深度神經網絡在圖像識別、語言識別和機器翻譯等人工智能任務中取得了巨大進展,很大程度上歸功于優秀的神經網絡結構設計。神經網絡大都由手工設計,需要專業的機器學習知識以及大量的試錯。為此,自動化的神經網絡結構搜索成為研究熱點。神經網絡結構搜索(neural architecture search,NAS)主要由搜索空間、搜索策略與性能評估方法3部分組成。在搜索空間設計上,出于計算量的考慮,通常不會搜索整個網絡結構,而是先將網絡分成幾塊,然后搜索塊中的結構。根據實際情況的不同,可以共享不同塊中的結構,也可以對每個塊單獨搜索不同的結構。在搜索策略上,主流的優化方法包含強化學習、進化算法、貝葉斯優化和基于梯度的優化等。在性能評估上,為了節省計算時間,通常不會將每一個網絡都充分訓練到收斂,而是通過權值共享、早停等方法盡可能減小單個網絡的訓練時間。與手工設計的網絡相比,神經網絡結構搜索得到的深度神經網絡具有更好的性能。在ImageNet分類任務上,與手工設計的MobileNetV2相比,通過神經網絡結構搜索得到的MobileNetV3減少了近30%的計算量,并且top-1分類精度提升了3.2%;在Cityscapes語義分割任務上,與手工設計的DeepLabv3+相比,通過神經網絡結構搜索得到的Auto-DeepLab-L可以在沒有ImageNet預訓練的情況下,達到比DeepLabv3+更高的平均交并比(mean intersection over union,mIOU),同時減小一半以上的計算量。神經網絡結構搜索得到的深度神經網絡通常比手工設計的神經網絡有著更好的表現,是未來神經網絡設計的發展趨勢。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210202&flag=1
摘要 深度學習研究發展至今已可以勝任各類識別、分類、生成任務,但是對于不同的任務,神經網絡的結構或參數不可能只是微小的變化,依然需要專家進行調整.在這樣的情況下,自動化地調整神經網絡的結構或參數成為研究熱點.其中,以達爾文自然進化論為靈感的神經進化成為主要優化方法.利用神經進化優化的深度學習模型以種群為基礎,通過突變、重組等操作進化,可實現自動地、逐步地構建神經網絡并最終選擇出性能最優的深度學習模型. 本文簡述了神經進化與進化計算;詳細概述了各類基于神經進化的深度學習模型;分析了各類模型的性能;總結了神經進化與深度學習融合的前景并探討下一步的研究方向.
深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.
引言
隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。
實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。
元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。
在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。
Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。
元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。
深度學習是機器學習和人工智能研究的最新趨勢,作為一個十余年來快速發展的嶄新領域,越來越受到研究者的關注。卷積神經網絡(CNN)模型是深度學習模型中最重要的一種經典結構,其性能在近年來深度學習任務上逐步提高。由于可以自動學習樣本數據的特征表示,卷積神經網絡已經廣泛應用于圖像分類、目標檢測、語義分割以及自然語言處理等領域。首先分析了典型卷積神經網絡模型為提高其性能增加網絡深度以及寬度的模型結構,分析了采用注意力機制進一步提升模型性能的網絡結構,然后歸納分析了目前的特殊模型結構,最后總結并討論了卷積神經網絡在相關領域的應用,并對未來的研究方向進行展望。
地址: //fcst.ceaj.org/CN/abstract/abstract2521.shtml
近年來,隨著深度學習的飛速發展,深度神經網絡受到了越來越多的關注,在許多應用領域取得了顯著效果。通常,在較高的計算量下,深度神經網絡的學習能力隨著網絡層深度的增加而不斷提高,因此深度神經網絡在大型數據集上的表現非常卓越。然而,由于其計算量大、存儲成本高、模型復雜等特性,使得深度學習無法有效地應用于輕量級移動便攜設備。因此,壓縮、優化深度學習模型成為目前研究的熱點,當前主要的模型壓縮方法有模型裁剪、輕量級網絡設計、知識蒸餾、量化、體系結構搜索等。通過對以上方法的性能、優缺點和最新研究成果進行分析總結,對未來研究方向進行了展望。
摘要: 近年來, 卷積神經網絡(Convolutional neural network, CNNs)在計算機視覺、自然語言處理、語音識別等領域取得了突飛猛進的發展, 其強大的特征學習能力引起了國內外專家學者廣泛關注.然而, 由于深度卷積神經網絡普遍規模龐大、計算度復雜, 限制了其在實時要求高和資源受限環境下的應用.對卷積神經網絡的結構進行優化以壓縮并加速現有網絡有助于深度學習在更大范圍的推廣應用, 目前已成為深度學習社區的一個研究熱點.本文整理了卷積神經網絡結構優化技術的發展歷史、研究現狀以及典型方法, 將這些工作歸納為網絡剪枝與稀疏化、張量分解、知識遷移和精細模塊設計4個方面并進行了較為全面的探討.最后, 本文對當前研究的熱點與難點作了分析和總結, 并對網絡結構優化領域未來的發展方向和應用前景進行了展望.
深度學習在許多領域都取得了重大突破和進展。這是因為深度學習具有強大的自動表示能力。實踐證明,網絡結構的設計對數據的特征表示和最終的性能至關重要。為了獲得良好的數據特征表示,研究人員設計了各種復雜的網絡結構。然而,網絡架構的設計在很大程度上依賴于研究人員的先驗知識和經驗。因此,一個自然的想法是盡量減少人為的干預,讓算法自動設計網絡的架構。因此,這需要更深入到強大的智慧。
近年來,大量相關的神經結構搜索算法(NAS)已經出現。他們對NAS算法進行了各種改進,相關研究工作復雜而豐富。為了減少初學者進行NAS相關研究的難度,對NAS進行全面系統的調查是必不可少的。之前的相關調查開始主要從NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類。這種分類方法比較直觀,但是讀者很難把握中間的挑戰和標志性作品。因此,在本次調查中,我們提供了一個新的視角:首先概述最早的NAS算法的特點,總結這些早期NAS算法存在的問題,然后為后續的相關研究工作提供解決方案。并對這些作品進行了詳細而全面的分析、比較和總結。最后,提出了今后可能的研究方向。
概述
深度學習已經在機器翻譯[1-3]、圖像識別[4,6,7]和目標檢測[8-10]等許多領域展示了強大的學習能力。這主要是因為深度學習對非結構化數據具有強大的自動特征提取功能。深度學習已經將傳統的手工設計特征[13,14]轉變為自動提取[4,29,30]。這使得研究人員可以專注于神經結構的設計[11,12,19]。但是神經結構的設計很大程度上依賴于研究者的先驗知識和經驗,這使得初學者很難根據自己的實際需要對網絡結構進行合理的修改。此外,人類現有的先驗知識和固定的思維范式可能會在一定程度上限制新的網絡架構的發現。
因此,神經架構搜索(NAS)應運而生。NAS旨在通過使用有限的計算資源,以盡可能少的人工干預的自動化方式設計具有最佳性能的網絡架構。NAS- RL[11]和MetaQNN[12]的工作被認為是NAS的開創性工作。他們使用強化學習(RL)方法得到的網絡架構在圖像分類任務上達到了SOTA分類精度。說明自動化網絡架構設計思想是可行的。隨后,大規模演化[15]的工作再次驗證了這一想法的可行性,即利用演化學習來獲得類似的結果。然而,它們在各自的方法中消耗了數百天的GPU時間,甚至更多的計算資源。如此龐大的計算量對于普通研究者來說幾乎是災難性的。因此,如何減少計算量,加速網絡架構的搜索[18-20,48,49,52,84,105]就出現了大量的工作。與NAS的提高搜索效率,NAS也迅速應用領域的目標檢測(65、75、111、118),語義分割(63、64、120),對抗學習[53],建筑規模(114、122、124),多目標優化(39、115、125),platform-aware(28日34、103、117),數據增加(121、123)等等。另外,如何在性能和效率之間取得平衡也是需要考慮的問題[116,119]。盡管NAS相關的研究已經非常豐富,但是比較和復制NAS方法仍然很困難[127]。由于不同的NAS方法在搜索空間、超參數技巧等方面存在很多差異,一些工作也致力于為流行的NAS方法提供一個統一的評估平臺[78,126]。
隨著NAS相關研究的不斷深入和快速發展,一些之前被研究者所接受的方法被新的研究證明是不完善的。很快就有了改進的解決方案。例如,早期的NAS在架構搜索階段從無到有地訓練每個候選網絡架構,導致計算量激增[11,12]。ENAS[19]提出采用參數共享策略來加快架構搜索的進程。該策略避免了從頭訓練每個子網,但強制所有子網共享權值,從而大大減少了從大量候選網絡中獲得性能最佳子網的時間。由于ENAS在搜索效率上的優勢,權值共享策略很快得到了大量研究者的認可[23,53,54]。不久,新的研究發現,廣泛接受的權重分配策略很可能導致候選架構[24]的排名不準確。這將使NAS難以從大量候選架構中選擇最優的網絡架構,從而進一步降低最終搜索的網絡架構的性能。隨后DNA[21]將NAS的大搜索空間模塊化成塊,充分訓練候選架構以減少權值共享帶來的表示移位問題。此外,GDAS-NSAS[25]提出了一種基于新的搜索架構選擇(NSAS)損失函數來解決超網絡訓練過程中由于權值共享而導致的多模型遺忘問題。
在快速發展的NAS研究領域中,類似的研究線索十分普遍,基于挑戰和解決方案對NAS研究進行全面、系統的調研是非常有用的。以往的相關綜述主要根據NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類[26,27]。這種分類方法比較直觀,但不利于讀者捕捉研究線索。因此,在本次綜述查中,我們將首先總結早期NAS方法的特點和面臨的挑戰。基于這些挑戰,我們對現有研究進行了總結和分類,以便讀者能夠從挑戰和解決方案的角度進行一個全面和系統的概述。最后,我們將比較現有的研究成果,并提出未來可能的研究方向和一些想法。
摘要:卷積神經網絡在廣泛的應用中取得了優秀的表現,但巨大的資源消耗量使得其應用于移動端和嵌入式設備成為了挑戰。為了解決此類問題,需要對網絡模型在大小、速度和準確度方面做出平衡。首先,從模型是否預先訓練角度,簡要介紹了網絡壓縮與加速的兩類方法——神經網絡壓縮和緊湊的神經網絡。具體地,闡述了緊湊的神經網絡設計方法,展示了其中不同運算方式,強調了這些運算特點,并根據基礎運算不同,將其分為基于空間卷積的模型設計和基于移位卷積模型設計兩大類,然后每類分別選取三個網絡模型從基礎運算單元、核心構建塊和整體網絡結構進行論述。同時,分析了各網絡以及常規網絡在ImageNet數據集上的性能。最后,總結了現有的緊湊神經網絡設計技巧,并展望了未來的發展方向。