深度學習是機器學習和人工智能研究的最新趨勢,作為一個十余年來快速發展的嶄新領域,越來越受到研究者的關注。卷積神經網絡(CNN)模型是深度學習模型中最重要的一種經典結構,其性能在近年來深度學習任務上逐步提高。由于可以自動學習樣本數據的特征表示,卷積神經網絡已經廣泛應用于圖像分類、目標檢測、語義分割以及自然語言處理等領域。首先分析了典型卷積神經網絡模型為提高其性能增加網絡深度以及寬度的模型結構,分析了采用注意力機制進一步提升模型性能的網絡結構,然后歸納分析了目前的特殊模型結構,最后總結并討論了卷積神經網絡在相關領域的應用,并對未來的研究方向進行展望。
地址: //fcst.ceaj.org/CN/abstract/abstract2521.shtml
摘要:隨著深度學習技術的快速發展,許多研究者嘗試利用深度學習來解決文本分類問題,特別是在卷積神經網絡和循環神經網絡方面,出現了許多新穎且有效的分類方法。對基于深度神經網絡的文本分類問題進行分析,介紹卷積神經網絡、循環神經網絡、注意力機制等方法在文本分類中的應用和發展,分析多種典型分類方法的特點和性能,從準確率和運行時間方面對基礎網絡結構進行比較,表明深度神經網絡較傳統機器學習方法在用于文本分類時更具優勢,其中卷積神經網絡具有優秀的分類性能和泛化能力。在此基礎上,指出當前深度文本分類模型存在的不足,并對未來的研究方向進行展望。
//www.ecice06.com/article/2021/1000-3428/2121.htm
文本分類技術經歷了從專家系統到機器學習再到深度學習的發展過程。在20世紀80年代以前,基于規則系統的文本分類方法需要領域專家定義一系列分類規則,通過規則匹配判斷文本類別。基于規則的分類方法容易理解,但該方法依賴專家知識,系統構建成本高且可移植性差。20世紀90年代,機器學習技術逐漸走向成熟,出現了許多經典的文本分類算法,如決策樹[1]、樸素貝葉斯[2]、支持向量機[3]、最大熵[4]、最近鄰[5]等,這些方法部分克服了上述缺點,一定程度上實現了分類器的自動生成,被廣泛應用于各個領域。然而,機器學習方法在構建分類器之前通常需要繁雜的人工特征工程,這限制了其進一步發展。
2012年之后,深度學習算法引起了研究者的廣泛關注。深度學習為機器學習建模提供了一種直接端到端的解決方案,可避免復雜的特征工程。GolVe[6]和word2vec[7]等詞向量模型的提出,使深度學習算法成功地應用到文本處理領域,隨后出現了各種基于深度神經網絡(Deep Neural Network,DNN)的文本分類方法。這些方法主要采用卷積神經網絡(Convolutional Neural Network,CNN)、循環神經網絡(Recurrent Neural Network,RNN)和注意力機制等深度學習技術,并且取得了比傳統方法更為出色的性能。近年來,圖卷積網絡(Graph Convolutional Network,GCN)、區域嵌入和元學習等一些新的深度學習方法也被應用于文本分類領域。
本文對基于深度神經網絡的文本分類技術進行介紹和分析,闡述卷積神經網絡、循環神經網絡和注意力機制等方法在文本分類中的應用和發展情況,總結各類方法的特點及區別,并對不同方法的性能表現和適用場景進行比較,討論在應用深度學習方法處理文本分類任務時應當注意的問題。在此基礎上,指出針對該技術未來的研究方向。
近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。
//compstat-lmu.github.io/seminar_nlp_ss20/
在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。
這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。
為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。
遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。
為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。
在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。
本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。
深度神經網絡在圖像識別、語言識別和機器翻譯等人工智能任務中取得了巨大進展,很大程度上歸功于優秀的神經網絡結構設計。神經網絡大都由手工設計,需要專業的機器學習知識以及大量的試錯。為此,自動化的神經網絡結構搜索成為研究熱點。神經網絡結構搜索(neural architecture search,NAS)主要由搜索空間、搜索策略與性能評估方法3部分組成。在搜索空間設計上,出于計算量的考慮,通常不會搜索整個網絡結構,而是先將網絡分成幾塊,然后搜索塊中的結構。根據實際情況的不同,可以共享不同塊中的結構,也可以對每個塊單獨搜索不同的結構。在搜索策略上,主流的優化方法包含強化學習、進化算法、貝葉斯優化和基于梯度的優化等。在性能評估上,為了節省計算時間,通常不會將每一個網絡都充分訓練到收斂,而是通過權值共享、早停等方法盡可能減小單個網絡的訓練時間。與手工設計的網絡相比,神經網絡結構搜索得到的深度神經網絡具有更好的性能。在ImageNet分類任務上,與手工設計的MobileNetV2相比,通過神經網絡結構搜索得到的MobileNetV3減少了近30%的計算量,并且top-1分類精度提升了3.2%;在Cityscapes語義分割任務上,與手工設計的DeepLabv3+相比,通過神經網絡結構搜索得到的Auto-DeepLab-L可以在沒有ImageNet預訓練的情況下,達到比DeepLabv3+更高的平均交并比(mean intersection over union,mIOU),同時減小一半以上的計算量。神經網絡結構搜索得到的深度神經網絡通常比手工設計的神經網絡有著更好的表現,是未來神經網絡設計的發展趨勢。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210202&flag=1
隨著深度學習的快速發展, 生成式模型領域也取得了顯著進展. 生成對抗網絡(Generative adversarial network, GAN)是一種無監督的學習方法, 它是根據博弈論中的二人零和博弈理論提出的. GAN具有一個生成器網絡和一個判別器網絡, 并通過對抗學習進行訓練. 近年來, GAN成為一個炙手可熱的研究方向. GAN不僅在圖像領域取得了不錯的成績, 還在自然語言處理(Natural language processing, NLP)以及其他領域嶄露頭角. 本文對GAN的基本原理、訓練過程和傳統GAN存在的問題進行了闡述, 進一步詳細介紹了通過損失函數的修改、網絡結構的變化以及兩者結合的手段提出的GAN變種模型的原理結構, 其中包括: 條件生成對抗網絡(Conditional GAN, CGAN)、基于Wasserstein 距離的生成對抗網絡(Wasserstein-GAN, WGAN)及其基于梯度策略的WGAN (WGAN-gradient penalty, WGAN-GP)、基于互信息理論的生成對抗網絡(Informational-GAN, InfoGAN)、序列生成對抗網絡(Sequence GAN, SeqGAN)、Pix2Pix、循環一致生成對抗網絡(Cycle-consistent GAN, Cycle GAN)及其增強Cycle-GAN (Augmented CycleGAN). 概述了在計算機視覺、語音與NLP領域中基于GAN和相應GAN變種模型的基本原理結構, 其中包括: 基于CGAN的臉部老化應用(Face aging CGAN, Age-cGAN)、雙路徑生成對抗網絡(Two-pathway GAN, TP-GAN)、表示解析學習生成對抗網絡(Disentangled representation learning GAN, DR-GAN)、對偶學習生成對抗網絡(DualGAN)、GeneGAN、語音增強生成對抗網絡(Speech enhancement GAN, SEGAN)等. 介紹了GAN在醫學、數據增強等領域的應用情況, 其中包括: 數據增強生成對抗網絡(Data augmentation GAN, DAGAN)、醫學生成對抗網絡(Medical GAN, MedGAN)、無監督像素級域自適應方法(Unsupervised pixel-level domain adaptation method, PixelDA). 最后對GAN未來發展趨勢及方向進行了展望.
//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c180831
摘要:隨著計算機行業和互聯網時代的不斷發展與進步,圖神經網絡已經成為人工智能和大數據重要研究領域。圖神經網絡是對相鄰節點間信息的傳播和聚合的重要技術,可以有效地將深度學習的理念應用于非歐幾里德空間的數據上。簡述圖計算、圖數據庫、知識圖譜、圖神經網絡等圖技術領域的相關研究歷史,分類介紹不同類型的圖結構。分析對比不同的圖神經網絡技術,重點從頻域和空間與的信息聚合方式上分類比較不同的圖卷積網絡算法。闡述圖生成和圖對抗網絡、圖強化學習、圖遷移學習、神經任務圖和圖零樣本學習等不同的圖網絡與深度學習方法相結合的技術方法,并列舉不同的圖神經網絡技術在文本、圖像、知識圖譜、視頻任務等領域的具體應用。最后,對圖神經網絡未來的發展與研究方向加以展望。
概述
近年來隨著計算機行業的快速發展和數據量的井噴式增長,深度學習方法被提出并得到了廣泛的 應用。深度學習通過神經網絡端到端的解決方案, 在圖像處理、語音識別、語義理解[1]等領域取得了 巨大的成功,深度學習的應用往往都是在高維特征 空間上特征規則分布的歐幾里德數據。作為一種關 系型數據結構,圖(Graph)在深度學習中的應用研究近年來受到越來越多的關注,本文將圖的演進歷程分為數學起源、計算應用、神經網絡延伸三個階段。
圖的概念起源于 18 世紀著名的柯尼斯堡七橋問 題,到了 20 世紀中期,擬陣理論、超圖理論、極圖 理論等研究蓬勃發展,使得圖論(Graph Theory)[2] 在電子計算誕生前,就已經成為了重要的數學研究領域。
隨著計算機的出現和機器計算時代的到來和發 展,圖作為一種能夠有效且抽象地表達信息和數據 中的實體以及實體之間關系的重要數據結構被廣泛應用,圖數據庫有效解決了傳統的關系型數據結構 面對大量復雜的數據所暴露出的建模缺陷多、計算速度慢等問題,圖數據庫也成為了非常熱門的研究 領域。圖結構(Graph-structured Data)[3]可以將結構化數據點通過邊的形式,依照數據間的關系將不同類型和結構的數據節點連接起來,因而被廣泛地應用在數據的存儲、檢索以及計算應用中。基于圖結構數據,知識圖譜[4-7]可以通過點和邊的語義關系, 來實現精確地描述現實世界中實體之間的關聯關系, 作為人工智能非常重要的研究領域,知識圖譜的研究方向包括知識抽取、知識推理、知識圖譜可視化等。圖計算(Graph Computing)具有數據規模量大、 局部性低、計算性能高等特性,圖計算算法[8-9]主要 可以分為路徑搜索算法、中心性算法、社群發現算法等三類,實現了在關系復雜型的大規模數據上高 時效性和準確度的表現,在社交網絡、團體反欺詐 和用戶推薦等領域有著重要的應用。
與已經非常成熟圖計算不同,圖神經網絡 (Graph Neural Network)的研究主要是集中在相鄰節點信息的傳播與聚合上,從圖神經網絡的概念提 出,到受深度學習中卷積神經網絡的啟發,2013 年 提出的基于圖論的圖卷積神經網絡 [10-11]研究方向吸 引了大量學者關注。2018 年 DeepMind 提出圖網絡 (Graph Network)[12]的概念,希望能夠將深度學習 端到端的學習方式與圖結構關系歸納推理的理論結 合解決深度學習無法處理關系推理的問題。針對圖 神經網絡存在的問題,不同的學者們也給出了不同 的方案,隨著對圖神經網絡這一新興領域更加深入 的研究與探索,人工智能領域的版圖將得到更大擴展。
文獻[12]在關系歸納偏置和深度學習的研究基礎 上,提出了面向關系推理的圖網絡概念并進行了綜 述,但未對不同圖網絡技術進行分類和對比。文獻 [13]從半監督、無監督方法的角度對圖結構上的深度 學習進行了綜述,但缺少相近的分類和應用的討論。文獻[14]主要從傳播規則、網絡結構等角度分析了圖神經網絡的不同模型以及應用。文獻[15]則是詳細對 比了時域和空間的不同圖卷神經網絡方法結構,但沒有對圖神經網絡之于深度學習領域的探討,如圖強化學習、圖遷移學習等。本文針對圖神經網絡, 分析對比了六種圖神經網絡方法的優劣,首次對處 理異構圖數據的圖神經網絡技術進行了討論和研究, 綜述了五類圖神經網絡的研究領域,并對未來的發展方向進行了展望。
通過學習可觀測數據的概率密度而隨機生成樣本的生成模型在近年來受到人們的廣泛關注, 網絡結構中包含多個隱藏層的深度生成式模型以更出色的生成能力成為研究熱點, 深度生成模型在計算機視覺、密度估計、自然語言和語音識別、半監督學習等領域得到成功應用, 并給無監督學習提供了良好的范式. 本文根據深度生成模型處理似然函數的不同方法將模型分為三類: 第一類方法是近似方法, 包括采用抽樣方法近似計算似然函數的受限玻爾茲曼機和以受限玻爾茲曼機為基礎模塊的深度置信網絡、深度玻爾茲曼機和亥姆霍茲機, 與之對應的另一種模型是直接優化似然函數變分下界的變分自編碼器以及其重要的改進模型, 包括重要性加權自編碼和可用于半監督學習的深度輔助深度模型; 第二類方法是避開求極大似然過程的隱式方法, 其代表模型是通過生成器和判別器之間的對抗行為來優化模型參數從而巧妙避開求解似然函數的生成對抗網絡以及重要的改進模型, 包括WGAN、深度卷積生成對抗網絡和當前最頂級的深度生成模型BigGAN; 第三類方法是對似然函數進行適當變形的流模型和自回歸模型, 流模型利用可逆函數構造似然函數后直接優化模型參數, 包括以NICE為基礎的常規流模型、變分流模型和可逆殘差網絡(i-ResNet), 自回歸模型(NADE)將目標函數分解為條件概率乘積的形式, 包括神經自回歸密度估計(NADE)、像素循環神經網絡(PixelRNN)、掩碼自編碼器(MADE)以及WaveNet等. 詳細描述上述模型的原理和結構以及模型變形后, 闡述各個模型的研究進展和應用, 最后對深度生成式模型進行展望和總結.
//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190866
受益于當前計算機性能的快速提升, 學習可觀測樣本的概率密度并隨機生成新樣本的生成模型成為熱點. 相比于需要學習條件概率分布的判別模型, 生成模型的訓練難度大、模型結構復雜, 但除了能夠生成新樣本外, 生成模型在圖像重構、缺失數據填充、密度估計、風格遷移和半監督學習等應用領域也獲得了巨大的成功. 當前可觀測樣本的數量和維數都大幅度增加, 淺層的生成模型受到性能瓶頸的限制而無法滿足應用需求, 從而被含有多個隱藏層的深度生成模型替代, 深度生成模型能夠學習到更好的隱表示, 模型性能更好. 本文對有重要意義的深度生成模型進行全面的分析和討論, 對各大類模型的結構和基本原理進行梳理和分類. 本文第1節介紹深度生成模型的概念和分類; 第2節介紹受限玻爾茲曼機和以受限玻爾茲曼機為基礎模塊的幾種深度生成模型, 重點內容是各種模型的不同訓練算法; 第3節介紹變分自編碼器的基本結構、變分下界的推理和重參數化方法; 第4節介紹生成對抗網絡, 主要內容為模型原理、訓練方法和穩定性研究, 以及兩種重要的模型結構; 第5節總結了流模型的結構, 詳細介紹了流模型的技術特點; 第6節分析了自回歸模型的模型結構以及幾種重要分支的研究進展; 第7節將介紹生成模型中的兩個小分支: 矩陣匹配模型和隨機生成模型; 第8節對深度生成模型存在的問題進行分析討論, 并對未來的研究方向和發展趨勢做出了展望.
摘要: 近年來, 卷積神經網絡(Convolutional neural network, CNNs)在計算機視覺、自然語言處理、語音識別等領域取得了突飛猛進的發展, 其強大的特征學習能力引起了國內外專家學者廣泛關注.然而, 由于深度卷積神經網絡普遍規模龐大、計算度復雜, 限制了其在實時要求高和資源受限環境下的應用.對卷積神經網絡的結構進行優化以壓縮并加速現有網絡有助于深度學習在更大范圍的推廣應用, 目前已成為深度學習社區的一個研究熱點.本文整理了卷積神經網絡結構優化技術的發展歷史、研究現狀以及典型方法, 將這些工作歸納為網絡剪枝與稀疏化、張量分解、知識遷移和精細模塊設計4個方面并進行了較為全面的探討.最后, 本文對當前研究的熱點與難點作了分析和總結, 并對網絡結構優化領域未來的發展方向和應用前景進行了展望.
近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.
//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext
圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.
圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.
目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.
本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.
卷積神經網絡(Convolutional Neural Network, CNN)是深度學習領域中最重要的網絡之一。由于CNN在計算機視覺和自然語言處理等諸多領域都取得了令人矚目的成就,因此在過去的幾年里,CNN受到了業界和學術界的廣泛關注。現有的綜述主要關注CNN在不同場景下的應用,并沒有從整體的角度來考慮CNN,也沒有涉及到最近提出的一些新穎的想法。在這篇綜述中,我們的目標是在這個快速增長的領域提供盡可能多的新想法和前景。不僅涉及到二維卷積,還涉及到一維和多維卷積。首先,這篇綜述首先簡單介紹了CNN的歷史。第二,我們提供CNN的概述。第三,介紹了經典的和先進的CNN模型,特別是那些使他們達到最先進的結果的關鍵點。第四,通過實驗分析,得出一些結論,并為函數選擇提供一些經驗法則。第五,介紹了一維、二維和多維卷積的應用。最后,討論了CNN的一些有待解決的問題和有發展前景的方向,為今后的工作提供參考。