持續學習——按序列學習許多任務的能力——對人工學習系統至關重要。然而,深度網絡的標準訓練方法往往會遭遇災難性的遺忘,即學習新的任務會抹去先前任務的知識。雖然災難性的遺忘給問題貼上了標簽,但任務之間相互干擾的理論原因仍不清楚。在這里,我們試圖通過在教師-學生的設置中學習持續學習來縮小理論和實踐之間的差距。我們將以前在教師-學生設置中對兩層網絡的分析工作擴展到多個教師。我們以每位教師代表不同的任務,研究教師之間的關系如何影響學生在任務轉換時表現出的遺忘和遷移量。根據最近的研究,我們發現當任務依賴于相似的特征時,中間任務相似導致最大的遺忘。然而,特征相似性只是任務之間關聯的一種方式。教師-學生方法允許我們在eadouts(隱藏到輸出的權重)和特征(輸入到隱藏的權重)這兩級分解任務相似性。我們發現兩種類型的相似性、初始轉移/遺忘率、最大轉移/遺忘和長時間(開關后)轉移/遺忘量之間存在復雜的相互作用。總之,這些結果有助于闡明導致災難性遺忘的各種因素。
我們提出了一種新的在線元學習算法,在有限的監督下順序揭示任務實例,并期望學習器在每一輪中對它們進行元學習,從而允許學習器在很少的任務級監督下快速定制特定任務模型。在線元學習中出現的一個基本問題是,隨著時間的推移,學習任務越來越多,記憶的可擴展性也越來越強。到目前為止,之前的工作都允許完美的回憶,導致記憶隨時間線性增加。與之前的工作不同,在我們的方法中,先前的任務實例是允許被刪除的。我們建議通過固定大小的狀態向量來利用之前的任務實例,狀態向量是按順序更新的。我們的理論分析表明,我們提出的記憶高效在線學習(MOML)方法具有凸損失函數的次線性遺憾和非凸損失的次線性局部遺憾。在基準數據集上,我們證明了我們的方法可以超越之前的方法,即使它們允許完美的回憶。
持續學習是一種學習模式,在這種模式下,學習系統按照一系列任務進行訓練。這里的目標是在當前任務上執行得很好,而不會受到前面任務的性能下降的影響。在神經網絡持續學習的最新進展中,有兩個值得注意的方向: (1) 基于變分貝葉斯的正則化,通過學習先前任務的先驗信息,以及(2)學習深度網絡的結構以適應新的任務。到目前為止,這兩種方法在很大程度上是相互正交的。我們提出了一個新的貝葉斯框架,基于不斷學習深度神經網絡的結構,以統一這些不同但互補的方法。該框架通過學習任務所使用的權值來學習任務的深層結構,并通過不同任務學習的權值的不同稀疏子集的重疊來支持任務間的遷移。我們提出的持續學習框架的一個吸引人的方面是,它既適用于甄別(有監督的)設置,也適用于生成(無監督的)設置。在有監督和無監督基準上的實驗結果表明,我們的方法在持續學習方面的表現與最近的進展相當或更好。
深度域自適應(DDA)方法在復雜域(如圖像、結構數據和順序數據)上具有更好的建模能力,其性能優于淺層模型。其基本思想是在一個潛在空間上學習領域不變表示,它可以在源域和目標域之間架起橋梁。一些理論研究建立了深刻的理解和學習領域不變特征的好處; 然而,它們通常僅限于沒有標簽遷移的情況,因此阻礙了它的適用性。在本文中,我們提出并研究了一種新的挑戰性設置,該設置允許我們使用Wasserstein距離(WS)不僅量化數據偏移,而且直接定義標簽偏移。我們進一步發展理論表明,減少數據的WS轉變導致關閉之間的差距的源和目標數據分布的空間(例如,中間的一層深網),同時仍然能夠量化的標簽對這個潛在的空間轉移。有趣的是,我們的理論可以解釋學習領域不變特征在潛在空間上的某些缺陷。最后,基于已有理論的結果和指導,我們提出了標簽匹配深度域自適應(LAMDA)方法,該方法在實際數據集上優于基準方法。
圖神經網絡(GNNs)被廣泛用于學習一種強大的圖結構數據表示。最近的研究表明,將知識從自監督任務遷移到下游任務可以進一步改善圖的表示。然而,自監督任務與下游任務在優化目標和訓練數據上存在內在的差距。傳統的預訓練方法可能對知識遷移不夠有效,因為它們不能適應下游任務。為了解決這一問題,我們提出了一種新的遷移學習范式,該范式可以有效地將自監督任務作為輔助任務來幫助目標任務。在微調階段,我們的方法將不同的輔助任務與目標任務進行自適應的選擇和組合。我們設計了一個自適應輔助損失加權模型,通過量化輔助任務與目標任務之間的一致性來學習輔助任務的權重。此外,我們通過元學習來學習權重模型。我們的方法可以運用于各種遷移學習方法,它不僅在多任務學習中有很好的表現,而且在預訓練和微調中也有很好的表現。在多個下游任務上的綜合實驗表明,所提出的方法能夠有效地將輔助任務與目標任務相結合,與現有的方法相比,顯著提高了性能。
人類具有不斷從經驗中學習的非凡能力。我們不僅可以把以前學到的知識和技能運用到新的情況下,我們也可以把這些作為以后學習的基礎。人工智能(AI)的宏偉目標之一是構建一個人工的“持續學習”代理,通過自主增量開發越來越復雜的知識和技能,從自身經驗構建對世界的復雜理解(Parisi, 2019年)。然而,盡管有早期的推測和很少的先前工作(Ring, 1998; Thrun, 1998; Carlson, 2010),很少有研究和努力致力于解決這一愿景。當前人工智能系統深受新數據或新環境的影響,這些新數據或新環境與他們所接受的訓練稍有不同(Goodfellow, 2013)。此外,學習過程通常被限制在限定和孤立的任務內的固定數據集,這可能很難導致出現更復雜和自主的智能行為。從本質上講,持續學習和適應能力,雖然經常被認為是每一個智能代理的基本支柱,但大多被排除在主要的人工智能研究重點之外。
在本教程中,我們提出根據機器學習研究和人工智能深度架構(Lomonaco, 2019)的最新進展總結這些想法的應用。從一個動機和一個簡短的歷史開始,我們將最近的持續學習進展與之前在相關主題上的研究努力聯系起來,并總結了主要方法、基準和關鍵結果方面的最新進展。在教程的第二部分,我們計劃涵蓋更多關于低監督信號的持續學習的探索性研究,以及與其他范式的關系,如無監督,半監督和強化學習。我們還將強調神經科學的最新發現對原始持續學習算法設計的影響,以及它們在現實應用中的部署。最后,我們將強調持續學習的概念,作為可持續機器學習的關鍵技術推動者及其社會影響,并概述有趣的研究問題和未來值得解決的方向。
雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。
在統一魯棒半監督變分自編碼器(URSVAE)中,通過同時處理噪聲標簽和異常值,提出了一種新的噪聲魯棒半監督深度生成模型。輸入數據的不確定性通常是將不確定性優先于概率密度分布的參數,以確保變分編碼器對異常值的魯棒性。隨后,我們將噪聲轉換模型自然地集成到我們的模型中,以減輕噪聲標簽的有害影響。此外,為了進一步增強魯棒性,采用魯棒散度測度,推導并優化了新的變分下界來推斷網絡參數。通過證明對所提證據下界的影響函數是有界的,證明了所提模型在存在復合噪聲的情況下在分類方面的巨大潛力。通過對圖像分類任務的評價和與現有方法的比較,實驗結果表明了該框架的優越性。
多任務學習(Multi-task learning, MTL)旨在通過對多個相關任務的聯合學習來提高任務的泛化能力。作為對比,除了聯合訓練方案,現代元學習允許在測試階段進行一些不可見的、標簽有限的任務,希望能夠快速適應它們。盡管MTL和元學習在問題表述上存在細微的差異,但兩種學習范式都認為,現有訓練任務之間的共享結構可以導致更好的泛化和適應性。本文通過理論分析和實證調查,進一步了解了這兩種學習模式之間的密切聯系。理論上,我們首先證明了MTL與一類基于梯度的元學習(GBML)算法具有相同的優化公式。然后我們證明了對于具有足夠深度的過參數化神經網絡,MTL和GBML學習到的預測函數是接近的。特別是,這一結果表明,這兩個模型給出的預測是相似的,在相同的看不見的任務。通過實證,我們證實了我們的理論發現,通過適當的實現,MTL可以在一組少樣本分類基準上與先進的GBML算法相媲美。由于現有的GBML算法經常涉及代價高昂的二階兩級優化,我們的一階MTL方法在大型數據集(如微型imagenet)上快了一個數量級。我們相信,這項工作可以幫助彌合這兩種學習模式之間的差距,并提供一個計算效率高的替代GBML,也支持快速任務適應。
人工神經網絡在解決特定剛性任務的分類問題時,通過不同訓練階段的廣義學習行為獲取知識。由此產生的網絡類似于一個靜態的知識實體,努力擴展這種知識而不針對最初的任務,從而導致災難性的遺忘。
持續學習將這種范式轉變為可以在不同任務上持續積累知識的網絡,而不需要從頭開始再訓練。我們關注任務增量分類,即任務按順序到達,并由清晰的邊界劃分。我們的主要貢獻包括:
(1) 對持續學習技術的分類和廣泛的概述;
(2) 一個持續學習器穩定性-可塑性權衡的新框架;
(3) 對11種最先進的持續學習方法和4條基準進行綜合實驗比較。
考慮到微型Imagenet和大規模不平衡的非自然主義者以及一系列識別數據集,我們以經驗的方式在三個基準上仔細檢查方法的優缺點。我們研究了模型容量、權重衰減和衰減正則化的影響,以及任務呈現的順序,并從所需內存、計算時間和存儲空間等方面定性比較了各種方法。
//www.zhuanzhi.ai/paper/c90f25024b2c2364ce63299b4dc4677f
引言
近年來,據報道,機器學習模型在個人任務上表現出甚至超過人類水平的表現,如雅達利游戲[1]或物體識別[2]。雖然這些結果令人印象深刻,但它們是在靜態模型無法適應其行為的情況下獲得的。因此,這需要在每次有新數據可用時重新啟動訓練過程。在我們的動態世界中,這種做法對于數據流來說很快就變得難以處理,或者可能由于存儲限制或隱私問題而只能暫時可用。這就需要不斷適應和不斷學習的系統。人類的認知就是這樣一個系統的例證,它具有順序學習概念的傾向。通過觀察例子來重新審視舊的概念可能會發生,但對保存這些知識來說并不是必要的,而且盡管人類可能會逐漸忘記舊的信息,但完全丟失以前的知識很少被證明是[3]。相比之下,人工神經網絡則不能以這種方式學習:在學習新概念時,它們會遭遇對舊概念的災難性遺忘。為了規避這一問題,人工神經網絡的研究主要集中在靜態任務上,通常通過重組數據來確保i.i.d.條件,并通過在多個時期重新訪問訓練數據來大幅提高性能。
持續學習研究從無窮無盡的數據流中學習的問題,其目標是逐步擴展已獲得的知識,并將其用于未來[4]的學習。數據可以來自于變化的輸入域(例如,不同的成像條件),也可以與不同的任務相關聯(例如,細粒度的分類問題)。持續學習也被稱為終身學習[18]0,[18]1,[18]2,[18]3,[18]5,[18]4,順序學習[10],[11],[12]或增量學習[13],[14],[15],[16],[17],[18],[19]。主要的標準是學習過程的順序性質,只有一小部分輸入數據來自一個或幾個任務,一次可用。主要的挑戰是在不發生災難性遺忘的情況下進行學習:當添加新的任務或域時,之前學習的任務或域的性能不會隨著時間的推移而顯著下降。這是神經網絡中一個更普遍的問題[20]的直接結果,即穩定性-可塑性困境,可塑性指的是整合新知識的能力,以及在編碼時保持原有知識的穩定性。這是一個具有挑戰性的問題,不斷學習的進展使得現實世界的應用開始出現[21]、[22]、[23]。
為了集中注意力,我們用兩種方式限制了我們的研究范圍。首先,我們只考慮任務增量設置,其中數據按順序分批到達,一個批對應一個任務,例如要學習的一組新類別。換句話說,我們假設對于一個給定的任務,所有的數據都可以同時用于離線訓練。這使得對所有訓練數據進行多個時期的學習成為可能,反復洗刷以確保i.i.d.的條件。重要的是,無法訪問以前或將來任務的數據。在此設置中優化新任務將導致災難性的遺忘,舊任務的性能將顯著下降,除非采取特殊措施。這些措施在不同情況下的有效性,正是本文所要探討的。此外,任務增量學習將范圍限制為一個多頭配置,每個任務都有一個獨占的輸出層或頭。這與所有任務共享一個頭的更有挑戰性的類增量設置相反。這在學習中引入了額外的干擾,增加了可供選擇的輸出節點的數量。相反,我們假設已知一個給定的樣本屬于哪個任務。
其次,我們只關注分類問題,因為分類可以說是人工神經網絡最既定的任務之一,使用相對簡單、標準和易于理解的網絡體系結構具有良好的性能。第2節對設置進行了更詳細的描述,第7節討論了處理更一般設置的開放問題。
通過在終身學習中存儲舊知識來尋求提醒模型,是緩解災難性遺忘最有效的方法之一,即在轉向新任務時對先前知識的偏差遺忘。然而,在訓練新任務時,以往大多數基于預演的舊任務存在不可預測的域偏移問題。這是因為這些方法總是忽略兩個重要的因素。首先,新任務和舊任務之間的數據不平衡,使得舊任務的域容易移位。其次,所有任務之間的任務隔離會使領域向不可預測的方向移動;針對不可預測的領域遷移問題,本文提出多領域多任務排練,對新老任務進行并行、平等的訓練,打破任務之間的隔離狀態。具體地說,提出了一個兩級的角裕度損失模型,以促進類內/任務的緊湊性和類間/任務的差異,使模型避免領域混亂。此外,為了進一步解決舊任務的領域轉移問題,我們在記憶上提出了一個可選的情景蒸餾損失來錨定每個舊任務的知識。在基準數據集上的實驗驗證了該方法能夠有效地抑制不可預測的領域漂移。