從 2D 分子圖中預測穩定的 3D 構象一直是計算化學中的一個長期挑戰。而最近,機器學習方法取得了相比傳統的實驗和基于物理的模擬方法更優異的成績。這些方法主要側重于模擬分子圖上相鄰原子之間的局部相互作用,而忽略了非鍵合原子之間的長程相互作用。然而,這些未成鍵的原子在 3D 空間中可能彼此接近,模擬它們的相互作用對于準確確定分子構象至關重要,尤其是對于大分子和多分子復合物。在本文中,作者提出了一種稱為動態圖評分匹配 (DGSM) 的分子構象預測新方法,該方法通過在訓練和推理過程中根據原子之間的空間接近度動態構建原子之間的圖結構來對局部和遠程相互作用進行建模。具體來說,DGSM根據動態構建的圖,使用評分匹配方法直接估計原子坐標對數密度的梯度場。可以以端到端的方式有效地訓練整個框架。多項實驗表明,DGSM 的表現遠超該領域一流水平,并且能夠為更廣泛的化學系統生成構象,例如蛋白質和多分子復合物。
論文鏈接: //proceedings.neurips.cc/paper/2021/hash/a45a1d12ee0fb7f1f872ab91da18f899-Abstract.html
會議: NeurIPS 2021 論文地址://arxiv.org/abs/2109.14285 圖神經網絡 (GNN) 卓越的性能已經廣受關注,但其預測結果是否值得信賴卻有待探索。之前的研究結果表明,許多現代神經網絡對其預測具有過度自信的現象。然而與之不同的是,我們發現GNN對其預測結果卻呈現出欠自信的現象。因此,要想獲得一個可信的GNN,亟需對其置信度進行校正。 在本文中,我們設計了一種拓撲感知的后處理校正函數,并由此提出了一種新穎的可信賴 GNN 模型。具體來說,我們首先驗證了圖中的置信度分布具有同質性的特點,由此啟發我們再次利用GNN模型來為分類GNN模型學習校正函數(CaGCN)的想法。CaGCN 能夠為每個節點學習到一種從分類 GNN 的輸出到校正后的置信度的唯一轉換,同時這種轉換還能夠保留類間的序關系,從而滿足保存精度的屬性。 此外,我們還將CaGCN應用于自訓練框架,結果表明可以通過對置信度進行校正獲得更可信的偽標簽,從而并進一步提高性能。我們通過大量實驗證明了我們提出的模型在置信度校正方面和在提高分類準確率方面的有效性。 總結(2-1-1): 2種現象:GNN的預測結果具有欠自信現象;好的置信度分布具有同質性現象;
1個模型:CaGCN
1類應用:置信度調整后的GNN可以有效應用于自訓練框架
可控生成是深度生成模型在現實應用中成功應用的關鍵要求之一,但它仍然是一個巨大的挑戰。特別是,生成新概念組合的組合能力是目前大多數模型所無法達到的。在這項工作中,我們使用基于能量的模型(EBMs)來處理一組屬性的組成生成。為了使它們可擴展到高分辨率圖像生成,我們在StyleGAN等預訓練生成模型的潛在空間中引入了EBM。我們提出了一種新的EBM公式來表示數據和屬性的聯合分布,并且我們展示了如何將它的抽樣表示為求解常微分方程(ODE)。給定一個預訓練的生成器,我們所需要的可控生成就是訓練一個屬性分類器。利用ODE進行采樣是有效的,并且對超參數具有魯棒性。因此,該方法簡單、訓練快、采樣效率高。實驗結果表明,該方法在條件采樣和順序編輯方面都優于現有的方法。在成分生成中,我們的方法優于零樣本生成未見的屬性組合。此外,通過將能量函數與邏輯運算符組合在一起,這項工作首次實現了這種組合,從而生成分辨率為1024x1024的逼真圖像。
圖匹配深度學習由于其優于傳統方法的性能和為解決其他圖上的組合問題提供的見解而成為一個重要的研究課題。雖然最近的通用深度方法廣泛研究了有效的節點/邊緣特征學習或給出這些學習特征的下游通用求解器,但很少有現有工作質疑固定連通性/拓撲是否通常使用啟發式構建(例如,從學習的角度來看,我們認為固定的拓撲可能會限制模型的容量,從而潛在地阻礙性能。為了解決這個問題,我們提出學習潛在拓撲的分布,這樣可以更好地支持下游GM任務。我們設計了兩種潛在圖生成程序,一個是確定性的,一個是生成的。特別地,生成過程強調跨圖的一致性,因此可以看作是一個匹配引導的共生成模型。我們的方法在公共基準上的表現優于以往的先進水平,因此支持了我們的假設。
我們研究計算化學中的一個基本問題,即分子構象生成,試圖從二維分子圖中預測穩定的三維結構。現有的機器學習方法通常首先預測原子之間的距離,然后生成滿足這些距離的3D結構,而在3D坐標生成過程中,預測距離中的噪聲可能會導致額外的誤差。本文受傳統分子動力學力場模擬方法的啟發,提出了一種直接估算原子坐標對數密度梯度場的新方法ConfGF。估計的梯度場允許通過朗之萬動力學直接生成穩定的構象。然而,由于梯度場是旋轉平移等變的,因此該問題非常具有挑戰性。我們注意到估計原子坐標的梯度場可以轉化為估計原子間距離的梯度場,因此開發了一種基于最近的基于分數的生成模型的新算法來有效地估計這些梯度。跨多個任務的實驗結果表明,ConfGF顯著優于以前的最先進基線。
【導讀】機器學習頂會 NeurIPS 2020, 是人工智能領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。據官方統計,今年NeurIPS 2020 共收到論文投稿 9454 篇,接收 1900 篇(其中 oral 論文 105 篇、spotlight 論文 280 篇),論文接收率為 20.1%。NeurIPS 2020已經開完會,小編發現元學習(Meta Learning)相關的接受paper不少,元學習在CV、NLP等各個領域的應用也比較火熱,值得研究者們細心學習。
為此,這期小編為大家奉上NeurIPS 2020必讀的五篇元學習(Meta Learning)相關論文——少樣本視覺推理、持續元學習、異構元學習、元強化學習、元變換網絡學習
NeurIPS 2020 Accepted Papers : //proceedings.neurips.cc/paper/2020
NIPS2020VRL、NIPS2020DA、NIPS2020CI、ICLR2020CI、ICML2020CI
1. Few-shot Visual Reasoning with Meta-analogical Contrastive Learning
作者:Youngsung Kim, Jinwoo Shin, Eunho Yang, Sung Ju Hwang
摘要:盡管人類可以通過僅觀察幾個樣本來解決需要邏輯推理的視覺難題,但它需要對大量樣本進行訓練,以使用最新的深度推理模型來在同一任務上獲得相似的性能。在這項工作中,我們提出通過類比推理來解決這樣的少樣本抽象視覺推理問題,并且這是人類具有的識別兩組數據之間結構或關系相似性的獨特能力。具體來說,我們構造了兩個不同問題實例的類比和非模擬訓練對。后者是通過對原始問題(以前的問題)進行擾動或改組來創建的。然后,我們通過強制類比元素盡可能相似,同時最小化非類比元素之間的相似性,來提取成對的兩個域中元素之間的結構關系。這種類比性的對比學習可以有效地學習給定抽象推理任務的關系表示。我們在RAVEN數據集上驗證了我們的方法,該方法的性能優于最新方法,并且在缺乏訓練數據時獲得了更大的收益。我們進一步對具有不同屬性的相同任務對我們的對比學習模型進行元學習,并表明它可以推廣到具有未知屬性的相同視覺推理問題。
網址:
2. La-MAML: Look-ahead Meta Learning for Continual Learning
作者:Gunshi Gupta, Karmesh Yadav, Liam Paull
摘要:持續學習(continual learning)問題涉及訓練模型,然而這些模型的能力有限,無法在一組順序到達的未知數量的任務上表現良好。雖然元學習在減少新舊任務之間的干擾方面顯示出巨大的潛力,但當前的訓練過程往往很慢或離線,并且對許多超參數敏感。在這項工作中,我們提出了Look-ahead MAML(La-MAML),這是一種基于快速優化的元學習算法,用于在線持續學習,并有帶少量的情節記憶。在元學習更新中對每個參數的學習率進行調制,使我們能夠與以前有關超梯度和元下降的工作建立聯系。與傳統的基于先驗的方法相比,該方法提供了一種更靈活,更有效的方法來減輕災難性遺忘問題。La-MAML的性能優于其他基replay,基于先驗和基于元學習的方法,并且可在現實世界中的視覺分類基準上持續學習。
網址:
3. Meta-learning from Tasks with Heterogeneous Attribute Spaces
作者:Tomoharu Iwata, Atsutoshi Kumagai
摘要:我們提出了一種異構元學習方法,該方法在具有各種屬性空間的任務上訓練模型,從而可以解決在給定標記實例的情況下屬性空間與訓練任務不同的未知任務(unseen tasks)。盡管已經提出了許多元學習方法,但是它們假定所有訓練任務和目標任務共享相同的屬性空間,并且當任務之間的屬性大小不同時,它們將不適用。我們的模型使用推理網絡從幾個標記實例中推斷每個屬性和每個響應的潛在表示。然后,使用預測網絡推斷的表示來預測未標記實例的響應。即使屬性和響應的大小在各個任務之間都不同,屬性和響應表示也使我們能夠基于屬性和響應的特定于任務的屬性進行預測。在我們使用合成數據集和OpenML中的59個數據集進行的實驗中,我們證明了在使用具有異構屬性空間的任務訓練后,我們提出的方法可以預測新任務中給定標記實例的響應。
網址:
4. Model-based Adversarial Meta-Reinforcement Learning
作者:Zichuan Lin, Garrett Thomas, Guangwen Yang, Tengyu Ma
摘要:元強化學習(meta-RL)旨在從多個訓練任務中有效地學習適應不可知測試任務的能力。盡管取得了成功,但已知現有的meta-RL算法對任務分配的變化很敏感。當測試任務分配與訓練任務分配不同時,性能可能會大大降低。為了解決這個問題,本文提出了基于模型的對抗性元強化學習(AdMRL),旨在最大程度地降低最差情況的次優差距(最優回報與算法在自適應后獲得的回報之間的差異),并使用基于模型的方法來處理一系列任務中的所有任務。我們提出了一個極小極大目標,并通過在學習固定任務的動力學模型與尋找當前模型的對抗任務(在該任務中,模型誘導的策略最大程度次優)之間交替進行優化。假設任務已參數化,我們通過隱函數定理推導了次最優性相對于任務參數的梯度公式,并展示了如何通過共軛梯度法和新穎的方法有效地實現梯度估計器--REINFORCE估算器。我們在幾個連續的控制基準上評估了我們的方法,并證明了它在所有任務的最壞情況下的性能,對分發任務的概括能力以及在訓練和測試時間樣本效率方面相對于現有技術的有效性。
網址:
5. Node Classification on Graphs with Few-Shot Novel Labels via Meta Transformed Network Embedding
作者:Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, Xiaohong Guan
摘要:我們研究了具有少量新穎標簽的圖節點分類問題,它具有兩個獨特的特性:(1)圖中出現了新穎標簽;(2)新穎標簽僅具有幾個用于訓練分類器的代表性節點。對這個問題的研究具有指導意義,并且與許多應用相對應,例如對在線社交網絡中只有幾個用戶的新組建的推薦。為了解決這個問題,我們提出了一種新穎的元變換網絡嵌入框架(MetaTNE),該框架由三個模塊組成:(1)一個結構模塊根據圖結構為每個節點提供潛在的表示。(2)元學習模塊以元學習的方式捕獲圖結構和節點標簽之間的關系作為先驗知識。此外,我們引入了一種嵌入轉換函數,以彌補元學習直接使用的不足。從本質上講,可以將元學習的先驗知識用于促進少樣本新穎標簽的學習。(3)優化模塊采用簡單而有效的調度策略來訓練上述兩個模塊,并在圖結構學習和元學習之間取得平衡。在四個真實數據集上進行的實驗表明,MetaTNE相對于最新方法具有巨大的改進。
網址:
圖神經網絡(GNNs)的快速發展帶來了越來越多的新架構和新應用。目前的研究側重于提出和評估GNNs的具體架構設計,而不是研究GNNs的更一般的設計空間,后者由不同設計維度的笛卡爾積(如層數或聚合函數的類型)組成。此外,GNN設計通常專門針對單個任務,但很少有人努力了解如何快速為新任務或新數據集找到最佳GNN設計。這里我們定義并系統地研究了GNNs的架構設計空間,它包含了超過32種不同的預測任務的315000種不同的設計。我們的方法有三個主要創新:(1)一個通用的GNN設計空間;(2)具有相似度度量的GNN任務空間,這樣對于給定的新任務/數據集,我們可以快速識別/傳輸性能最好的架構;(3)一種高效的設計空間評價方法,可以從大量的模型-任務組合中提取洞察力。我們的主要結果包括:(1)一套設計性能良好的GNN的全面指南;(2)雖然針對不同任務的最佳GNN設計存在顯著差異,但GNN任務空間允許在不同任務之間傳輸最佳設計;(3)利用我們的設計空間發現的模型實現了最先進的性能。總的來說,我們的工作提供了一個原則性和可擴展性的方法,實現了從研究針對特定任務的個體GNN設計到系統地研究GNN設計空間和任務空間的過渡。最后,我們發布了GraphGym,這是一個用于探索不同GNN設計和任務的強大平臺。GraphGym具有模塊化的GNN實現、標準化的GNN評估和可重復和可擴展的實驗管理。
論文題目:Scalable Graph Neural Networks via Bidirectional Propagation
論文概述:圖神經網絡(GNN)是一個新興的非歐氏數據學習領域。近年來,人們對設計可擴展到大型圖形的GNN越來越感興趣。大多數現有的方法使用“圖采樣”或“分層采樣”技術來減少訓練時間;但是,這些方法在應用于具有數十億條邊的圖時仍然無法提供可靠的性能。在本文中,我們提出了一種可伸縮的圖神經網絡GBP,同時從特征向量和訓練/測試節點進行雙向消息傳播,為每個表示生成一個無偏估計量。每個傳播都是以局部方式執行的,從而實現了亞線性時間復雜性。廣泛的實驗證明,GBP達到了state-of-the-art性能同時顯著減少訓練和推理時間。在單臺機器上,GBP能夠在不到2000秒的時間內,在一個擁有超過6000萬個節點和18億條邊的圖形上提供優異的性能
//www.zhuanzhi.ai/paper/bf70cf78aa20bcfce7a1f6d36c8e080a