亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

系統性能,第二版,介紹了操作系統和應用程序的概念、策略、工具和調優,使用基于linux的操作系統作為主要示例。對這些工具和技術的深刻理解對于今天的開發人員來說是至關重要的。實現這個經過徹底修訂和更新的版本中描述的策略可以帶來更好的最終用戶體驗和更低的成本,特別是對于按操作系統實例收費的云計算環境。

系統性能專家和暢銷書作者Brendan Gregg總結了相關的操作系統、硬件和應用理論,以便讓專業人員快速了解性能,即使他們以前從未分析過性能。Gregg隨后對最新的工具和技術(包括擴展的BPF)進行了深入的解釋,并展示了如何最大限度地利用云、web和大型企業系統。所涉及的主要主題包括

硬件、內核和應用程序內部及其執行情況 復雜系統的快速性能分析方法 優化CPU、內存、文件系統、磁盤和網絡使用 使用perf、Ftrace和BPF (BCC和bpftrace)進行復雜的分析和跟蹤 與云計算管理程序相關的性能挑戰 基準測試更有效

//ptgmedia.pearsoncmg.com/images/9780133390094/samplepages/0133390098.pdf

付費5元查看完整內容

相關內容

利用Python及其標準庫中的數值和數學模塊,以及流行的開源數值Python包,如NumPy、SciPy、FiPy、matplotlib等。這個完全修訂的版本,更新了每個包的最新細節和更改Jupyter項目,演示了如何在大數據,云計算,金融工程,商業管理和更多的數字計算解決方案和數學模型應用。

Numerical Python,第二版,提供了許多使用Python在數據科學和統計中應用的全新案例研究示例,以及對以前的許多示例的擴展。由于Python的語法簡單而高級,以及數據分析的多種選項,因此它們都展示了Python在快速開發和探索性計算方面的強大功能。

閱讀本書后,讀者將熟悉許多計算技術,包括基于數組和符號計算,可視化和數字文件I/O,方程求解,優化,插值和積分,以及領域特定的計算問題,如微分方程求解,數據分析,統計建模和機器學習。

科學和數值計算是研究、工程和分析領域的一個蓬勃發展的領域。在過去的幾十年里,計算機行業的革命為計算機從業者提供了新的和強大的工具。這使得前所未有的規模和復雜性的計算工作成為可能。結果,整個領域和行業如雨后春筍般涌現出來。這種發展仍在繼續,隨著硬件、軟件和算法的不斷改進,它正在創造新的機會。最終,實現這一運動的技術是近幾十年來發展起來的強大的計算硬件。然而,對于計算從業者來說,用于計算工作的軟件環境與執行計算的硬件同等重要(如果不是更重要的話)。這本書是關于一個流行的快速增長的數值計算環境:Python編程語言及其用于計算工作的庫和擴展的充滿活力的生態系統。

計算是一項跨學科的活動,需要理論和實踐學科的經驗和專業知識:對數學和科學思維的牢固理解是有效計算工作的基本要求。同樣重要的是在計算機編程和計算機科學方面的扎實訓練。這本書的作用是通過介紹如何使用Python編程語言和圍繞該語言出現的計算環境來完成科學計算,從而將這兩個主題連接起來。在這本書中,假定讀者先前有一些數學和數值方法的訓練,以及Python編程的基本知識。這本書的重點是介紹用Python解決計算問題的實用方法。簡要介紹的理論涵蓋的主題給出在每一章,以介紹符號和提醒讀者的基本方法和算法。然而,這本書并不是對數值方法的自洽處理。為了幫助讀者以前不熟悉這本書的一些主題,進一步閱讀的參考文獻在每一章的結尾。同樣,沒有Python編程經驗的讀者可能會發現,將這本書和一本專注于Python編程語言本身的書一起閱讀會很有用

//www.programmer-books.com/wp-content/uploads/2019/02/Numerical-Python-2nd-Edition.pdf

付費5元查看完整內容

這本書是為任何想學習如何開發機器學習系統的人準備的。我們將從理論和實踐兩方面涵蓋關于機器學習算法的最重要概念,并將使用Python編程語言中的Scikit-learn庫實現許多機器學習算法。在第一章中,您將學習機器學習最重要的概念,在下一章中,您將主要學習分類。在最后一章中,你將學習如何訓練你的模型。我假定你已經了解了編程的基礎知識。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

學習Ruby中面向對象編程背后的原理,并在幾章中創建一個功能完整的基于Ruby 3的應用程序。您將基本了解許多輔助技術,如數據庫、XML、web框架和網絡—其中一些技術將是您的第一個Ruby應用程序所需要的。基于暢銷的第一和第二版,開始Ruby 3,第四版是一個學習Ruby的引導指南。

這本書的新版本提供了與以前版本相同的對Ruby的精彩介紹,并對Ruby的最新版本進行了更新,包括通過改進分配器實現的性能,減少了堆碎片等。此外,還添加了:即時編譯器的詳細信息,GIL(全局解釋器鎖)限制的減少,以及靜態類型檢查器。

您將看到為什么輕量級和敏捷的Ruby編程語言仍然是構建當今web應用程序的開發人員的一個流行的開源腳本選擇。這本書也可以作為一本教科書或一本關于開始Ruby編程的教科書的伴侶使用。在閱讀和使用這本書之后,你將對用Ruby語言編程有一個堅實的掌握。

你會學到什么 了解Ruby的基本原理及其面向對象的構建塊 使用Ruby庫、gem和文檔 使用文件和數據庫 編寫和部署Ruby應用程序 利用各種Ruby web框架并有效地使用它們 用Ruby做網絡編程

這本書是給誰的 初學者、Ruby新程序員以及對學習Ruby編程語言基礎感興趣的web開發人員。

//www.apress.com/gp/book/9781484263235

付費5元查看完整內容

和其他主要語言一樣,掌握C語言可以帶你去一些非常有趣的新地方。在它首次出現近50年后,它仍然是世界上最流行的編程語言,并被用作全球工業核心系統的基礎,包括操作系統、高性能圖形應用程序和微控制器。這意味著,在尖端產業的尖端領域,如游戲、應用程序開發、電信、工程、甚至動畫制作,都需要熟練的C語言用戶來將創新的想法轉化為順利運行的現實。

為了幫助您達到使用C語言的目的,第2版《C Programming For Dummies》涵蓋了開始編寫程序所需的所有內容,從邏輯上指導您完成開發周期:從最初的設計和測試到部署和實時迭代。到最后,您將熟練地掌握干凈的編程應該做什么和不應該做什么,并且能夠輕松地生成優雅而高效的源代碼的基本(或不那么基本)構建塊。

編寫和編譯源代碼 鏈接代碼以創建可執行程序 調試和優化您的代碼 避免常見的錯誤

無論你的目的地是科技行業、初創企業,還是只是為了在家消遣而開發,這本易于遵循、內容豐富、有趣的C編程語言指南都是實現這一目標最快、最友好的方式!

//file.allitebooks.com/20201014/C%20Programming%20For%20Dummies,%202nd%20Edition.epub

付費5元查看完整內容

這本機器學習暢銷書基于TensorFlow 2和Scikit-Learn的新版本進行了全面更新,通過具體的示例、非常少的理論和可用于生產環境的Python框架,從零幫助你直觀地理解并掌握構建智能系統所需要的概念和工具。

全書分為兩部分。第一部分介紹機器學習基礎,涵蓋以下主題:什么是機器學習,它試圖解決什么問題,以及系統的主要類別和基本概念;第二部分介紹神經網絡和深度學習,涵蓋以下主題:什么是神經網絡以及它們有什么用,使用TensorFlow和Keras構建和訓練神經網絡的技術,以及如何使用強化學習構建可以通過反復試錯,學習好的策略的代理程序。第一部分主要基于Scikit-Learn,而第二部分則使用TensorFlow和Keras。

奧雷利安·杰龍(Aurélien Géron)是機器學習方面的顧問。他曾就職于Google,在2013年到2016年領導過YouTube視頻分類團隊。他是Wifirst公司的創始人并于2002年至2012年擔任該公司的首席技術官。2001年,他創辦Ployconseil公司并任首席技術官。

付費5元查看完整內容

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

關于大數據技術的信息很多,但將這些技術拼接到端到端企業數據平臺是一項艱巨的任務,沒有得到廣泛的討論。通過這本實用的書,您將學習如何在本地和云中構建大數據基礎設施,并成功地構建一個現代數據平臺。

本書非常適合企業架構師、IT經理、應用程序架構師和數據工程師,它向您展示了如何克服Hadoop項目期間出現的許多挑戰。在深入了解以下內容之前,您將在一個徹底的技術入門中探索Hadoop和大數據領域中可用的大量工具:

  • 基礎設施: 查看現代數據平臺中的所有組件層,從服務器到數據中心,為企業中的數據建立堅實的基礎

-平臺: 了解部署、操作、安全性、高可用性和災難恢復的各個方面,以及將平臺與企業IT的其他部分集成在一起所需了解的所有內容

  • 將Hadoop帶到云端: 學習在云中運行大數據平臺的重要架構方面,同時保持企業安全性和高可用性
付費5元查看完整內容

Python算法,第二版解釋了Python方法的算法分析和設計。本書由《初級Python》的作者Magnus Lie Hetland撰寫,主要關注經典算法,但也對基本的算法解決問題技術有了深入的理解。

這本書涉及一些最重要和最具挑戰性的領域的編程和計算機科學在一個高度可讀的方式。它涵蓋了算法理論和編程實踐,演示了理論是如何反映在真實的Python程序中的。介紹了Python語言中內置的著名算法和數據結構,并向用戶展示了如何實現和評估其他算法和數據結構

付費5元查看完整內容

在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。

本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。

  • 使用IPython外殼和Jupyter筆記本進行探索性計算
  • 學習NumPy (Numerical Python)中的基本和高級特性
  • 開始使用pandas庫的數據分析工具
  • 使用靈活的工具來加載、清理、轉換、合并和重塑數據
  • 使用matplotlib創建信息可視化
  • 應用panda groupby工具對數據集進行切片、切割和匯總
  • 分析和處理有規律和不規則的時間序列數據
  • 學習如何解決現實世界的數據分析問題與徹底的,詳細的例子
付費5元查看完整內容
北京阿比特科技有限公司