亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

目前,以深度學習為代表的人工智能算法憑借超大規模數據集以及強大的計算資源,在圖像分類、生物特征識別、醫療 輔助診斷等領域取得了優秀的成果并成功落地.然而,在許多實際的應用場景中,因諸多限制,研究人員無法獲取到大量樣本 或者獲取樣本的代價過高,因此研究圖像分類任務在小樣本情形下的學習算法成為了推動智能化進程的核心動力,同時也成為 了當下的研究熱點.小樣本學習指在監督信息數量有限的情況下進行學習并解決問題的算法.首先,從機器學習理論的角度 描述了小樣本學習困難的原因;其次,根據小樣本學習算法的設計動機將現有算法歸為表征學習、數據擴充、學習策略三大類, 并分析其優缺點;然后,總結了常用的小樣本學習評價方法以及現有模型在公用數據集上的表現;最后,討論了小樣本圖像分類 技術的難點及未來的研究趨勢,為今后的研究提供參考。

近年來,人工智能技術在大數據時代迎來了高速發展,從 早期的學術探索迅速轉變為實際應用.目前,以深度學習為 代表的人工智能算法憑借超大規模數據集以及強大的計算資 源,在圖像分類、生物特征識別、醫療輔助診斷等領域取得了優秀的成果并成功落地. 然而,當今現實場景中通常并不具備獲得大規模可訓練 數據的條件,這不利于許多傳統行業的智能化轉型.另一方 面,由于圖像分類算法在實際應用中起著關鍵性的作用,因此 面向圖像分類的小樣本學習的關鍵算法研究成為了產業智能 化轉型的驅動引擎之一.

深度學習以大規模數據集為前提,在圖像分類、目標檢 測、文本分析[1G3]等領域取得了顯著的成功.然而在實際場景 中,首先,由于成本、隱私、安全或道德問題,相關研究者很難 或不可能獲得大規模、高質量的數據及標注.例如,在醫療領 域,醫學影像的產生來源于病例,但少量的病例并不能夠輔助 機器對醫療影像進行分析.其次,在算法設計層面,研究者期 望機器學會以人類的方式進行學習,即在獲取少量樣本的情 況下,對樣本進行分類和識別,并且具有快速理解新概念并將 其泛化的能力. 為了能夠在監督信息數量有限的情況下進行學習,針對 小樣本學習(FewGshotLearning)[4G8]的研究應運而生.在小 樣本分類中,模型在一組具有豐富樣本的類別集上進行訓練, 這些類稱為基類,然后在類別不交叉的僅具有少量樣本的另 一組類別集(新類)上進行訓練與測試.

目前,針對小樣本學習的研究工作越來越豐富,隨著深度 學習的發展,涌現了很多新穎的小樣本學習方法[9G11].例如, 在模型表征階段采用自監督學習以更好地表征出圖像[12G15]; 在數據 擴 充 階 段,采 用 從 原 始 域 擴 充 或 從 語 義 空 間 擴 充 等[11,16G17]方式來處理小樣本學習任務;在學習階段,使用遷移 學習、度量學習、元學習等算法[18G24]以更好地尋找到一個有 良好泛化能力的模型.現有的小樣本綜述文獻[25G26]通常從 算法類別的角度進行歸納總結,而本文將從理論誤差分析以 及算法設計 動 機 的 角 度 來 進 行 綜 述,并 覆 蓋 近 年 來 取 得 的 成果. 本文首先從機器學習理論的角度描述了小樣本學習難以 泛化的原因;其次,依據小樣本學習算法的設計動機將現有算 法歸為表征學習、數據擴充、學習策略三大類,并評價其優缺 點;然后,總結了常用的小樣本學習評價方法以及現有模型在 公用數據集上的表現;最后,提出了一些有前景的研究方向, 為今后的研究提供參考。

付費5元查看完整內容

相關內容

圖像分類是指給定一組各自被標記為單一類別的圖像,然后對一組新的測試圖像的類別進行預測,并測量預測的準確性結果。

圖像分類是計算機視覺中的一項重要任務,傳統的圖像分類方法具有一定的局限性。隨著人工智能技術的發展,深度學習技術越來越成熟,利用深度卷積神經網絡對圖像進行分類成為研究熱點,圖像分類的深度卷積神經網絡結構越來越多樣,其性能遠遠好于傳統的圖像分類方法。本文立足于圖像分類的深度卷積神經網絡模型結構,根據模型發展和模型優化的歷程,將深度卷積神經網絡分為經典深度卷積神經網絡模型、注意力機制深度卷積神經網絡模型、輕量級深度卷積神經網絡模型和神經網絡架構搜索模型等4類,并對各類深度卷積神經網絡模型結構的構造方法和特點進行了全面綜述,對各類分類模型的性能進行了對比與分析。雖然深度卷積神經網絡模型的結構設計越來越精妙,模型優化的方法越來越強大,圖像分類準確率在不斷刷新的同時,模型的參數量也在逐漸降低,訓練和推理速度不斷加快。然而深度卷積神經網絡模型仍有一定的局限性,本文給出了存在的問題和未來可能的研究方向,即深度卷積神經網絡模型主要以有監督學習方式進行圖像分類,受到數據集質量和規模的限制,無監督式學習和半監督學習方式的深度卷積神經網絡模型將是未來的重點研究方向之一;深度卷積神經網絡模型的速度和資源消耗仍不盡人意,應用于移動式設備具有一定的挑戰性;模型的優化方法以及衡量模型優劣的度量方法有待深入研究;人工設計深度卷積神經網絡結構耗時耗力,神經架構搜索方法將是未來深度卷積神經網絡模型設計的發展方向。

//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20211001&flag=1

付費5元查看完整內容

目標檢測是計算機視覺領域中最基礎且最重要的任務之一,是行為識別與人機交互等高層視覺任務的基礎.隨著深度學習技術的發展,目標檢測模型的準確率和效率得到了大幅提升.與傳統的目標檢測算法相比,深度學習利用強大的分層特征提取和學習能力使得目標檢測算法性能取得了突破性進展.與此同時,大規模數據集的出現及顯卡計算能力的極大提高也促成了這一領域的蓬勃發展.本文對基于深度學習的目標檢測現有研究成果進行了詳細綜述.首先回顧傳統目標檢測算法及其存在的問題,其次總結深度學習下區域提案和單階段基準檢測模型.之后從特征圖、上下文模型、邊框優化、區域提案、類別不平衡處理、訓練策略、弱監督學習和無監督學習這八個角度分類總結當前主流的目標檢測模型,最后對目標檢測算法中待解決的問題和未來研究方向做出展望.

目標檢測是計算機視覺領域中最基礎且最具挑戰性的任務之一,其包含物體分類和定位[1].與此同時,目標檢測作為圖像理解和計算機視覺的基石,它為實例分割、圖像捕獲、視頻跟蹤等任務提供了強有力的特征分類基礎,因此探索高效實時的目標檢測模型是近年來研究的熱點.

傳統的目標檢測方法包括預處理、區域提案、特征提取、特征選擇、特征分類和后處理六個階段.大多數檢測模型關注于物體特征的提取和區域分類算法的選擇,在PASCAL VOC數據集[2]上的檢測準確率以較小步幅增長.Deformable Part?based Model(DPM)[3] 算法三次在PASCAL VOC目標檢測競賽上獲得冠軍,是傳統目標檢測方法的巔峰之作.然而在2008年至2012年期間,目標檢測模型在PASCAL VOC數據集上的檢測準確率逐漸達到瓶頸.傳統方法的弊端也展現出來,主要包括:(1)算法在區域提案生成階段產生大量冗余的候選框且正負樣本失衡;(2)特征提取器如HOG[4]、SIFT[5]等未能充分捕捉圖像的高級語義特征和上下文內容;(3)傳統檢測算法分階段進行,整體缺乏一種全局優化策略.

最近,深度學習經歷了一段前所未有的發展熱浪,AlexNet[6]在圖像分類任務中的優異表現讓人們重新燃起研究卷積神經網絡的興趣.相比于傳統算法,深度學習利用自動學習數據中的特征表達和學習能力加速了目標檢測的發展,在檢測速度和準確率方面均有顯著提升.正是由于目標檢測技術的快速發展,如今其已廣泛應用于智能視頻監控、機器人視覺、基于內容的圖像檢索、自動駕駛[7,8]等領域.

本文首先介紹目標檢測數據集及其評估指標,之后總結基于深度學習的目標檢測基準模型,再從特征圖、上下文模型、邊框優化、區域提案、類別不平衡處理、訓練策略、弱監督學習和無監督學習這八個方面歸納總結當前主流的目標檢測模型,最后討論目標檢測技術的未來發展趨勢與總結全文.

付費5元查看完整內容

摘要: 圖像分類的應用場景非常廣泛, 很多場景下難以收集到足夠多的數據來訓練模型, 利用小樣本學習進行圖像分類可解決訓練數據量小的問題. 本文對近年來的小樣本圖像分類算法進行了詳細綜述, 根據不同的建模方式, 將現有算法分為卷積神經網絡模型和圖神經網絡模型兩大類, 其中基于卷積神經網絡模型的算法包括四種學習范式: 遷移學習、元學習、對偶學習和貝葉斯學習; 基于圖神經網絡模型的算法原本適用于非歐幾里得結構數據, 但有部分學者將其應用于解決小樣本下歐幾里得數據的圖像分類任務, 有關的研究成果目前相對較少. 此外, 本文匯總了現有文獻中出現的數據集并通過實驗結果對現有算法的性能進行了比較. 最后, 討論了小樣本圖像分類技術的難點及未來研究趨勢.

付費5元查看完整內容

深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.

引言

隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。

實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。

元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。

在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。

Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。

元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。

付費5元查看完整內容

小樣本學習旨在通過少量樣本學習到解決問題的模型.近年來在大數據訓練模型的趨勢下,機器學習和深度學習在許多領域中取得了成功.但是在現實世界中的很多應用場景中,樣本量很少或者標注樣本很少,而對大量無標簽樣本進行標注工作將會耗費很大的人力.所以,如何用少量樣本進行學習就成為了目前人們需要關注的問題.本文系統梳理了當前小樣本學習的相關工作,具體介紹了基于模型微調、基于數據增強和基于遷移學習三大類小樣本學習模型與算法的研究進展;本文將基于數據增強的方法細分為基于無標簽數據、基于數據合成和基于特征增強三類,將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡三類.本文還總結了目前常用的小樣本數據集,以及代表性的小樣本學習模型在這些數據集上的實驗結果,隨后對小樣本學習的現狀和挑戰進行了概述,最后展望了小樣本學習的未來發展方向.

//www.jos.org.cn/jos/ch/reader/create_pdf.aspx?file_no=6138&journal_id=jos

隨著大數據時代的到來,深度學習模型已經在圖像分類、文本分類等任務中取得了先進成果.但深度學習模型的成功很大程度 上依賴于大量訓練數據,而在現實世界的真實場景中某些類別只有少量數據或少量標注數據,而對無標簽數據進行標注將會消耗 大量的時間和人力.與此相反,人類只需要通過少量數據就能做到快速學習.例如一個五六歲的小孩子從未見過企鵝,但如果給他看 過一張企鵝的圖像,當他進入動物園看到真正的企鵝時,就會馬上認出這是自己曾經在圖像上見過的“企鵝”,這就是機器學習和人類學習之間存在的差距.受到人類學習觀點的啟發[1],小樣本學習[2] [3](few-shot learning)的概念被提出,使得機器學習更加靠近人類思維.

早在 20 世紀八九十年代,就有一些研究人員注意到了單樣本學習(one-shot learning)的問題,直到 2003 年 Li 等[4]才正式提出了 單樣本學習的概念.他們認為當新的類別只有一個或幾個帶標簽的樣本時,已經學習到的舊類別可以幫助預測新類別[5].小樣本學 習也叫作少樣本學習(low-shot learning) [7],其目標是從少量樣本中學習到解決問題的方法.與小樣本學習相關的概念還有零樣本學 習(zero-shot learning)等.零樣本學習是指在沒有訓練數據的情況下,利用類別的屬性等信息訓練模型,從而識別新類別.

小樣本學習的概念最早從計算機視覺(Computer Vision) [8]領域興起,近幾年受到廣泛關注,在圖像分類任務中已有很多性能優 異的算法模型[34][37][45].但是在自然語言處理領域(Natural Language Processing) [9]的發展較為緩慢,原因在于圖像和語言特性不同.圖 像相比文本更為客觀,所以當樣本數量較少時,圖像的特征提取比文本更加容易[87].不過近年來小樣本學習在自然語言處理領域也 有了一些研究和發展[10][46][48].根據所采用方法的不同,本文將小樣本學習分為基于模型微調、基于數據增強和基于遷移學習三種. 基于模型微調的方法首先在含有大量數據的源數據集上訓練一個分類模型,然后在含有少量數據的目標數據集上對模型進行微 調.但這種做法可能導致模型過擬合,因為少量數據并不能很好地反映大量數據的真實分布情況.為解決上述過擬合的問題,基于數 據增強和基于遷移學習的小樣本學習方法被提出.基于數據增強的方法是利用輔助數據集或者輔助信息增強目標數據集中樣本的 特征或擴充對目標數據集,使模型能更好地提取特征.本文根據學習方法不同,將基于數據增強的小樣本學習方法進一步細分為基 于無標簽數據、基于數據合成和基于特征增強三類方法.基于遷移學習的方法是目前比較前沿的方法,是指將已經學會的知識遷移 到一個新的領域中.本文根據學習框架將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡(Graph Neural Networks)的方法.在度量學習的框架下目前已有許多性能較好的小樣本學習模型,例如比較著名的原型網絡(Prototypical Networks) [34]和匹配網絡(Matching Networks) [31]等.基于元學習的方法不僅在目標任務上訓練模型,而是從許多不同的任務中學習 元知識,當一個新的任務到來時,利用元知識調整模型參數,使模型能夠快速收斂.近年來隨著圖神經網絡的興起,研究者將圖神經網 絡也應用到小樣本學習中,取得了先進的結果.

除了圖像分類和文本分類這兩個主要任務,許多其他任務也面臨著小樣本問題.在計算機視覺應用中,利用小樣本學習進行人臉識別[8][60][82]、食品識別[61]、表情識別[66]、手寫字體識別[70][79]以及其他的圖像識別[65]. 在自然語言處理應用中,使用小樣本方法 實現對話系統[67]、口語理解[62],或者完成 NLP 的基本任務,例如 word embedding[63].在多媒體領域應用中,可以使用小樣本方法實現 影像提取[73]和聲紋識別[80]等.在生物與醫學領域,可以應用于疾病診斷[71][72]、臨床實驗[84]、護士能力評價[75]、農作物病害識別[69][81]、 水量分析[76]等.在經濟領域,可應用于產品銷量預測[77]等.在工業與軍事領域,可應用于齒輪泵壽命預測[78]、軍事目標識別[74]和目標 威脅評估[83]等.

本文首先從基于模型微調、基于數據增強和基于遷移學習三種方法介紹小樣本學習的研究進展,總結小樣本學習的幾個著名數據集以及已有模型在這些數據集上的實驗結果;接下來,本文對小樣本學習的研究現狀和主要挑戰進行總結;最后展望了未來的 發展趨勢.

付費5元查看完整內容

近年來,隨著深度學習的飛速發展,深度神經網絡受到了越來越多的關注,在許多應用領域取得了顯著效果。通常,在較高的計算量下,深度神經網絡的學習能力隨著網絡層深度的增加而不斷提高,因此深度神經網絡在大型數據集上的表現非常卓越。然而,由于其計算量大、存儲成本高、模型復雜等特性,使得深度學習無法有效地應用于輕量級移動便攜設備。因此,壓縮、優化深度學習模型成為目前研究的熱點,當前主要的模型壓縮方法有模型裁剪、輕量級網絡設計、知識蒸餾、量化、體系結構搜索等。通過對以上方法的性能、優缺點和最新研究成果進行分析總結,對未來研究方向進行了展望。

付費5元查看完整內容

摘要:圖像分類的應用場景非常廣泛,很多場景下難以收集到足夠多的數據來訓練模型,利用小樣本學習進行圖像分類可解決訓練數據量小的問題.本文對近年來的小樣本圖像分類算法進行了詳細綜述,根據不同的建模方式,將現有算法分為卷積神經網絡模型和圖神經網絡模型兩大類,其中基于卷積神經網絡模型的算法包括四種學習范式:遷移學習、元學習、對偶學習和貝葉斯學習;基于圖神經網絡模型的算法原本適用于非歐幾里得結構數據,但有部分學者將其應用于解決小樣本下歐幾里得數據的圖像分類任務,有關的研究成果目前相對較少.此外,本文匯總了現有文獻中出現的數據集并通過實驗結果對現有算法的性能進行了比較.最后,討論了小樣本圖像分類技術的難點及未來研究趨勢.

付費5元查看完整內容

最近深度神經網絡已經在監督識別任務上取得了令人振奮的突破,但是深度神經網絡要求每個類都有足夠 多的且完全標注的訓練數據。如何從少數訓練樣本中學習并識別新的類別,對于深度神經網絡來說是一個具有挑戰性的問題。針對如何解決少樣本學習的問題,全面總結了現有的基于深度神經網絡的少樣本學習方法,涵蓋了方法 所用模型、數據集及評估結果等各個方面。具體地,針對基于深度神經網絡的少樣本學習方法,提出將其分為四種 類別,即數據增強方法、遷移學習方法、度量學習方法和元學習的方法;對于每個類別,進一步將其分為幾個子類 別,并且在每個類別與方法之間進行一系列比較,以顯示各種方法的優劣和各自的特點。最后,強調了現有方法的局限性,并指出了少樣本學習研究領域的未來研究方向。

付費5元查看完整內容
北京阿比特科技有限公司