深度強化學習主要被用來處理感知-決策問題,已經成為人工智能領域重要的研究分支。概述了基于值函數和策略梯度的兩類深度強化學習算法,詳細闡述了深度Q網絡、深度策略梯度及相關改進算法的原理,并綜述了深度強化學習在視頻游戲、導航、多智能體協作以及推薦系統等領域的應用研究進展。最后,對深度強化學習的算法和應用進行展望,針對一些未來的研究方向和研究熱點給出了建議。
自動駕駛車輛的本質是輪式移動機器人,是一個集模式識別、環境感知、規劃決策和智能控制等功能于一體的綜合系統。人工智能和機器學習領域的進步極大推動了自動駕駛技術的發展。當前主流的機器學習方法分為:監督學習、非監督學習和強化學習3種。強化學習方法更適用于復雜交通場景下自動駕駛系統決策和控制的智能處理,有利于提高自動駕駛的舒適性和安全性。深度學習和強化學習相結合產生的深度強化學習方法成為機器學習領域中的熱門研究方向。首先對自動駕駛技術、強化學習方法以及自動駕駛控制架構進行簡要介紹,并闡述了強化學習方法的基本原理和研究現狀。隨后重點闡述了強化學習方法在自動駕駛控制領域的研究歷史和現狀,并結合北京聯合大學智能車研究團隊的研究和測試工作介紹了典型的基于強化學習的自動駕駛控制技術應用,討論了深度強化學習的潛力。最后提出了強化學習方法在自動駕駛控制領域研究和應用時遇到的困難和挑戰,包括真實環境下自動駕駛安全性、多智能體強化學習和符合人類駕駛特性的獎勵函數設計等。研究有助于深入了解強化學習方法在自動駕駛控制方面的優勢和局限性,在應用中也可作為自動駕駛控制系統的設計參考。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210103&flag=1
生成對抗網絡(GAN)是無監督學習領域最近幾年快速發展的一個研究方向,其主要特點是能夠以一種間接的方 式對一個未知分布進行建模。在計算機視覺研究領域中,生成對抗網絡有著廣泛的應用,特別是在圖像生成方面,與其他的 生成模型相比,生成對抗網絡不僅可以避免復雜的計算,而且生成的圖像質量也更好。因此,本文將對生成對抗網絡及其在 圖像生成中的研究進展做一個小結和分析;本文首先從模型的架構、目標函數的設計、生成對抗網絡在訓練中存在的問題, 以及如何處理模式崩潰問題等角度對生成對抗網絡進行一個詳細的總結和歸納;其次介紹生成對抗網絡在圖像生成中的兩 種方法;隨后對一些典型的、用來評估生成圖像質量和多樣性的方法進行小結;并且對基于圖像生成的應用進行詳細分析;最后對生成對抗網絡和圖像生成進行總結,同時對其發展趨勢進行一個展望。
深度強化學習作為機器學習發展的最新成果,已經在很多應用領域嶄露頭角。關于深度強化學習的算法研究和應用研究,產生了很多經典的算法和典型應用領域。深度強化學習應用在智能制造中,能在復雜環境中實現高水平控制。對深度強化學習的研究進行概述,對深度強化學習基本原理進行介紹,包括深度學習和強化學習。介紹深度強化學習算法應用的理論方法,在此基礎對深度強化學習的算法進行了分類介紹,分別介紹了基于值函數和基于策略梯度的強化學習算法,列舉了這兩類算法的主要發展成果,以及其他相關研究成果。對深度強化學習在智能制造的典型應用進行分類分析。對深度強化學習存在的問題和未來發展方向進行了討論。
近年來, 深度強化學習(Deep reinforcement learning, DRL)在諸多復雜序貫決策問題中取得巨大突破.由于融合了深度學習強大的表征能力和強化學習有效的策略搜索能力, 深度強化學習已經成為實現人工智能頗有前景的學習范式.然而, 深度強化學習在多Agent系統的研究與應用中, 仍存在諸多困難和挑戰, 以StarCraft Ⅱ為代表的部分觀測環境下的多Agent學習仍然很難達到理想效果.本文簡要介紹了深度Q網絡、深度策略梯度算法等為代表的深度強化學習算法和相關技術.同時, 從多Agent深度強化學習中通信過程的角度對現有的多Agent深度強化學習算法進行歸納, 將其歸納為全通信集中決策、全通信自主決策、欠通信自主決策3種主流形式.從訓練架構、樣本增強、魯棒性以及對手建模等方面探討了多Agent深度強化學習中的一些關鍵問題, 并分析了多Agent深度強化學習的研究熱點和發展前景.
我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1
摘要
本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。
關鍵詞:遷移學習,強化學習,綜述,機器學習
介紹
強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。
DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。
在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。
在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。
本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。
在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。
第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。
摘要: 強化學習作為一種用于解決無模型序列決策問題的方法已經有數十年的歷史, 但強化學習方法在處理高維變量問題時常常會面臨巨大挑戰. 近年來, 深度學習迅猛發展, 使得強化學習方法為復雜高維的多智能體系統提供優化的決策策略、在充滿挑戰的環境中高效執行目標任務成為可能. 本文綜述了強化學習和深度強化學習方法的原理, 提出學習系統的閉環控制框架, 分析了多智能體深度強化學習中存在的若干重要問題和解決方法, 包括多智能體強化學習的算法結構、環境非靜態和部分可觀性等問題, 對所調查方法的優缺點和相關應用進行分析和討論. 最后提供多智能體深度強化學習未來的研究方向, 為開發更強大、更易應用的多智能體強化學習控制系統提供一些思路.
最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。
【簡介】隨著深度表示學習的發展,強化學習(RL)已經成為了一個強大的學習框架,其可以在高維度空間中學習復雜的規則。這篇綜述總結了深度強化學習(DRL)算法,提供了采用強化學習的自動駕駛任務的分類方法,重點介紹了算法上的關鍵挑戰和在現實世界中將強化學習部署在自動駕駛方面的作用,以及最終評估,測試和加強強化學習和模仿學習健壯性的現有解決方案。
論文鏈接: //arxiv.org/abs/2002.00444
介紹:
自動駕駛(AD)系統由多個感知級任務組成,由于采用了深度學習架構,這些任務現在已經達到了很高的精度。除了感知任務之外,自主駕駛系統還包含多個其他任務,傳統的監督學習方法已經不再適用。首先,當對agent行為的預測發生變化時,從自動駕駛agent所處的環境中接收到的未來傳感器觀察到的結果,例如獲取市區最佳駕駛速度的任務。其次,監督信號(如碰撞時間(TTC),相對于agent最佳軌跡的側向誤差)表示agent的動態變化以及環境中的不確定性。這些問題都需要定義隨機損失函數來使其最大化。最后,agent需要學習當前環境新的配置參數,預測其所處的環境中每一時刻的最優決策。這表明在觀察agent和其所處環境的情況下,一個高維度的空間能夠給出大量唯一的配置參數。在這些場景中,我們的目標是解決一個連續決策的問題。在這篇綜述中,我們將介紹強化學習的概念,強化學習是一種很有前景的解決方案和任務分類方法,特別是在驅動策略、預測感知、路徑規劃以及低層控制器設計等領域。我們還重點回顧了強化學習在自動駕駛領域當中各種現實的應用。最后,我們通過闡述應用當前諸如模仿學習和Q學習等強化學習算法時所面臨的算力挑戰和風險來激勵使用者對強化學習作出改進。
章節目錄:
section2: 介紹一個典型的自動駕駛系統及其各個組件。
section3: 對深度強化學習進行介紹,并簡要討論關鍵概念。
section4: 探討在強化學習基本框架上對其進行更深層次,更加復雜的擴展。
section5: 對強化學習用于自動駕駛領域的所面臨的問題提供一個概述。
section6: 介紹將強化學習部署到真實世界自動駕駛系統中所面臨的挑戰。
section7: 總結
題目: A Survey and Critique of Multiagent Deep Reinforcement Learning
簡介: 近年來,深度強化學習(RL)取得了出色的成績。這使得應用程序和方法的數量急劇增加。最近的工作探索了單智能體深度強化之外的學習,并考慮了多智能體深度強化學習的場景。初步結果顯示在復雜的多智能體領域中的成功,盡管有許多挑戰需要解決。本文的主要目的是提供有關當前多智能體深度強化學習(MDRL)文獻的概述。此外,我們通過更廣泛的分析對概述進行補充:(i)我們回顧了以前RL中介紹的基礎內容,并強調了它們如何適應多智能深度強化學習設置。 (ii)我們為該領域的新開業者提供一般指導:描述從MDRL工作中汲取的經驗教訓,指出最新的基準并概述研究途徑。 (iii)我們提出了MDRL的實際挑戰(例如,實施和計算需求)。
作者介紹: Pablo Hernandez-Leal,Borealis AI的研究員,在此之前,曾與Michael Kaisers一起參與過阿姆斯特丹CWI的智能和自治系統。研究方向:單智能體環境開發的算法以及多智能體。計劃開發一種算法,該算法使用博弈論,貝葉斯推理和強化學習中的模型和概念在戰略交互中得到使用。