留了生成模型的效用。我們提供了一個新的準則來調整DMP中用于知識遷移的數據,以調整所得模型的效用和隱私之間的權衡。我們的評估清楚地展示了最先進的會員隱私-效用折衷。

//people.cs.umass.edu/~vshejwalkar/dmp_aaai_slides.pdf

付費5元查看完整內容

隨著數據越來越多地存儲在不同的筒倉中,社會越來越關注數據隱私問題,傳統的人工智能(AI)模型集中訓練正面臨效率和隱私方面的挑戰。最近,聯邦學習(FL)作為一種替代解決方案出現,并在這種新的現實中繼續蓬勃發展。現有的FL協議設計已經被證明對系統內外的對抗是脆弱的,危及數據隱私和系統的魯棒性。除了訓練強大的全局模型外,最重要的是設計具有隱私保障和抵抗不同類型對手的FL系統。在本文中,我們對這一問題進行了第一次全面的綜述。通過對FL概念的簡明介紹,和一個獨特的分類涵蓋:1) 威脅模型; 2) 中毒攻擊與魯棒性防御; 3) 對隱私的推理攻擊和防御,我們提供了這一重要主題的可訪問的回顧。我們強調了各種攻擊和防御所采用的直覺、關鍵技術和基本假設。最后,我們對魯棒性和隱私保護聯合學習的未來研究方向進行了討論。

//www.zhuanzhi.ai/paper/678e6e386bbefa8076e699ebd9fd8c2a

引言

隨著計算設備變得越來越普遍,人們在日常使用中產生了大量的數據。將這樣的數據收集到集中的存儲設施中既昂貴又耗時。傳統的集中式機器學習(ML)方法不能支持這種普遍存在的部署和應用,這是由于基礎設施的缺點,如有限的通信帶寬、間歇性的網絡連接和嚴格的延遲約束[1]。另一個關鍵問題是數據隱私和用戶機密性,因為使用數據通常包含敏感信息[2]。面部圖像、基于位置的服務或健康信息等敏感數據可用于有針對性的社交廣告和推薦,造成即時或潛在的隱私風險。因此,私人數據不應該在沒有任何隱私考慮的情況下直接共享。隨著社會對隱私保護意識的增強,《通用數據保護條例》(GDPR)等法律限制正在出現,這使得數據聚合實踐變得不那么可行。

在這種情況下,聯邦學習(FL)(也被稱為協作學習)將模型訓練分發到數據來源的設備上,作為一種有前景的ML范式[4]出現了。FL使多個參與者能夠構建一個聯合ML模型,而不暴露他們的私人訓練數據[4],[5]。它還可以處理不平衡、非獨立和同分布(非i.i.d)數據,這些數據自然出現在真實的[6]世界中。近年來,FL獲得了廣泛的應用,如下一個單詞預測[6]、[7]、安全視覺目標檢測[8]、實體解析[9]等。

根據參與者之間數據特征和數據樣本的分布,聯邦學習一般可以分為水平聯邦學習(HFL)、垂直聯邦學習(VFL)和聯邦遷移學習(FTL)[10]。

具有同構體系結構的FL: 共享模型更新通常僅限于同構的FL體系結構,也就是說,相同的模型被所有參與者共享。參與者的目標是共同學習一個更準確的模型。具有異構架構的FL: 最近的努力擴展了FL,以協同訓練具有異構架構的模型[15],[16]。

FL提供了一個關注隱私的模型訓練的范式,它不需要數據共享,并且允許參與者自由地加入和離開聯盟。然而,最近的研究表明,FL可能并不總是提供足夠的隱私和健壯性保證。現有的FL協議設計容易受到以下攻擊: (1)惡意服務器試圖從個人更新中推斷敏感信息,篡改訓練過程或控制參與者對全局參數的看法;或者(2)一個敵對的參與者推斷其他參與者的敏感信息,篡改全局參數聚合或破壞全局模型。

在隱私泄露方面,在整個訓練過程中,通信模型的更新會泄露敏感信息[18]、[19],并導致深度泄露[20],無論是對第三方服務器還是中央服務器[7]、[21]。例如,如[22]所示,即使是很小一部分的梯度也可以揭示相當數量的有關本地數據的敏感信息。最近的研究表明,通過簡單地觀察梯度,惡意攻擊者可以在[20],[23]幾次迭代內竊取訓練數據。

在魯棒性方面,FL系統容易受到[24]、[25]和[26]、[27]、[28]、[29]的模型中毒攻擊。惡意參與者可以攻擊全局模型的收斂性,或者通過故意改變其本地數據(數據中毒)或梯度上傳(模型中毒)將后門觸發器植入全局模型。模型投毒攻擊可以進一步分為:(1)Byzantine 攻擊,攻擊者的目標是破壞全局模型[13]、[30]的收斂性和性能;(2)后門攻擊,對手的目標是在全局模型中植入一個后門觸發器,以欺騙模型不斷預測子任務上的敵對類,同時在主要任務[26],[27]上保持良好的性能。需要注意的是,后門模型投毒攻擊通常利用數據投毒來獲取有毒的參數更新[24]、[26]、[27]。

這些隱私和魯棒性攻擊對FL構成了重大威脅。在集中學習中,服務器控制參與者的隱私和模型魯棒性。然而,在FL中,任何參與者都可以攻擊服務器并監視其他參與者,有時甚至不涉及服務器。因此,理解這些隱私性和健壯性攻擊背后的原理是很重要的。

目前對FL的研究主要集中在系統/協議設計[10]、[31]、[32]。聯邦學習的隱私和穩健性威脅還沒有得到很好的探討。在本文中,我們調研了FL的隱私和魯棒性威脅及其防御方面的最新進展。特別地,我們關注由FL系統內部者發起的兩種特定威脅:1) 試圖阻止學習全局模型的中毒攻擊,或控制全局模型行為的植入觸發器;2) 試圖泄露其他參與者隱私信息的推理攻擊。表2總結了這些攻擊的特性。

付費5元查看完整內容

近年來,機器學習迅速地發展,給人們帶來便利的同時,也帶來極大的安全隱患.機器學習的安全與隱私問題已經成為其發展的絆腳石.機器學習模型的訓練和預測均是基于大量的數據,而數據中可能包含敏感或隱私信息,隨著數據安全與隱私泄露事件頻發、泄露規模連年加劇,如何保證數據的安全與隱私引發科學界和工業界的廣泛關注. 首先,介紹了機器學習隱私保護中的敵手模型的概念; 其次總結機器學習在訓練和預測階段常見的安全及隱私威脅,如訓練數據的隱私泄露、投毒攻擊、對抗攻擊、隱私攻擊等.隨后介紹了常見的安全防御方法和隱私保護方法,重點介紹了同態加密技術、安全多方計算技術、差分隱私技術等,并比較了典型的方案及3種技術的適用場景.最后,展望機器學習隱私保護的未來發展趨勢和研究方向.

依托于云計算、物聯網、大數據技術的發展,以數據挖掘和深度學習為代表的人工智能技術正在改變人類社會生活,并成為先進科技應用的代表和社會關注的熱點.作為引領未來的戰略性技術,人工智能技術被世界各國紛紛提升為發展國家競爭力、維護國家安全的重大戰略.

機器學習是一種實現人工智能的方式,是近些年主要研究的領域.目前機器學習方案在很多領域都有著成熟的應用,如天氣預報、能源勘探、環境監測等,通過收集相關數據進行分析學習,可以提高這些工作的準確性;還有如在垃圾郵件檢測、個性化廣告推薦、信用卡欺詐檢測、自動駕駛、人臉識別、自然語言處理、語音識別、搜索引擎的優化等各個領域,機器學習都扮演著重要的角色.然而,蓬勃發展的機器學習技術使數據安全與隱私面臨更加嚴峻的挑戰,因為機器學習的更精準模型需要大量的訓練數據為支撐.

自2013年斯諾登的“棱鏡”事件以來,全球信息泄露規模連年加劇,引起社會的廣泛關注.2016年9月Yahoo被曝出曾被黑客盜取了至少5億個用戶賬號信息;2017年微軟Skype軟件服務遭受DDOS攻擊,導致用戶無法通過平臺進行通信;2018年3月美國《紐約時報》和英國《衛報》均報道:劍橋分析(Cambridge Analytica)數據分析公司在未經用戶許可的情況下,盜用了高達5千萬個Facebook的用戶個人資料[1].2019年美國網絡安全公司UpGuard發現上億條保存在亞馬遜AWS云計算服務器上的Facebook用戶信息記錄,可被任何人輕易地獲取;IBM在未經當事人許可的情況下,從網絡圖庫Flickr上獲得了接近100萬張照片,借此訓練人臉識別程序,并與外部研究人員分享[2].2020年4月《華盛頓郵報》報道視頻會議軟件Zoom存在的重大安全漏洞:數以萬計的私人Zoom視頻被上傳至公開網頁,任何人都可在線圍觀,很多視頻都包含個人可識別信息,甚至是在家里進行的私密談話[3].信息泄露的途徑主要分為內部人員或第三方合作伙伴泄露、信息系統無法杜絕的漏洞、機構本身的防護機制不健全、對數據的重要程度不敏感,以及對安全配置的疏忽大意等.可見,數據隱私的泄露已不單單是滿足某些外部人員好奇心所驅使,而是已成為一種重要的商業獲利而被廣泛關注,其中不乏內外勾結、合謀獲取用戶的隱私等行為.

//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2020.20200426

付費5元查看完整內容

聯邦學習是一種新型的分布式學習框架,它允許在多個參與者之間共享訓練數據而不會泄露其數據隱私。但是這種新穎的學習機制仍然可能受到來自各種攻擊者的前所未有的安全和隱私威脅。本文主要探討聯邦學習在安全和隱私方面面臨的挑戰。首先,本文介紹了聯邦學習的基本概念和威脅模型,有助于理解其面臨的攻擊。其次,本文總結了由內部惡意實體發起的3種攻擊類型,同時分析了聯邦學習體系結構的安全漏洞和隱私漏洞。然后從差分隱私、同態密碼系統和安全多方聚合等方面研究了目前最先進的防御方案。最后通過對這些解決方案的總結和比較,進一步討論了該領域未來的發展方向。

//jnuaa.nuaa.edu.cn/ch/reader/create_pdf.aspx?file_no=202005001&flag=1&journal_id=njhkht&year_id=2020

付費5元查看完整內容

近年來,人們對學習圖結構數據表示的興趣大增。基于標記數據的可用性,圖表示學習方法一般分為三大類。第一種是網絡嵌入(如淺層圖嵌入或圖自動編碼器),它側重于學習關系結構的無監督表示。第二種是圖正則化神經網絡,它利用圖來增加半監督學習的正則化目標的神經網絡損失。第三種是圖神經網絡,目的是學習具有任意結構的離散拓撲上的可微函數。然而,盡管這些領域很受歡迎,但在統一這三種范式方面的工作卻少得驚人。在這里,我們的目標是彌合圖神經網絡、網絡嵌入和圖正則化模型之間的差距。我們提出了圖結構數據表示學習方法的一個綜合分類,旨在統一幾個不同的工作主體。具體來說,我們提出了一個圖編碼解碼器模型(GRAPHEDM),它將目前流行的圖半監督學習算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和圖表示的非監督學習(如DeepWalk、node2vec等)歸納為一個統一的方法。為了說明這種方法的一般性,我們將30多個現有方法放入這個框架中。我們相信,這種統一的觀點既為理解這些方法背后的直覺提供了堅實的基礎,也使該領域的未來研究成為可能。

概述

學習復雜結構化數據的表示是一項具有挑戰性的任務。在過去的十年中,針對特定類型的結構化數據開發了許多成功的模型,包括定義在離散歐幾里德域上的數據。例如,序列數據,如文本或視頻,可以通過遞歸神經網絡建模,它可以捕捉序列信息,產生高效的表示,如機器翻譯和語音識別任務。還有卷積神經網絡(convolutional neural networks, CNNs),它根據移位不變性等結構先驗參數化神經網絡,在圖像分類或語音識別等模式識別任務中取得了前所未有的表現。這些主要的成功僅限于具有簡單關系結構的特定類型的數據(例如,順序數據或遵循規則模式的數據)。

在許多設置中,數據幾乎不是規則的: 通常會出現復雜的關系結構,從該結構中提取信息是理解對象之間如何交互的關鍵。圖是一種通用的數據結構,它可以表示復雜的關系數據(由節點和邊組成),并出現在多個領域,如社交網絡、計算化學[41]、生物學[105]、推薦系統[64]、半監督學習[39]等。對于圖結構的數據來說,將CNNs泛化為圖并非易事,定義具有強結構先驗的網絡是一項挑戰,因為結構可以是任意的,并且可以在不同的圖甚至同一圖中的不同節點之間發生顯著變化。特別是,像卷積這樣的操作不能直接應用于不規則的圖域。例如,在圖像中,每個像素具有相同的鄰域結構,允許在圖像中的多個位置應用相同的過濾器權重。然而,在圖中,我們不能定義節點的順序,因為每個節點可能具有不同的鄰域結構(圖1)。此外,歐幾里德卷積強烈依賴于幾何先驗(如移位不變性),這些先驗不能推廣到非歐幾里德域(如平移可能甚至不能在非歐幾里德域上定義)。

這些挑戰導致了幾何深度學習(GDL)研究的發展,旨在將深度學習技術應用于非歐幾里德數據。特別是,考慮到圖在現實世界應用中的廣泛流行,人們對將機器學習方法應用于圖結構數據的興趣激增。其中,圖表示學習(GRL)方法旨在學習圖結構數據的低維連續向量表示,也稱為嵌入。

廣義上講,GRL可以分為兩類學習問題,非監督GRL和監督(或半監督)GRL。第一個系列的目標是學習保持輸入圖結構的低維歐幾里德表示。第二系列也學習低維歐幾里德表示,但為一個特定的下游預測任務,如節點或圖分類。與非監督設置不同,在非監督設置中輸入通常是圖結構,監督設置中的輸入通常由圖上定義的不同信號組成,通常稱為節點特征。此外,底層的離散圖域可以是固定的,這是直推學習設置(例如,預測一個大型社交網絡中的用戶屬性),但也可以在歸納性學習設置中發生變化(例如,預測分子屬性,其中每個分子都是一個圖)。最后,請注意,雖然大多數有監督和無監督的方法學習歐幾里德向量空間中的表示,最近有興趣的非歐幾里德表示學習,其目的是學習非歐幾里德嵌入空間,如雙曲空間或球面空間。這項工作的主要動機是使用一個連續的嵌入空間,它類似于它試圖嵌入的輸入數據的底層離散結構(例如,雙曲空間是樹的連續版本[99])。

鑒于圖表示學習領域的發展速度令人印象深刻,我們認為在一個統一的、可理解的框架中總結和描述所有方法是很重要的。本次綜述的目的是為圖結構數據的表示學習方法提供一個統一的視圖,以便更好地理解在深度學習模型中利用圖結構的不同方法。

目前已有大量的圖表示學習綜述。首先,有一些研究覆蓋了淺層網絡嵌入和自動編碼技術,我們參考[18,24,46,51,122]這些方法的詳細概述。其次,Bronstein等人的[15]也給出了非歐幾里德數據(如圖或流形)的深度學習模型的廣泛概述。第三,最近的一些研究[8,116,124,126]涵蓋了將深度學習應用到圖數據的方法,包括圖數據神經網絡。這些調查大多集中在圖形表示學習的一個特定子領域,而沒有在每個子領域之間建立聯系。

在這項工作中,我們擴展了Hamilton等人提出的編碼-解碼器框架,并介紹了一個通用的框架,圖編碼解碼器模型(GRAPHEDM),它允許我們將現有的工作分為四大類: (i)淺嵌入方法,(ii)自動編碼方法,(iii) 圖正則化方法,和(iv) 圖神經網絡(GNNs)。此外,我們還介紹了一個圖卷積框架(GCF),專門用于描述基于卷積的GNN,該框架在廣泛的應用中實現了最先進的性能。這使我們能夠分析和比較各種GNN,從在Graph Fourier域中操作的方法到將self-attention作為鄰域聚合函數的方法[111]。我們希望這種近期工作的統一形式將幫助讀者深入了解圖的各種學習方法,從而推斷出相似性、差異性,并指出潛在的擴展和限制。盡管如此,我們對前幾次綜述的貢獻有三個方面

  • 我們介紹了一個通用的框架,即GRAPHEDM,來描述一系列廣泛的有監督和無監督的方法,這些方法對圖形結構數據進行操作,即淺層嵌入方法、圖形正則化方法、圖形自動編碼方法和圖形神經網絡。

  • 我們的綜述是第一次嘗試從同一角度統一和查看這些不同的工作線,我們提供了一個通用分類(圖3)來理解這些方法之間的差異和相似之處。特別是,這種分類封裝了30多個現有的GRL方法。在一個全面的分類中描述這些方法,可以讓我們了解這些方法究竟有何不同。

  • 我們為GRL發布了一個開源庫,其中包括最先進的GRL方法和重要的圖形應用程序,包括節點分類和鏈接預測。我們的實現可以在//github.com/google/gcnn-survey-paper上找到。

付費5元查看完整內容

芬蘭阿爾托大學CSE4890深度學習課程第7講:圖神經網絡,由Alexander Ilin主講,全面詳細地介紹了GNN的背景動機、GCN、循環關系網絡、通用網絡。

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。由于疫情影響,這次會議在線上舉行,本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。小編推薦一份圖深度學習-圖神經網絡教程,預覽版可以查看。

從圖數據和關系數據中學習在許多應用中起著重要的作用,包括社交網絡分析、市場營銷、電子商務、信息檢索、知識建模、醫學和生物科學、工程等。在過去的幾年里,圖神經網絡(GNNs)已經成為一種很有前途的新型監督學習框架,能夠將深度表示學習的能力引入到圖和關系數據中。越來越多的研究表明,GNNs在鏈路預測、欺詐檢測、目標配體結合活性預測、知識圖譜補全和產品推薦等方面的性能達到了最新水平。

本教程的目標有兩個。首先,它將概述GNN背后的理論,討論GNN非常適合的問題類型,并介紹一些最廣泛使用的GNN模型體系結構和設計用來解決的問題/應用程序。其次,它將引入深度圖庫(Deep Graph Library, DGL),這是一種新的軟件框架,簡化了高效的基于GNN的訓練和推理程序的開發。為了使事情更具體,本教程將提供使用DGL的實踐會話。這個實踐部分將涵蓋基本的圖形應用程序(例如,節點分類和鏈接預測),以及更高級的主題,包括在大型圖和分布式設置中訓練GNN。此外,它還將提供使用GNNs和DGL進行實際應用(如推薦和欺詐檢測)的實踐教程。

  • 第1節:圖神經網絡概述。本節描述了圖神經網絡是如何運作的,它們的基本理論,以及它們相對于其他圖學習方法的優勢。此外,它還描述了圖形上的各種學習問題,并展示了如何使用GNNs來解決這些問題。

  • 第2節:深度圖庫(DGL)概述。本節描述DGL提供的不同的抽象和api,這些抽象和api旨在簡化GNN模型的實現,并解釋DGL如何與MXNet、Pytorch和TensorFlow進行接口。然后介紹DGL的消息傳遞API,該API可用于開發任意復雜的GNNs和它提供的預定義GNN nn模塊。

  • 第3節:基本圖任務的GNN模型。本節演示如何使用GNNs解決四個關鍵的圖數據學習任務:節點分類、鏈接預測、圖數據分類和網絡嵌入前訓練。它將展示如何使用DGL的nn模塊實現一個流行的GNN模型GraphSage,并展示如何在不同類型的下游任務中使用由GraphSage計算出的節點嵌入。此外,本文還將演示使用DGL的消息傳遞接口實現定制的GNN模型。

  • 第4節:大型圖的GNN訓練。本節使用第3節中描述的一些模型來演示DGL中的微型批處理訓練、多GPU訓練和分布式訓練。它首先描述了mini-batch訓練的概念如何應用于GNN,以及如何通過使用各種抽樣技術來加速mini-batch計算。接下來將舉例說明一種稱為鄰接抽樣的抽樣技術,如何使用木星筆記本在DGL中實現。然后將該筆記本擴展為多GPU訓練和分布式訓練。

  • 第5節:實際應用的GNN模型。本節使用前面幾節中描述的技術,展示如何使用GNNs開發用于推薦和欺詐檢測的可伸縮解決方案。在推薦方面,本文提出了一種基于最近鄰的項目推薦方法,該方法通過采用端到端的學習方法,利用GNN模型學習項目嵌入。對于欺詐檢測,它擴展了上一節中的節點分類模型,以處理異構圖,并解決了標記樣本很少的情況。

付費5元查看完整內容

題目: 機器學習的隱私保護研究綜述

簡介:

大規模數據收集大幅提升了機器學習算法的性能,實現了經濟效益和社會效益的共贏,但也令個人隱私保護面臨更大的風險與挑戰.機器學習的訓練模式主要分為集中學習和聯邦學習2類,前者在模型訓練前需統一收集各方數據,盡管易于部署,卻存在極大數據隱私與安全隱患;后者實現了將各方數據保留在本地的同時進行模型訓練,但該方式目前正處于研究的起步階段,無論在技術還是部署中仍面臨諸多問題與挑戰.現有的隱私保護技術研究大致分為2條主線,即以同態加密和安全多方計算為代表的加密方法和以差分隱私為代表的擾動方法,二者各有利弊.為綜述當前機器學習的隱私問題,并對現有隱私保護研究工作進行梳理和總結,首先分別針對傳統機器學習和深度學習2類情況,探討集中學習下差分隱私保護的算法設計;之后概述聯邦學習中存的隱私問題及保護方法;最后總結目前隱私保護中面臨的主要挑戰,并著重指出隱私保護與模型可解釋性研究、數據透明之間的問題與聯系.

付費5元查看完整內容
北京阿比特科技有限公司