亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

面對瞬息萬變的戰場,如何有效地利用智能化技術實現計算機輔助決策,已經成為制約作戰指揮控制技術發展的瓶頸。通過深入分析作戰決策制定過程,將其轉化為一個序列多步決策問題,使用深度學習方法提取包含指揮員情緒、行為和戰法演變過程決策狀態在內的戰場特征向量,基于強化學習方法對策略狀態行動空間進行搜索并對決策狀態進行評估,直到獲得最佳的行動決策序列,旨在實現未來戰場“機腦對人腦”的博弈優勢。

//www.qk.sjtu.edu.cn/ktfy/CN/Y2018/V1/I1/31#1

付費5元查看完整內容

相關內容

深度強化學習 (DRL) 是一種使用深度學習技術擴展傳統強化學習方法的一種機器學習方法。 傳統強化學習方法的主要任務是使得主體根據從環境中獲得的獎賞能夠學習到最大化獎賞的行為。然而,傳統無模型強化學習方法需要使用函數逼近技術使得主體能夠學習出值函數或者策略。在這種情況下,深度學習強大的函數逼近能力自然成為了替代人工指定特征的最好手段并為性能更好的端到端學習的實現提供了可能。

深度強化學習是目前機器學習領域中重要的研究分支之一,它可以通過直接與環境進行交互實現端到端的學習,對高維度和大規模的問題有著很好的解決能力.雖然深度強化學習已經取得了矚目的成果,但其仍面臨著對環境探索能力不足、魯棒性差、容易受到由欺騙性獎勵導致的欺騙性梯度影響等問題.進化算法普遍具有較好的 全局搜索能力、良好的魯棒性和并行性等優點,因此將進化算法與深度強化學習結合用于彌補深度強化學習不足 的方法成為了當前研究的熱點.該文主要關注進化算法在無模型的深度強化學習方法中的應用,首先簡單介紹了 進化算法和強化學習基本方法,之后詳細闡述了兩類結合進化算法的強化學習方法,分別是進化算法引導策略搜 索的強化學習和結合進化算法的深度強化學習,同時對這些方法進行了對比與分析,最后對該領域的研究重點和 發展趨勢進行了探究. 長期以來,強化學習都是機器學習方法中不可 或缺的一部分,在國際上也一直是機器學習領域中 炙手可熱的研究分支.在強化學習中,智能體首先根 據環境狀態進行決策從而產生動作,之后通過產生 的動作與環境進行交互獲得強化信號,調整產生決 策的函數映射,使得智能體能夠選擇獲得環境最大 獎勵的決策方案.智能體經過長期與環境的交互,不 斷向累積回報最大的方向優化策略,最終使累積回 報盡可能地最大化.2013年,DeepMind團隊的 Mnih 等人首先將 傳統強化學習中的Q-Learning算法[1]與深度神經網 絡相結合,并提出了深度Q 網絡(Deep Q-Network, DQN)算法[23],使用 DQN 算法訓練的智能體在Atari游戲中取得了超過人類得分的驚人表現.這一成 果開拓了深度強化學習這一新的方向,并成為了當今人工智能領 域新的研究熱點.深度強化學習是一種端到端的學習方法,它不需要標記的數據作為輸入,而是通過與環境進行交互獲取原始輸入信息,從而學習動作策略,通過不斷的試錯形成具有強大學習能力的智能體[4].2016年,DeepMind團隊使用深度強化學習訓練的AlphaGo智能體[5]擊敗了人類最頂尖的圍棋 選手,是機器學習領域的重大標志性事件,使得深度強化學習成為研究者們關注的焦點.目前深度強化 學習在機器博弈[57]、機器人控制[8]、自然語言處理[9]、最優控制[10]和計算機視覺[1]等領域中取得了廣泛的應用,被認為是通向通用人工智能的重要方 法之一[12].

付費5元查看完整內容

人工智能技術的出現為空戰領域的許多研究鋪平了道路。學術界和許多其他研究人員對一個突出的研究方向進行了研究,即無人機的自主機動決策。形成了大量研究成果,但其中基于強化學習(RL)的決策更有效。已經有許多研究和實驗使agent以最佳方式到達目標,最突出的是遺傳算法(GA),A*,RRT和其他各種優化技術已經被使用。強化學習因其成功而廣為人知。在DARPA阿爾法斗狗試驗(Alpha Dogfight Trials)中,強化學習戰勝了由波音公司培訓的真正的F-16人類老飛行員。這個模型是由Heron系統公司開發的。在這一成就之后,強化學習帶來了巨大的關注。在這項研究中,將無人機作為目標,該無人機有一個杜賓斯車動態特性,在二維空間中使用雙延遲深確定策略梯度(TD3)以最佳路徑移動到目標,并用于經驗回放(HER)。首先,它的目的是讓agent采取最佳路徑到達目標,過程中有障礙物。在每個情節中,我們的agent從一個隨機點開始,我們的目標是穩定的,其位置沒有變化。它以最佳和快速的方式找到自己的路徑。然后,為了測試機制的極限,使我們的agent更難達到目標,并使其執行不同的機動性,我們添加了障礙物。它表現得很好,克服了所有的障礙。現在的研究是讓兩個無人機作為多agent在二維空間進行斗狗。這篇研究論文提出了一種運動規劃的算法,它使用了雙延遲深度確定性策略梯度(TD3),這是一種為具有連續行動的MDP定制的算法,使用強化學習作為基礎。

付費5元查看完整內容

摘要: 推薦系統致力于從海量數據中為用戶尋找并自動推薦有價值的信息和服務,可有效解決信息過載問題,成為大數據時代一種重要的信息技術。但推薦系統的數據稀疏性、冷啟動和可解釋性等問題,仍是制約推薦系統廣泛應用的關鍵技術難點。強化學習是一種交互學習技術,該方法通過與用戶交互并獲得反饋來實時捕捉其興趣漂移,從而動態地建模用戶偏好,可以較好地解決傳統推薦系統面臨的經典關鍵問題。強化學習已成為近年來推薦系統領域的研究熱點。文中從綜述的角度,首先在簡要回顧推薦系統和強化學習的基礎上,分析了強化學習對推薦系統的提升思路,對近年來基于強化學習的推薦研究進行了梳理與總結,并分別對傳統強化學習推薦和深度強化學習推薦的研究情況進行總結;在此基礎上,重點總結了近年來強化學習推薦研究的若干前沿,以及其應用研究情況。最后,對強化學習在推薦系統中應用的未來發展趨勢進行分析與展望。

//www.jsjkx.com/CN/10.11896/jsjkx.210200085

付費5元查看完整內容

摘要:復雜未知環境下智能感知與自動控制是目前機器人在控制領域的研究熱點之一,而新一代人工智能為其實現智能自動化賦予了可能.近年來,在高維連續狀態-動作空間中,嘗試運用深度強化學習進行機器人運動控制的新興方法受到了相關研究人員的關注.本篇綜述首先回顧了深度強化學習的興起與發展,將用于機器人運動控制的深度強化學習算法分為基于值函數和策略梯度2類,并對各自典型算法及其特點進行了詳細介紹;其次,針對仿真至現實之前的學習過程,簡要介紹了5種常用于深度強化學習的機器人運動控制仿真平臺;然后根據研究類型的不同,綜述了目前基于深度強化學習的機器人運動控制方法在自主導航、物體抓取、步態控制、人機協作以及群體協同等5個方面的研究進展.最后,對其未來所面臨的挑戰以及發展趨勢進行了總結與展望.

//kzyjc.cnjournals.com/kzyjc/article/pdf/2020-1382

付費5元查看完整內容

深度強化學習主要被用來處理感知-決策問題,已經成為人工智能領域重要的研究分支。概述了基于值函數和策略梯度的兩類深度強化學習算法,詳細闡述了深度Q網絡、深度策略梯度及相關改進算法的原理,并綜述了深度強化學習在視頻游戲、導航、多智能體協作以及推薦系統等領域的應用研究進展。最后,對深度強化學習的算法和應用進行展望,針對一些未來的研究方向和研究熱點給出了建議。

付費5元查看完整內容

近年來, 深度強化學習(Deep reinforcement learning, DRL)在諸多復雜序貫決策問題中取得巨大突破.由于融合了深度學習強大的表征能力和強化學習有效的策略搜索能力, 深度強化學習已經成為實現人工智能頗有前景的學習范式.然而, 深度強化學習在多Agent系統的研究與應用中, 仍存在諸多困難和挑戰, 以StarCraft Ⅱ為代表的部分觀測環境下的多Agent學習仍然很難達到理想效果.本文簡要介紹了深度Q網絡、深度策略梯度算法等為代表的深度強化學習算法和相關技術.同時, 從多Agent深度強化學習中通信過程的角度對現有的多Agent深度強化學習算法進行歸納, 將其歸納為全通信集中決策、全通信自主決策、欠通信自主決策3種主流形式.從訓練架構、樣本增強、魯棒性以及對手建模等方面探討了多Agent深度強化學習中的一些關鍵問題, 并分析了多Agent深度強化學習的研究熱點和發展前景.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c180372

付費5元查看完整內容

組合優化問題廣泛存在于國防、交通、工業、生活等各個領域, 幾十年來, 傳統運籌優化方法是解決組合優化問題的主要手段, 但隨著實際應用中問題規模的不斷擴大、求解實時性的要求越來越高, 傳統運籌優化算法面臨著很大的計算壓力, 很難實現組合優化問題的在線求解. 近年來隨著深度學習技術的迅猛發展, 深度強化學習在圍棋、機器人等領域的矚目成果顯示了其強大的學習能力與序貫決策能力. 鑒于此, 近年來涌現出了多個利用深度強化學習方法解決組合優化問題的新方法, 具有求解速度快、模型泛化能力強的優勢, 為組合優化問題的求解提供了一種全新的思路. 因此本文總結回顧近些年利用深度強化學習方法解決組合優化問題的相關理論方法與應用研究, 對其基本原理、相關方法、應用研究進行總結和綜述, 并指出未來該方向亟待解決的若干問題.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200551

付費5元查看完整內容
北京阿比特科技有限公司