亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在相互作用的個體或智能體之間出現協調行動是日常行為的一個共同特征。多智能體活動組織的關鍵在于智能體有效決定如何以及何時行動的能力,而強有力的決策往往是區分專家和非專家表現的關鍵。在本論文中,我們研究并模擬了人類和智能體在完成各種放牧任務時的行為協調和決策行為。放牧任務涉及兩組自主智能體的互動--需要一個或多個放牧智能體來控制一組異質目標智能體。這類活動在日常生活中無處不在,是日常多智能體行為的典型范例。我們首先提出了一套簡單的局部控制規則和目標選擇策略,使放牧智能體能夠收集和控制一群不合作、不鎖定的目標智能體。然后,我們研究了所提出的控制過程對牛群規模變化和牧民對目標施加的排斥力強度變化的穩健性。我們還通過 ROS 仿真和使用真實機器人進行的實驗證實了建議方法的有效性。然后,我們采用監督機器學習(SML)來預測人類牧民的目標選擇決策。研究結果表明,無論是在短(< 1 秒)還是長(> 10 秒)時間尺度上,都可以使用 SML 有效地預測人類行為者的決策行為,而且可以使用由此產生的模型賦予人工牧民 “類人”決策能力。最后,我們利用可解釋人工智能來了解人類牧民在做出目標選擇決策時所使用的狀態信息。研究結果揭示了專家牧民和新手牧民在決策時如何權衡狀態信息的差異,這是第一項強調可解釋人工智能技術在理解多智能體快節奏互動過程中人類決策標記行為的潛在效用的研究。

圖 3.6: ROS 模擬。頂部面板顯示了在 Gazebo 環境中模擬的目標智能體(綠線)和牧民(灰線)采用 (a) 靜態競技場分區、(b) 領導者-追隨者和 (c) 點對點牧民策略的軌跡。封閉區域 G 用紅圈表示。黑色方形標記表示牧民的初始位置和最終位置(實心色)。綠色圓圈標記表示目標智能體的初始和最終(純色)位置。下圖顯示,所有牧民都能按照(d)靜態競技場分區、(e)領導者-追隨者和(f)點對點牧民策略規定的角度邊界(紅線),在 500 秒內收集牧群。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

人工智能推薦決策是一種人類-自主團隊合作形式,其中人工智能推薦系統向人類操作員推薦解決方案,而人類操作員則負責最終決策。本文旨在通過支持人類決策者的認知判斷過程,增強能力。本文建議通過向決策者提供相關信息,讓人工智能生成可能的行動方案,以此作為解釋或詮釋復雜人工智能模型的替代方案。研究結果表明,這種支持人類判斷過程的技術在以下方面非常有效:(1)提高人類決策者的態勢感知和任務性能;(2)校準他們對人工智能隊友的信任;(3)減少對人工智能伙伴的過度依賴。此外,參與者還能確定人工智能的錯誤邊界,這使他們能夠知道何時以及何時不應依賴人工智能的建議。隨后,總結了這些發現和相關結論,作為提高人類-人工智能團隊非算法透明度的設計指南,以便將該指南應用到其他領域。

付費5元查看完整內容

當前的人工智能(AI)模型通常通過精細的參數調整和優化技術來提升性能。然而,模型背后的基本設計原則相對較少受到關注,這可能限制我們對其潛力和局限性的理解。本綜述探討了塑造現代AI模型的多樣化設計靈感,即腦啟發的人工智能(BIAI)。我們提出了一個分類框架,將BIAI方法分為物理結構啟發型和人類行為啟發型模型。我們還審視了不同BIAI模型在實際應用中的表現,突出其實際優勢和部署挑戰。通過深入探討這些領域,我們提供了新的見解,并提出了推動創新和解決當前領域內空白的未來研究方向。本綜述為研究人員和從業者提供了BIAI領域的全面概覽,幫助他們利用其潛力,加速AI開發的進步。

1 引言

人工智能(AI)的一個基本目標是創造能夠像人類一樣學習和思考的機器。為了實現這一目標,人工學習器在多個領域中取得了顯著的里程碑,包括目標和語音識別【131, 151】、圖像處理【115】、機器人技術【50】、醫學數據分析【161】、自然語言處理(NLP)【114】等。這些成功加速了AI的發展,使其在某些領域能夠與人類匹敵甚至超越。例如,AI模型現在在某些特定任務中表現優于人類,如語言翻譯【134】、圖像識別【63】甚至戰略游戲如國際象棋和圍棋【155】。最近,許多公司提出了一系列能夠理解圖像、音頻、視頻和文本的多模態模型,其能力類似于人類【3, 7, 169】。這種快速的進步彰顯了AI在各個領域中的變革潛力,推動了技術能實現的邊界。然而,旨在創造具有類似人類思維和推理能力的機器的一般AI方法在可擴展性、魯棒性、能效、可解釋性、學習效率和適應性方面仍然存在局限性【98】。 人類大腦被認為是最復雜的信息處理系統,能夠解決諸如學習、推理和感知等復雜任務。基于對人腦研究的最新進展,研究人員正在將神經科學的見解整合到AI系統中,旨在開發能夠更接近人類行為的感知、推理和行動的腦啟發人工智能(BIAI)系統【128, 163】。這一努力源于對生物智能的基本原理的理解,并希望利用這些原理來構建更智能、適應性更強和更魯棒的AI系統。什么是腦啟發人工智能(BIAI)?BIAI指的是從人類大腦和神經系統的生物結構、功能和原理中獲得靈感的AI系統和算法。它專注于復制或模仿生物體中觀察到的復雜過程和功能,以在人工系統中實現更類似于人類或大腦的行為【197】。與一般AI算法相比,BIAI通常集中于人類行為的特定方面,如從經驗中學習、適應新環境以及關注重要信息。在這篇全面綜述中,BIAI文獻大致分為物理結構(PS)啟發型模型和人類行為(HB)啟發型模型。PS啟發型模型是指模仿生物神經元、突觸和神經回路結構的模型,用于執行諸如學習、推理和決策等任務。代表性模型包括多層感知器(MLP)、人工神經網絡(ANNs)以及最近的脈沖神經網絡(SNNs)。HB啟發型模型被定義為復制人類行為中觀察到的生物機制和過程的模型。這些模型旨在捕捉生物系統的動態,同時提供對人類如何感知、學習、適應和與環境互動的見解。注意力機制、遷移學習和強化學習是常見的人類行為啟發的深度學習方法。BIAI與一般AI的區別在于它們在AI領域中的不同方法和目標【31, 77】。具體而言,一般AI并不一定受到人類大腦具體工作方式的啟發,而是旨在更廣泛的意義上達到或甚至超越人類水平的智能。相反,設計BIAI系統的目的是復制或模仿人類認知背后的生物機制和過程。這些系統通常在圖像識別和機器人控制等任務中表現出色,但它們可能不具備人類智能的全方位能力。BIAI與傳統AI的更全面比較見表1。為什么BIAI重要?BIAI的重要性主要體現在兩個方面。一方面,BIAI在適應性、泛化能力和可解釋性等許多方面有潛力超越傳統的AI方法。另一方面,BIAI模型旨在模仿大腦的結構和功能,從而增加其生物學的合理性。這種與生物學原理的契合不僅加深了我們對智能的科學理解,也為神經科學和AI研究之間的合作創造了新的機會。本質上,通過從人類大腦——最先進的信息處理系統——中汲取靈感,研究人員正在為開發可能達到甚至超越人類能力的智能系統奠定基礎【47, 103, 125】。

**1.1 動機

人類大腦是生物復雜性的頂峰。它不僅調節所有身體功能和過程,還使高級認知能力得以實現,如思維、記憶和情感【16】。將神經科學與AI系統相結合有助于解決許多現實應用中的緊迫問題和某些瓶頸【204】。一方面,人類大腦在處理大量信息時效率極高,同時消耗的能量相對較少。模仿其架構和過程可以使AI系統在操作上同樣高效和優雅。例如,傳統機器人無法在復雜環境中及時獲取環境知識,這限制了其做出準確快速決策的能力。此外,在該領域中,低學習效率、泛化能力差、難以制定目標導向的策略以及對動態環境的慢適應性等問題仍然存在。將BIAI整合到機器人系統中可以顯著提高機器人的運動和操控能力【132】。此外,BIAI還可以應用于解決許多其他現實問題,如醫學診斷、自動駕駛汽車、聊天機器人和虛擬助手、網絡威脅檢測、輔導系統、供應鏈優化、內容創作和個性化推薦。這些應用突顯了BIAI在不同方面的廣泛影響和相關性。另一方面,理解大腦的機制不僅為我們提供了有關智能如何產生的見解,還為解決AI中的復雜問題提供了線索。通過研究生物神經網絡,研究人員可以開發更好地捕捉認知和感知復雜性的算法和架構。例如,神經網絡作為AI的基礎和基本模型之一,汲取了大腦結構和計算過程的靈感。作為現代AI的基石,神經網絡推動了醫療、金融、交通和娛樂等領域的進步。它們從數據中學習并揭示有價值的見解的能力使其成為解決復雜挑戰和推動AI創新的關鍵。此外,人類大腦具有顯著的魯棒性和適應性,能夠從經驗中學習,處理噪聲和不確定數據,并將知識泛化到新情境【41】。通過模仿大腦的彈性和適應性,BIAI旨在創造更為魯棒和多功能的AI系統。這種方法還強調了透明性、可解釋性和責任感,從而優先考慮倫理AI的發展。以生物系統為模型的智能化推動了可信賴且符合人類價值觀的AI的創建。盡管BIAI在推動AI和機器人技術方面具有巨大的潛力【102】,但它也面臨著一些挑戰和局限性。人類大腦是一個極其復雜的器官,擁有數十億的神經元和數萬億的突觸,這些神經元和突觸組織成復雜的網絡,控制著認知、感知和行為。在人工神經網絡(ANNs)中復制這種復雜性帶來了巨大的計算和工程挑戰【160】。由于人腦的復雜性,盡管經過了數十年的研究,我們對大腦的理解仍然不完整。許多大腦功能方面,如學習、記憶和意識,仍然理解不充分【152】。這種理解的缺乏使得將神經科學的見解轉化為BIAI的實際算法和架構的努力變得更加復雜。此外,BIAI模型的復雜性和不透明性妨礙了我們理解其決策過程的能力。這種明顯缺乏可解釋性和透明性的情況在安全關鍵型應用(如醫療保健和自動駕駛車輛)中引發了對責任感、偏見和可信賴性方面的重大擔憂【78, 91】。這些不足促使我們對BIAI進行全面研究。在文獻中,已有幾篇綜述論文從不同的應用場景和不同的視角調查了BIAI的算法。然而,大多數研究僅關注某一特定方面,如算法、應用場景或代價函數,缺乏對當前BIAI研究進展的詳細介紹和討論的全面綜述。在這篇綜述文章中,我們基于算法的靈感來源和學習機制對當前BIAI研究進行了分類和審視。對于每個BIAI算法,在介紹其特點和適用場景后,我們討論了其優缺點。然后,我們討論了當前BIAI模型的開放問題,并列出了幾個未來的研究方向。我們希望這篇全面綜述能為相關領域的研究人員提供有用的見解。

**1.2 相關綜述與新穎性

之前的研究涵蓋了腦啟發/類腦學習或計算范圍內的類似主題【62, 74, 132, 149】,但沒有一篇集中探討神經科學為AI模型帶來的具體知識,也沒有全面詳細地介紹BIAI系統。在【132】中,作者試圖總結腦啟發算法在智能機器人中的進展,深入探討了視覺認知、情感調節決策、肌肉骨骼機器人技術和運動控制等關鍵領域。Ou等人【122】介紹了類腦計算模型和芯片、它們的演變歷史、常見應用場景和未來前景。Hassabis等人【62】探討了AI與神經科學之間的歷史聯系,并研究了受人類和其他動物神經計算研究啟發的AI的最新進展。在【106】中,作者展示了機器學習和神經網絡如何改變動物行為和神經成像研究領域。關于人工神經網絡中的腦啟發學習,可以在【149】中找到生物學基礎和算法介紹。這篇綜述主要集中在如何從人類大腦的物理結構中學習。然而,沒有一篇綜述注意到并審視了受人類行為和學習機制啟發的AI模型。此外,他們也未全面討論AI可以從人類大腦和神經系統中學習哪些部分來設計模型。在本綜述中,我們主要回答以下問題:什么是BIAI?BIAI與一般AI有什么區別?BIAI能為我們帶來哪些優勢?我們可以從人類大腦的哪些角度來設計AI模型?哪些BIAI模型已經在現實世界中使用?引入BIAI可以進一步推動哪些研究領域?當將神經科學與AI模型相結合時,研究人員面臨哪些挑戰?當前BIAI技術中存在哪些差距,未來可以在哪些方面開展工作?通過回答這些問題,我們希望研究人員能夠加深對BIAI系統的理解,并提高他們為不同應用設計更合適的BIAI算法的能力。

**1.3 貢獻

本文的覆蓋范圍如圖1所示。我們的主要貢獻總結如下:

  • 我們引入了神經科學和人類行為研究中的知識和見解,強調了AI如何從神經結構、學習機制、注意力和焦點、記憶與回憶、認知過程以及人類大腦中觀察到的創造力和想象力中學習。
  • 我們將BIAI研究分為兩大類:物理結構啟發型模型和人類行為啟發型模型,為理解該領域的不同方法提供了框架。
  • 我們探討了BIAI模型的多種應用,包括它們在機器人技術、醫療保健、情感感知和創意內容生成中的應用,展示了這些模型在各個領域中的廣泛潛力。
  • 我們討論了BIAI開發和實施過程中面臨的挑戰,例如理解大腦功能、與神經科學的整合以及構建高效、魯棒、倫理、具有意識且可解釋的模型。我們還概述了應對這些挑戰的未來研究方向。 本文的其余部分組織如下。第2節總結了可以為AI系統提供信息的神經科學和人類大腦功能知識。接下來,綜述按照圖1所示的分類結構展開。第3節討論了BIAI的主要類別,即物理結構啟發型模型和人類行為啟發型模型。第4節探討了BIAI在各個領域的實際應用。在第5節中,我們概述了當前BIAI方法面臨的一般挑戰。第6節重點介紹了未來研究的幾個有前途的方向。最后,在第7節中總結了本次綜述。

付費5元查看完整內容

數量和數字塑造了人類歷史的整體進程,支配著貿易、科學、數學和戰爭。我們對比較兩個數量或識別一個數字與另一個數字的認知機制還不甚了解。在這篇論文中,研究了支配數字認知的過程。通過一系列的研究,確定我們是如何將兩個大數量和兩個小數量的信息結合起來的。具體來說,確定了這些認知處理系統的處理架構(并行與串行)和工作量(效率)。然后,通過模擬研究擴展了這項工作,開發出一套新的分布特征,可用于識別并行和串行處理架構的混合物。最后,對數字的心理表征進行了跨文化研究。通過使用混淆分數,對講英語和講漢語的人群中的阿拉伯數字、泰語、漢語和圓點數字的心理表征進行了建模。這項調查顯示了心理表征是如何隨著專業知識水平的提高而變化的。本論文開發了新的方法和分析技術,并對支配數字認知的基本過程提供了新的見解。

付費5元查看完整內容

在結構良好、信息完備的環境中,決策制定是無法保證的。研究中的任務通常側重于在無限時間框架內利用完整信息做出決策,而在信息缺失或不確定的情況下,當前的研究并未涉及缺失信息在環境中的分布所產生的影響。本文旨在具體了解這些信息分布如何影響時間壓力下的決策者,以及如何在一系列決策策略中為不完美環境下的決策提供最佳支持。這項工作有三方面的貢獻。首先,研究結果表明,在六項以不同信息復雜性和決策策略偏差為特征的獨立人體研究中,所研究的三個信息分布因素(即總信息、完整屬性對和信息不平衡)對決策準確性具有顯著的預測作用。其次,本論文通過信息估計和決策前信息搜索的視角,強調了專家和新手行為的關鍵差異,這進一步解釋了不確定性下的個體差異,并為這些環境下的決策支持系統(DSS)提供了新穎的設計考慮。最后,在啟發式和分析式偏差環境中,信息修正和選項預測決策支持系統的應用表明,各成績組的準確性顯著提高,響應時間顯著縮短。

圖 3.2:參照兩個示例目標(危險程度高的導彈和危險程度低的運輸工具)的可視化決策任務。

決策環境與人體實驗任務

要回答所有研究問題,就必須能夠在信息不完整的情況下,在人體實驗中將這些問題具體化。為此,下文將簡要介紹本論文中使用的兩種決策環境,并在后續章節中對其設計和實施進行詳細說明。

  • 防空作戰協調

第一個環境要求參與者扮演一艘軍艦上的防空作戰協調員(AAWC),其領空內有目標。決定目標敵意的決策標準基于四個二元線索:高度、速度、與中立空中走廊的距離和大小。標準分數由每個選項的提示分數的線性加權組合計算得出,提示按提示加權的等級順序顯示。參與者只需從兩個目標中選擇一個最危險的目標,并與飛機交戰。每個決定都必須在 20-30 秒內做出,參與者可使用彩色計時器進行時間管理。

  • 車道防御游戲

第二個環境是由 Unity 游戲引擎構建和托管的車道防御游戲。游戲的每一輪都有一組獨特的三個選項,它們從屏幕左側沿著三條車道中的一條向屏幕右側移動。參與者有 60 秒的時間來判斷這三個選項中哪個最危險。為了做出決定,參與者可以訪問詳細的情報菜單,該菜單顯示了描述每個敵人敵意程度的五個提示值(武器、體型、裝甲、盾牌、頭盔),這些提示值按提示權重排序顯示。在以前的 AAWC 環境中,參與者需要根據閾值臨界值對每個可用線索值做出敵意/非敵意判斷。在這個環境中,參與者的這一過程被簡化了,非敵意提示值用綠色向下箭頭表示,敵意提示值用紅色向上箭頭表示。新環境的特點包括幾乎雙倍的可能信息總量、信息訪問跟蹤以及更靈活的用戶界面設計,所有這些都有助于對所有三個研究問題進行更詳細的探討。

技術貢獻

在信息缺失或不確定的環境中,信息的分布如何影響決策結果,文獻尚未對此有全面的認識。本論文在一系列決策環境的人類受試者研究中考察了信息結構的三種測量方法(TI、CAP、II),并證明信息不平衡最小化和完整屬性對最大化最有利于提高決策準確性(第 4、5、8 章)。研究發現,總信息量的增加總體上有助于提高準確性,但如果不包含 CAP 和 II,則不足以解釋準確性的提高。此外,生態合理決策策略(由環境結構定義)對這些結果也有影響(第 8 章)。經測試發現,補償生態學(WADD、高分散和低分散)對信息結構的變化更為敏感,而非補償生態學(TTB)則不太敏感,尤其是對信息不平衡的變化。

此外,本論文還研究了對缺失信息進行估計的作用,并首次對決策者的估計策略進行了直接征詢。這項在 AAWC 環境中完成的研究(第 5 章)表明,新手傾向于估計幾乎所有缺失信息,而任務專家則能夠忽略信息,主要根據第一個可用的(也是最重要的)線索來估計信息。這與 Lane Defense 研究(第 8、9、10 章)中的策略選擇數據相吻合,這些數據表明,無論環境結構如何,新手都傾向于補償性決策行為,這違反了非補償偏置環境中的生態合理性。

最后,決策支持在被拒止和退化的環境中所能發揮的作用在這里得到了更充分的證實。第 6 章測試了獲取和限制信息的概率方法和基于規則的方法,結果表明基于規則和基于概率的修改技術都能帶來更大的決策結果。第 9 章將支持系統的設計向前推進了一步,對比了基于圖形用戶界面的隊友與基于獲取的隊友,前者可以卸載信息估算,而后者則采用第 6 章中基于規則的方法為參與者收集缺失的信息。結果發現,這兩種方法都能顯著提高新手和專家的成績。

付費5元查看完整內容

面對未來復雜多變的戰場,軍事行動越來越需要自主能力更強的機器人為士兵提供支持。要在軍事行動的整個過程中建立人類與機器人團隊合作的共同基礎,就必須進行有效的溝通。然而,人們對混合主動協作的溝通類型和形式仍不完全了解。本研究探討了人機交互中的兩種交流方式--透明度和通信模式,并研究了在協作演習中,機器人隊友操縱這些元素對人類隊友的影響。參與者與計算機模擬的機器人一起執行一項類似 “警戒搜索 ”的任務。人機界面提供了不同類型的透明度--關于機器人單獨的決策制定過程,或關于機器人的決策制定過程及其對人類隊友決策制定過程的預測--以及不同的通信模式--或者向參與者傳遞信息,或者既向參與者傳遞信息又從參與者那里獲取信息。實驗結果表明,與互動性較弱的機器人相比,既能傳遞信息又能征求信息的機器人更有活力、更討人喜歡、也更智能,但與這些機器人合作會導致在目標分類任務中出現更多失誤。此外,回應機器人的行為也會導致正確識別的數量減少,但只有當機器人只提供有關其自身決策過程的信息時才會出現這種情況。這項研究成果為設計支持人機協作的下一代視覺顯示器提供了參考。

付費5元查看完整內容

現有的決策計算模型往往局限于特定的實驗設置。造成這種限制的主要原因是無法捕捉決策者對情況的不確定性。本文提出了一個計算框架,用于研究神經科學和心理學中不確定情況下的決策制定。框架主要側重于決策者對世界狀況的概率評估,即他們的 “信念”。具體來說,它基于部分可觀測馬爾可夫決策過程(POMDPs),結合貝葉斯推理和獎勵最大化來選擇行動。利用感知決策和社會決策方面的各種實驗數據,證明了基于信念的決策框架的可行性。框架解釋了感知決策實驗中決策者的實際表現與他們對實際表現的信念(即決策信心)之間的關系。它還說明了為什么在許多情況下這種評估會偏離現實。這種偏差通常被解釋為次優決策的證據,或選擇和信心的不同過程。我們的框架對這些解釋提出了挑戰,它表明,一個優化收益的規范貝葉斯決策者也會產生同樣的偏差。此外,在定量預測人類在社會決策任務中的行為方面,方法優于現有模型,并提供了對潛在過程的洞察。結果表明,在涉及大型群體的決策任務中,人類采用貝葉斯推理來模擬 “群體心理”,并對他人的決策做出預測。最后,將方法擴展到關于他人的多個推理層次(心智理論層次),并將服從作為群體決策的一種策略聯系起來。這個擴展框架可以解釋人類在各種集體群體決策任務中的行為,為大型群體中的合作與協調提供了新的理論。

圖 1.1: 基于信念的決策框架。智能體通過行動、觀察和獎勵與世界互動。智能體無法完全觀測到世界的狀態,只能根據觀測結果和智能體的內部世界模型,以概率方式表示世界的狀態。智能體的目標是根據當前狀態的概率分布來制定策略,即所謂的信念

付費5元查看完整內容

本文是研究指揮與控制(C2)未來表現形式的四篇系列論文中的第一篇。第一篇論文通過探討未來指揮與控制(C2)系統需要在其中運行的未來作戰環境,為后續研究設定了基線。具體來說,本文探討了復雜性的驅動因素、表現形式和影響,而此前的研究表明,復雜性很可能是這一環境的特征。為此,它討論了 C2 和復雜性等關鍵術語的定義;介紹了未來運行環境中復雜性的一些驅動因素,并討論了這些因素如何對 C2 系統和組織造成新的壓力;研究了分析和理解復雜性的可能方法;并概述了 2030 年代及以后可能產生的一些實際考慮因素。由于本文旨在為本系列的后續三篇論文提供資料,因此沒有全面涵蓋未來 C2 思考的所有方面,包括提出具體建議。

研究問題

  • 根據當前的全球社會和技術趨勢進行預測,國防和合作伙伴可能面臨的持續競爭和多領域作戰的作戰環境的性質是什么?
  • 基于這種對未來的預測,未來的 C2 系統和組織將面臨怎樣的復雜性;即復雜性的可能來源是什么?
  • 考慮到未來作戰環境的這一特點,未來的 C2 系統和組織需要具備哪些條件?
  • 未來的 C2 系統和組織需要什么樣的新能力和特性才能有效應對這些需求?

有爭議的定義

C2 沒有直截了當的定義,對于該術語在當代作戰環境中的范圍和相關性也存在爭議。對 C2 傳統定義的批判來自于對 21 世紀有效領導力構成要素的更廣泛質疑。在英國、美國和北約,最近出現了大量與 C2 相關的新術語,并將重點從聯合思維轉向多領域思維。我們的研究將 C2 定義為一個動態的、適應性強的社會技術系統,因此有必要考慮組織、技術和人力要素。

同樣,復雜性也沒有一個公認的定義。學術界對復雜性的研究日益增多,涉及多個科學學科,但缺乏統一的方法或理論框架。一個有用的出發點是區分簡單系統、復雜系統、復雜系統和復雜適應系統。文獻還描述了在這些條件下可能出現的所謂 "棘手"或 "超級棘手問題"。還可以對有限博弈和無限博弈進行重要區分--這是考慮作為復雜適應系統的國家間競爭時的一個有用視角。鑒于這些爭論,我們的研究避開了對復雜性的僵化定義,而是從其關鍵屬性的角度對這一現象進行了 DCDC 式的描述。

復雜性的預計驅動因素

未來作戰環境的特征--以及國防 C2 系統和組織預計將執行的任務類型--具有很大的不確定性,因此任何預測都必須謹慎。盡管如此,文獻指出了各種政治、經濟、社會、技術、法律、環境和軍事(PESTLE-M)趨勢,預計這些趨勢將影響國際體系的演變,進而影響 2030 年及以后的國防行動。這些趨勢包括以下宏觀趨勢

  • 日益增強的互聯性、多極化和全球競爭
  • 不斷變化的氣候的影響
  • 技術變革和數字化的影響
  • 傳統和新穎領域的模糊化
  • 國際準則和價值觀的轉變。

最重要的是,沒有一個單一或主要的趨勢推動著變化或復雜性;相反,最令人擔憂的是多種因素的融合及其不可預測的相互作用。這種認識為進一步研究這些趨勢影響國際體系復雜性水平和特征的具體機制提供了基礎,從而為在這一領域開展工作的 C2 帶來了新的挑戰。

復雜性的表現

上述 PESTLE-M 趨勢為未來組織應對 C2 帶來了一系列困境和壓力,包括但不限于

  • 不確定性
  • 模糊性
  • 多義性
  • 信息超載
  • 認知偏差
  • 面對瞬息萬變的事件,決策癱瘓或節奏不足
  • 難以確保決策(包括人工智能)或信任決策所依據的數據、邏輯和假設
  • 難以調動所有必要的權力杠桿,或協調參與制定和執行特定戰略或行動計劃的大量不同參與者(如跨政府合作伙伴、行業、國際盟友、公民)。

此外,無論是理論家還是實踐者,在處理包含非線性動態的問題時,都缺乏有力的措施來衡量所做決定或采取的行動的有效性。因此,很難確切地說未來作戰環境中的復雜性是否在客觀上不斷增加(而不是以不同的形式出現),但對軍隊應處理的復雜任務的政治期望與當前 C2 方法的執行能力之間顯然存在巨大差距。當前的學術理論為決定如何在復雜環境中配置 C2 提供了一個方法工具包的初步輪廓和一些指導原則,但并沒有提供靈丹妙藥。該理論強調審議分析方法,即讓不同利益相關者參與共同設計、借鑒多學科和知識體系的見解,并在分析和決策過程中建立靈活性,以便根據反饋意見不斷迭代和改進的方法。

未來 C2 的實際考慮因素

要應對復雜的自適應系統,就必須摒棄當前的線性 C2 流程和等級結構,盡管在處理非復雜任務和問題時,更傳統的方法可能仍然有用。在競爭激烈的世界中,英國既需要培養能夠對他人施加建設性影響的特性和能力(例如,將復雜性強加給對手的 C2),也需要培養能夠增強自身駕馭復雜性能力的特性和能力。

要影響敵對行動者的觀念、決策和行為,首先要深入了解其 C2 結構、流程和文化。根據這種了解,英國國防需要一套動能和非動能杠桿,對敵方的 C2 施加建設性影響,包括施加復雜性。除了敵對行動者,英國國防部還需要進一步了解如何對 PAG、盟友、合作伙伴、工業界、學術界、公民和對 C2 采取截然不同方法的其他人施加建設性影響。

在增強英國自身應對復雜性的能力方面,未來的 C2 系統和組織必須促進靈活性、復原力以及學習和適應能力等特性。整個決策周期都需要變革。例如,傳感器和通信技術的進步為獲取更多深度和廣度的數據提供了機會,包括有關復雜問題的數據。因此,提高認知能力對于理解所有這些數據至關重要,既要利用人類和機器的優勢,又要減少各自的缺點。要改變決策方法,還需要改變領導風格,以培養更善于駕馭復雜適應系統的決策者。在做出決策或計劃后,提高跨部門或跨層級的能力,在實施階段更好地整合活動或匯聚效應,對于抵消英國的局限性(如在質量方面)至關重要。

同樣,整合也不是萬全的;如果國防缺乏足夠深度的力量和能力,無法在充滿敵意的威脅環境中采取可信行動或維持高節奏行動,那么即使是最高效的指揮控制系統也無法在未來取得成功。此外,還需要采取防御措施以及恢復和失效模式,以阻止或減輕敵方破壞 C2 系統和組織的努力所造成的影響。鑒于所面臨的威脅,以及英國國防可能需要解決的不同形式的復雜問題,很可能會同時出現多種并行的 C2 模式,而不是單一的方法。應對復雜性意味著不斷學習、適應、創新和開放求變。因此,必須從一開始就將效果衡量標準、信號和變革機制納入計劃以及 C2 系統和組織,使其能夠隨著時間的推移不斷學習和調整,以應對各種情況。至關重要的是,未來 C2 系統和組織的設計只是挑戰的一部分--它們還必須得到更廣泛的國防企業緊急改革的支持,以確保獲得所需的使能因素(人員、技術等)。從 C2 的角度來看,這本身就是一個挑戰,因為改變這個企業--一個復雜的適應性系統--本身就是一個棘手的問題。

結論和下一步行動

學術理論家和政府、軍事或工業從業人員對復雜性或復雜適應系統的理解并不全面,而這正是未來 C2 運行環境的特點。雖然文獻提供了處理復雜性的有用方法和工具,以及未來 C2 的一些初步設計考慮,但英國 C2(本身就是一個社會技術系統)的現代化和轉型將是一項高度復雜的工作。這意味著要與不斷發展的作戰環境、不斷變化的威脅和技術環境共同適應,從而進行迭代和不斷學習。因此,最緊迫的挑戰或許是,考慮到 C2 系統在未來面對復雜性時取得成功所需的轉型(技術、結構、流程、文化、教育等)的程度和性質,了解如何在一段時間內最好地引導這一過程。

自相矛盾的是,要克服實現以應對復雜性為目標的 C2 系統所面臨的障礙,可能需要英國國防部已經表現出其所尋求建立的系統的許多特征。面對這樣的循環邏輯,英國國防部可能需要某種外部沖擊來迫使其進行創造性的破壞,或者利用(或不顧)更傳統、線性的 C2 方法來啟動自身的激進改革努力,并隨著時間的推移,隨著變化的到來而進行調整。

付費5元查看完整內容

本論文旨在研究飛行員在不同模擬環境中的表現與認知、情緒、疲勞和生理的關系。本論文拓寬了對飛行員在作戰環境中非技術技能發展的理解并擴大了其可能性。論文在低保真和高保真兩種環境下對這些現象進行了研究。在研究 I 中,使用低保真模擬對商業飛行員的動態決策進行了調查。接下來,在研究二、三和四中,使用高仿真環境,重點調查了軍事背景下長時間飛行任務中的認知、情緒及其生理關聯。

研究 I 表明,低保真模擬有助于了解商業飛行員動態決策中的認知過程。使用此類模擬可幫助飛行員識別可用于不明確問題的有用信息,這對成功的決策過程至關重要。飛行員決策能力的培養可以通過使用低保真模擬來補充。這可能有利于整個決策過程,包括診斷、判斷、選擇、反饋提示和執行。

研究二、研究三和研究四表明,在評估個人心理方面的情況時,需要高保真環境,這就要求對自然環境有較高的再現水平。長時間單人駕駛飛機執行任務時,應考慮到飛行員在執行任務約 7 小時后可能會出現持續注意力下降、積極情緒減少和消極情緒增加的情況。然而,在 11 小時的飛行任務中,更復雜的認知任務的表現可能不會下降。心率變異性與情緒評級之間的關聯可能表明生理喚醒水平。這可能有助于評估飛行員在這種情況下的整體心理狀態。對飛行員在這種環境下的心理狀態進行全面評估,可能有助于飛行員做好準備,并有助于制定長時間飛行任務的計劃。

綜上所述,本論文的結論表明,適當使用低保真和高保真模擬可促進飛行員認識到適應環境變化的必要性。這促進了作為安全基本要素的應變能力。

付費5元查看完整內容

具有從過去的經驗中學習并根據環境或背景調整行為以實現特定目標的能力,是真正智能實體的特征。為了實現這一目標,開發高效、穩健和可靠的學習算法是研究的活躍領域,也是實現人工通用智能的重要步驟。在本論文中,我們研究了在兩種不同背景下進行最優決策的學習算法,第一部分是強化學習,第二部分是拍賣設計。

強化學習(RL)是機器學習的一個領域,關注的是智能體應該如何在環境中行動以最大化其隨時間累積的獎勵。在第二章中,受統計物理學的啟發,我們開發了一種新穎的強化學習方法,這種方法不僅學習具有增強期望屬性的最優策略,而且為最大熵強化學習帶來了新的見解。在第三章中,我們使用貝葉斯觀點來解決強化學習中的泛化問題。我們展示了環境動態的不完美知識實際上將一個完全觀察到的馬爾可夫決策過程(MDP)轉變為一個部分觀察到的馬爾可夫決策過程(POMDP),我們稱之為認知POMDP。根據這個觀察,我們開發了一種新的策略學習算法LEEP,它具有改進的泛化屬性。

拍賣是組織購買和銷售產品與服務的過程,具有很大的實際意義。設計一個激勵兼容、個體理性的拍賣以最大化收入是一個具有挑戰性且難以解決的問題。最近,有人提出了一種基于深度學習的方法,從數據中學習最優拍賣。盡管取得了成功,但這種方法存在一些局限性,包括樣本效率低、難以泛化到新的拍賣以及訓練困難。在第四章中,我們構建了一種保持對稱性的神經網絡結構,稱為EquivariantNet,適用于匿名拍賣。EquivariantNet不僅樣本效率更高,而且能夠學習到在其他設置中泛化性能良好的拍賣規則。在第五章中,我們將拍賣學習問題提出為一個雙人博弈的新穎表述。由此產生的學習算法ALGNet更容易訓練,更可靠,更適合非平穩設置。

付費5元查看完整內容

隨著廣泛的應用,人工智能(AI)催生了一系列與人工智能相關的研究活動。其中一個領域就是可解釋的人工智能。它是值得信賴的人工智能系統的重要組成部分。本文概述了可解釋的人工智能方法,描述了事后人工智能系統(為先前構建的常規人工智能系統提供解釋)和事后人工智能系統(從一開始就配置為提供解釋)。解釋的形式多種多樣:基于特征的解釋、基于說明性訓練樣本的解釋、基于嵌入式表示的解釋、基于熱度圖的解釋。也有結合了神經網絡模型和圖模型的概率解釋。可解釋人工智能與許多人工智能研究前沿領域密切相關,如神經符號人工智能和機器教學

付費5元查看完整內容
北京阿比特科技有限公司