題目: Supervised learning
簡介:
監督學習是指利用一組已知類別的樣本調整分類器的參數,使其達到所要求性能的過程,也稱為監督訓練或有教師學習,其同樣是基于示例輸入-輸出數據對,在輸入和輸出數據之間建立數學函數的機器學習任務,而該數學函數來源于對有標簽訓練數據集的學習過程。函數的輸出可以是一個連續的值(稱為回歸分析),或是預測一個分類標簽(稱作分類)。一個監督式學習者的任務在觀察完一些事先標記過的訓練范例(輸入和預期輸出)后,去預測這個函數對任何可能出現的輸入的輸出。要達到此目的,學習者必須以"合理"(見歸納偏向)的方式從現有的資料中一般化到非觀察到的情況。在人類和動物感知中,則通常被稱為概念學習(concept learning)。
主要內容:
隨著圖像處理,語音識別等人工智能技術的發展,很多學習方法尤其是采用深度學習框架的方法取得了優異的性能,在精度和速度方面有了很大的提升,但隨之帶來的問題也很明顯,這些學習方法如果要獲得穩定的學習效果,往往需要使用數量龐大的標注數據進行充分訓練,否則就會出現欠擬合的情況而導致學習性能的下降。因此,隨著任務復雜程度和數據規模的增加,對人工標注數據的數量和質量也提出了更高的要求,造成了標注成本和難度的增大。同時,單一任務的獨立學習往往忽略了來自其他任務的經驗信息,致使訓練冗余重復因而導致了學習資源的浪費,也限制了其性能的提升。為了緩解這些問題,屬于遷移學習范疇的多任務學習方法逐漸引起了研究者的重視。與單任務學習只使用單個任務的樣本信息不同,多任務學習假設不同任務數據分布之間存在一定的相似性,在此基礎上通過共同訓練和優化建立任務之間的聯系。這種訓練模式充分促進任務之間的信息交換并達到了相互學習的目的,尤其是在各自任務樣本容量有限的條件下,各個任務可以從其它任務獲得一定的啟發,借助于學習過程中的信息遷移能間接利用其它任務的數據,從而緩解了對大量標注數據的依賴,也達到了提升各自任務學習性能的目的。在此背景之下,本文首先介紹了相關任務的概念,并按照功能的不同對相關任務的類型進行劃分后再對它們的特點進行逐一描述。然后,本文按照數據處理模式和任務關系建模過程的不同將當前的主流算法劃分為兩大類:結構化多任務學習算法和深度多任務學習算法。其中,結構化多任務學習算法采用線性模型,可以直接針對數據進行結構假設并且使用原有標注特征表述任務關系,同時,又可根據學習對象的不同將其細分為基于任務層面和基于特征層面兩種不同結構,每種結構有判別式方法和生成式方法兩種實現手段。與結構化多任務學習算法的建模過程不同,深度多任務學習算法利用經過多層特征抽象后的深層次信息進行任務關系描述,通過處理特定網絡層中的參數達到信息共享的目的。緊接著,以兩大類算法作為主線,本文詳細分析了不同建模方法中對任務關系的結構假設、實現途徑、各自的優缺點以及方法之間的聯系。最后,本文總結了任務之間相似性及其緊密程度的判別依據,并且分析了多任務作用機制的有效性和內在成因,從歸納偏置和動態求解等角度闡述了多任務信息遷移的特點。 //gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=JSJX20190417000&dbcode=CJFD&dbname=CAPJ2019
這本受歡迎的教科書的第一版,當代人工智能,提供了一個學生友好的人工智能介紹。這一版完全修訂和擴大更新,人工智能: 介紹機器學習,第二版,保留相同的可訪問性和解決問題的方法,同時提供新的材料和方法。
該書分為五個部分,重點介紹了人工智能中最有用的技術。書的第一部分涵蓋了基于邏輯的方法,而第二部分著重于基于概率的方法。第三部分是涌現智能的特點,探討了基于群體智能的進化計算和方法。接下來的最新部分將提供神經網絡和深度學習的詳細概述。書的最后一部分著重于自然語言的理解。
適合本科生和剛畢業的研究生,本課程測試教材為學生和其他讀者提供關鍵的人工智能方法和算法,以解決具有挑戰性的問題,涉及系統的智能行為在專門領域,如醫療和軟件診斷,金融決策,語音和文本識別,遺傳分析等。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。