由于線性空間和時間的復雜性,Transformer模型的最新進展允許前所未有的序列長度。同時,相對位置編碼(relative position encoding, RPE)被認為是一種利用滯后而不是絕對位置進行推理的方法。盡管如此,RPE還不能用于Transformer最近的線性變體,因為它需要顯式計算注意力矩陣,而這正是這些方法所避免的。在本文中,我們填補了這一缺口,并提出了隨機位置編碼作為生成PE的一種方法,該方法可以用來替代經典的加性(正弦)PE,并且可以證明其行為類似于RPE。其主要理論貢獻是將位置編碼與相關高斯過程的交叉協方差結構聯系起來。我們在Long-Range Arena基準測試和音樂生成上證明了我們的方法的性能。
//www.zhuanzhi.ai/paper/e42297b68bb088dc94c114e44992cea1
最近的對比表示學習方法依賴于估計一個上下文的多個視圖之間的互信息。例如,我們可以通過應用數據增強獲得給定圖像的多個視圖,或者我們可以將序列分割成包含序列中某個步驟的過去和未來的視圖。MI的下界比較容易優化,但當評估大量的MI有強烈的低估偏見。我們提出將完整的MI估計問題分解為一個較小的估計問題。這個表達式包含一個無條件和條件MI項的和,每個測量總的MI的適度塊,這有助于通過對比界近似。為了使和最大化,我們給出了條件MI的一個比較下界,它可以有效地逼近。我們將我們的一般方法稱為互信息分解估計(DEMI)。我們證明了DEMI可以捕獲比標準的非分解對比界在綜合設置更大數量的MI,并在視覺域的對話生成學習更好的表示。
SparseBERT: Rethinking the Importance Analysis in Self-attention
作為Transformer中重要的結構,self-attention一直是研究的熱點。之前的工作往往是通過可視化預訓練好的Transformer模型來分析注意力矩陣中共同的模式,并基于此提出了一系列稀疏的注意掩碼。本文在預訓練時動態地研究了注意力矩陣地變化并重新思考了self-attention中位置的重要性。其中一個有趣的結論是注意力矩陣的對角線元素和其他位置相比是最不重要的。為了解釋這個現象,我們從通用近似定理的角度上證明了這些位置是可以被舍棄的。為了進一步降低self-attention的計算復雜度,我們提出可微分注意掩碼(DAM)算法,可以用于指導 SparseBERT的設計。
圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。
自監督學習已被廣泛應用于從未標記圖像中獲取可轉移的表示。特別是,最近的對比學習方法在下游圖像分類任務中表現出了令人印象深刻的性能。這些對比方法主要集中在語義保留變換下的圖像級上生成不變的全局表示,容易忽略局部表示的空間一致性,因此在目標檢測和實例分割等本地化任務的預處理中存在一定的局限性。此外,在現有的對比方法中使用的積極裁剪視圖可以最小化單個圖像中語義不同區域之間的表示距離。
在本文中,我們提出了一種用于多目標和特定位置任務的空間一致表示學習算法(SCRL)。特別地,我們設計了一個新的自監督目標,試圖根據幾何平移和縮放操作產生隨機裁剪局部區域的連貫空間表示。在使用基準數據集的各種下游定位任務上,提出的SCRL顯示了相對于圖像級監督前訓練和最先進的自監督學習方法的顯著性能改進。代碼將會被發布。
在自然語言處理和知識圖構造的信息提取中,三次提取是必不可少的任務。在本文中,我們將重新審視用于序列生成的端到端三重提取任務。由于生成三元組提取可能難以捕獲長期依賴關系并生成不忠實的三元組,因此我們引入了一種新穎的模型,即使用生成Transformer的對比三元組提取。具體來說,我們介紹了一個共享的Transformer模塊,用于基于編碼器-解碼器的生成。為了產生忠實的結果,我們提出了一種新穎的三重態對比訓練對象。此外,我們引入了兩種機制來進一步提高模型性能(即,批量動態注意遮罩和三級校準)。在三個數據集(即NYT,WebNLG和MIE)上的實驗結果表明,我們的方法比基線具有更好的性能。
//www.zhuanzhi.ai/paper/b8ed53721b7162af43614d558adb9c58
由于硬件資源有限,深度學習模型的訓練目標通常是在訓練和推理的時間和內存限制下最大化準確性。在這種情況下,我們研究了模型大小的影響,關注于計算受限的NLP任務的Transformer模型:自監督的預訓練和高資源機器翻譯。我們首先展示了,盡管較小的Transformer模型在每次迭代中執行得更快,但更廣、更深入的模型在顯著更少的步驟中收斂。此外,這種收斂速度通常超過了使用更大模型的額外計算開銷。因此,計算效率最高的訓練策略是反直覺地訓練非常大的模型,但在少量迭代后停止。
這導致了大型Transformer 模型的訓練效率和小型Transformer 模型的推理效率之間的明顯權衡。然而,我們表明大模型比小模型在壓縮技術(如量化和剪枝)方面更健壯。因此,一個人可以得到最好的兩個好處: 重壓縮,大模型比輕壓縮,小模型獲得更高的準確度。
//www.zhuanzhi.ai/paper/4d7bcea8653fcc448137766511ec7d8a
概述:
在當前的深度學習范式中,使用更多的計算(例如,增加模型大小、數據集大小或訓練步驟)通常會導致更高的模型準確度(brock2018large;raffel2019exploring)。最近自監督預訓練的成功進一步論證了這種趨勢經模型。因此,計算資源日益成為提高模型準確度的關鍵制約因素。這個約束導致模型訓練的(通常是隱含的)目標是最大化計算效率:如何在固定的硬件和訓練時間下達到最高的模型準確度。
最大化計算效率需要重新考慮關于模型訓練的常見假設。特別是,有一個典型的隱式假設,即模型必須經過訓練直到收斂,這使得較大的模型在有限的計算預算下顯得不太可行。我們通過展示以收斂為代價來增加模型大小的機會來挑戰這一假設。具體地說,我們表明,訓練Transformer 模型的最快方法(vaswani2017attention)是大幅度增加模型大小,但很早停止訓練。
在我們的實驗中,我們改變了Transformer模型的寬度和深度,并在自監督的預訓練(RoBERTa (liu2019roberta)在Wikipedia和BookCorpus上訓練)和機器翻譯(WMT14英語→法語)上評估了它們的訓練時間和準確性。對于這些任務,我們首先展示了更大的模型比更小的模型在更少的梯度更新中收斂到更低的驗證錯誤(第3節)。此外,這種收斂速度的增加超過了使用更大模型所帶來的額外計算開銷——計算效率最高的模型是非常大的,并且遠遠不能收斂(例如,圖2,左)。我們還表明,收斂的加速主要是參數計數的函數,只有模型寬度、深度和批大小的微弱影響。
雖然較大的模型訓練速度更快,但它們也增加了推理的計算和內存需求。這種增加的成本在現實應用中尤其成問題,推理成本占訓練成本的主要比例(jouppi2017datacenter;crankshaw2017clipper;metz2017tpu)。然而,對于RoBERTa來說,這種明顯的權衡可以與壓縮相協調:與小型模型相比,大型模型在壓縮方面更加健壯(第4節)。因此,使用可比較的推理成本,大型重壓縮的模型優于小型輕壓縮的模型(例如,圖2,右)。
圖表示學習近年來得到了廣泛的研究。盡管它在為各種網絡生成連續嵌入方面具有潛力,但針對大量節點推斷高質量表示的有效性和效率仍然具有挑戰性。采樣是實現性能目標的關鍵。現有技術通常集中于正節點對的抽樣,而對負節點對的抽樣策略卻沒有進行充分的探索。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負抽樣的作用,從理論上論證了負抽樣與正抽樣在確定優化目標和由此產生的方差方面同樣重要。據我們所知,我們是第一個推導出負抽樣分布應該與正抽樣分布呈正相關但亞線性相關的理論并進行量化的工作。在該理論的指導下,我們提出了MCNS,用自對比近似逼近正分布,用Metropolis-Hastings加速負抽樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了廣泛的下游圖數據學習任務,包括鏈接預測、節點分類和個性化推薦,總共有19個實驗設置。這些較為全面的實驗結果證明了其魯棒性和優越性。