亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來, 深度強化學習(Deep reinforcement learning, DRL)在諸多復雜序貫決策問題中取得巨大突破.由于融合了深度學習強大的表征能力和強化學習有效的策略搜索能力, 深度強化學習已經成為實現人工智能頗有前景的學習范式.然而, 深度強化學習在多Agent系統的研究與應用中, 仍存在諸多困難和挑戰, 以StarCraft Ⅱ為代表的部分觀測環境下的多Agent學習仍然很難達到理想效果.本文簡要介紹了深度Q網絡、深度策略梯度算法等為代表的深度強化學習算法和相關技術.同時, 從多Agent深度強化學習中通信過程的角度對現有的多Agent深度強化學習算法進行歸納, 將其歸納為全通信集中決策、全通信自主決策、欠通信自主決策3種主流形式.從訓練架構、樣本增強、魯棒性以及對手建模等方面探討了多Agent深度強化學習中的一些關鍵問題, 并分析了多Agent深度強化學習的研究熱點和發展前景.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c180372

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.

引言

隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。

實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。

元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。

在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。

Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。

元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。

付費5元查看完整內容

深度強化學習作為機器學習發展的最新成果,已經在很多應用領域嶄露頭角。關于深度強化學習的算法研究和應用研究,產生了很多經典的算法和典型應用領域。深度強化學習應用在智能制造中,能在復雜環境中實現高水平控制。對深度強化學習的研究進行概述,對深度強化學習基本原理進行介紹,包括深度學習和強化學習。介紹深度強化學習算法應用的理論方法,在此基礎對深度強化學習的算法進行了分類介紹,分別介紹了基于值函數和基于策略梯度的強化學習算法,列舉了這兩類算法的主要發展成果,以及其他相關研究成果。對深度強化學習在智能制造的典型應用進行分類分析。對深度強化學習存在的問題和未來發展方向進行了討論。

付費5元查看完整內容

深度學習是機器學習和人工智能研究的最新趨勢,作為一個十余年來快速發展的嶄新領域,越來越受到研究者的關注。卷積神經網絡(CNN)模型是深度學習模型中最重要的一種經典結構,其性能在近年來深度學習任務上逐步提高。由于可以自動學習樣本數據的特征表示,卷積神經網絡已經廣泛應用于圖像分類、目標檢測、語義分割以及自然語言處理等領域。首先分析了典型卷積神經網絡模型為提高其性能增加網絡深度以及寬度的模型結構,分析了采用注意力機制進一步提升模型性能的網絡結構,然后歸納分析了目前的特殊模型結構,最后總結并討論了卷積神經網絡在相關領域的應用,并對未來的研究方向進行展望。

地址: //fcst.ceaj.org/CN/abstract/abstract2521.shtml

付費5元查看完整內容

強化學習是機器學習領域的研究熱點, 是考察智能體與環境的相互作用, 做出序列決策、優化策略并最大化累積回報的過程. 強化學習具有巨大的研究價值和應用潛力, 是實現通用人工智能的關鍵步驟. 本文綜述了強化學習算法與應用的研究進展和發展動態, 首先介紹強化學習的基本原理, 包括馬爾可夫決策過程、價值函數、探索-利用問題. 其次, 回顧強化學習經典算法, 包括基于價值函數的強化學習算法、基于策略搜索的強化學習算法、結合價值函數和策略搜索的強化學習算法, 以及綜述強化學習前沿研究, 主要介紹多智能體強化學習和元強化學習方向. 最后綜述強化學習在游戲對抗、機器人控制、城市交通和商業等領域的成功應用, 以及總結與展望.

//www.c-s-a.org.cn/csa/article/abstract/7701

付費5元查看完整內容

小樣本學習旨在通過少量樣本學習到解決問題的模型.近年來在大數據訓練模型的趨勢下,機器學習和深度學習在許多領域中取得了成功.但是在現實世界中的很多應用場景中,樣本量很少或者標注樣本很少,而對大量無標簽樣本進行標注工作將會耗費很大的人力.所以,如何用少量樣本進行學習就成為了目前人們需要關注的問題.本文系統梳理了當前小樣本學習的相關工作,具體介紹了基于模型微調、基于數據增強和基于遷移學習三大類小樣本學習模型與算法的研究進展;本文將基于數據增強的方法細分為基于無標簽數據、基于數據合成和基于特征增強三類,將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡三類.本文還總結了目前常用的小樣本數據集,以及代表性的小樣本學習模型在這些數據集上的實驗結果,隨后對小樣本學習的現狀和挑戰進行了概述,最后展望了小樣本學習的未來發展方向.

//www.jos.org.cn/jos/ch/reader/create_pdf.aspx?file_no=6138&journal_id=jos

隨著大數據時代的到來,深度學習模型已經在圖像分類、文本分類等任務中取得了先進成果.但深度學習模型的成功很大程度 上依賴于大量訓練數據,而在現實世界的真實場景中某些類別只有少量數據或少量標注數據,而對無標簽數據進行標注將會消耗 大量的時間和人力.與此相反,人類只需要通過少量數據就能做到快速學習.例如一個五六歲的小孩子從未見過企鵝,但如果給他看 過一張企鵝的圖像,當他進入動物園看到真正的企鵝時,就會馬上認出這是自己曾經在圖像上見過的“企鵝”,這就是機器學習和人類學習之間存在的差距.受到人類學習觀點的啟發[1],小樣本學習[2] [3](few-shot learning)的概念被提出,使得機器學習更加靠近人類思維.

早在 20 世紀八九十年代,就有一些研究人員注意到了單樣本學習(one-shot learning)的問題,直到 2003 年 Li 等[4]才正式提出了 單樣本學習的概念.他們認為當新的類別只有一個或幾個帶標簽的樣本時,已經學習到的舊類別可以幫助預測新類別[5].小樣本學 習也叫作少樣本學習(low-shot learning) [7],其目標是從少量樣本中學習到解決問題的方法.與小樣本學習相關的概念還有零樣本學 習(zero-shot learning)等.零樣本學習是指在沒有訓練數據的情況下,利用類別的屬性等信息訓練模型,從而識別新類別.

小樣本學習的概念最早從計算機視覺(Computer Vision) [8]領域興起,近幾年受到廣泛關注,在圖像分類任務中已有很多性能優 異的算法模型[34][37][45].但是在自然語言處理領域(Natural Language Processing) [9]的發展較為緩慢,原因在于圖像和語言特性不同.圖 像相比文本更為客觀,所以當樣本數量較少時,圖像的特征提取比文本更加容易[87].不過近年來小樣本學習在自然語言處理領域也 有了一些研究和發展[10][46][48].根據所采用方法的不同,本文將小樣本學習分為基于模型微調、基于數據增強和基于遷移學習三種. 基于模型微調的方法首先在含有大量數據的源數據集上訓練一個分類模型,然后在含有少量數據的目標數據集上對模型進行微 調.但這種做法可能導致模型過擬合,因為少量數據并不能很好地反映大量數據的真實分布情況.為解決上述過擬合的問題,基于數 據增強和基于遷移學習的小樣本學習方法被提出.基于數據增強的方法是利用輔助數據集或者輔助信息增強目標數據集中樣本的 特征或擴充對目標數據集,使模型能更好地提取特征.本文根據學習方法不同,將基于數據增強的小樣本學習方法進一步細分為基 于無標簽數據、基于數據合成和基于特征增強三類方法.基于遷移學習的方法是目前比較前沿的方法,是指將已經學會的知識遷移 到一個新的領域中.本文根據學習框架將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡(Graph Neural Networks)的方法.在度量學習的框架下目前已有許多性能較好的小樣本學習模型,例如比較著名的原型網絡(Prototypical Networks) [34]和匹配網絡(Matching Networks) [31]等.基于元學習的方法不僅在目標任務上訓練模型,而是從許多不同的任務中學習 元知識,當一個新的任務到來時,利用元知識調整模型參數,使模型能夠快速收斂.近年來隨著圖神經網絡的興起,研究者將圖神經網 絡也應用到小樣本學習中,取得了先進的結果.

除了圖像分類和文本分類這兩個主要任務,許多其他任務也面臨著小樣本問題.在計算機視覺應用中,利用小樣本學習進行人臉識別[8][60][82]、食品識別[61]、表情識別[66]、手寫字體識別[70][79]以及其他的圖像識別[65]. 在自然語言處理應用中,使用小樣本方法 實現對話系統[67]、口語理解[62],或者完成 NLP 的基本任務,例如 word embedding[63].在多媒體領域應用中,可以使用小樣本方法實現 影像提取[73]和聲紋識別[80]等.在生物與醫學領域,可以應用于疾病診斷[71][72]、臨床實驗[84]、護士能力評價[75]、農作物病害識別[69][81]、 水量分析[76]等.在經濟領域,可應用于產品銷量預測[77]等.在工業與軍事領域,可應用于齒輪泵壽命預測[78]、軍事目標識別[74]和目標 威脅評估[83]等.

本文首先從基于模型微調、基于數據增強和基于遷移學習三種方法介紹小樣本學習的研究進展,總結小樣本學習的幾個著名數據集以及已有模型在這些數據集上的實驗結果;接下來,本文對小樣本學習的研究現狀和主要挑戰進行總結;最后展望了未來的 發展趨勢.

付費5元查看完整內容

摘要:隨著計算機行業和互聯網時代的不斷發展與進步,圖神經網絡已經成為人工智能和大數據重要研究領域。圖神經網絡是對相鄰節點間信息的傳播和聚合的重要技術,可以有效地將深度學習的理念應用于非歐幾里德空間的數據上。簡述圖計算、圖數據庫、知識圖譜、圖神經網絡等圖技術領域的相關研究歷史,分類介紹不同類型的圖結構。分析對比不同的圖神經網絡技術,重點從頻域和空間與的信息聚合方式上分類比較不同的圖卷積網絡算法。闡述圖生成和圖對抗網絡、圖強化學習、圖遷移學習、神經任務圖和圖零樣本學習等不同的圖網絡與深度學習方法相結合的技術方法,并列舉不同的圖神經網絡技術在文本、圖像、知識圖譜、視頻任務等領域的具體應用。最后,對圖神經網絡未來的發展與研究方向加以展望。

//kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJDAY&filename=JSJC20201123000&v=fpDLQvPDFGeYvQeSgmnh5h1YpkO6G1W6SQqt4w%25mmd2B%25mmd2BnZtjD3h80wKsQ5NhpJeXgtGI

概述

近年來隨著計算機行業的快速發展和數據量的井噴式增長,深度學習方法被提出并得到了廣泛的 應用。深度學習通過神經網絡端到端的解決方案, 在圖像處理、語音識別、語義理解[1]等領域取得了 巨大的成功,深度學習的應用往往都是在高維特征 空間上特征規則分布的歐幾里德數據。作為一種關 系型數據結構,圖(Graph)在深度學習中的應用研究近年來受到越來越多的關注,本文將圖的演進歷程分為數學起源、計算應用、神經網絡延伸三個階段。

圖的概念起源于 18 世紀著名的柯尼斯堡七橋問 題,到了 20 世紀中期,擬陣理論、超圖理論、極圖 理論等研究蓬勃發展,使得圖論(Graph Theory)[2] 在電子計算誕生前,就已經成為了重要的數學研究領域。

隨著計算機的出現和機器計算時代的到來和發 展,圖作為一種能夠有效且抽象地表達信息和數據 中的實體以及實體之間關系的重要數據結構被廣泛應用,圖數據庫有效解決了傳統的關系型數據結構 面對大量復雜的數據所暴露出的建模缺陷多、計算速度慢等問題,圖數據庫也成為了非常熱門的研究 領域。圖結構(Graph-structured Data)[3]可以將結構化數據點通過邊的形式,依照數據間的關系將不同類型和結構的數據節點連接起來,因而被廣泛地應用在數據的存儲、檢索以及計算應用中。基于圖結構數據,知識圖譜[4-7]可以通過點和邊的語義關系, 來實現精確地描述現實世界中實體之間的關聯關系, 作為人工智能非常重要的研究領域,知識圖譜的研究方向包括知識抽取、知識推理、知識圖譜可視化等。圖計算(Graph Computing)具有數據規模量大、 局部性低、計算性能高等特性,圖計算算法[8-9]主要 可以分為路徑搜索算法、中心性算法、社群發現算法等三類,實現了在關系復雜型的大規模數據上高 時效性和準確度的表現,在社交網絡、團體反欺詐 和用戶推薦等領域有著重要的應用。

與已經非常成熟圖計算不同,圖神經網絡 (Graph Neural Network)的研究主要是集中在相鄰節點信息的傳播與聚合上,從圖神經網絡的概念提 出,到受深度學習中卷積神經網絡的啟發,2013 年 提出的基于圖論的圖卷積神經網絡 [10-11]研究方向吸 引了大量學者關注。2018 年 DeepMind 提出圖網絡 (Graph Network)[12]的概念,希望能夠將深度學習 端到端的學習方式與圖結構關系歸納推理的理論結 合解決深度學習無法處理關系推理的問題。針對圖 神經網絡存在的問題,不同的學者們也給出了不同 的方案,隨著對圖神經網絡這一新興領域更加深入 的研究與探索,人工智能領域的版圖將得到更大擴展。

文獻[12]在關系歸納偏置和深度學習的研究基礎 上,提出了面向關系推理的圖網絡概念并進行了綜 述,但未對不同圖網絡技術進行分類和對比。文獻 [13]從半監督、無監督方法的角度對圖結構上的深度 學習進行了綜述,但缺少相近的分類和應用的討論。文獻[14]主要從傳播規則、網絡結構等角度分析了圖神經網絡的不同模型以及應用。文獻[15]則是詳細對 比了時域和空間的不同圖卷神經網絡方法結構,但沒有對圖神經網絡之于深度學習領域的探討,如圖強化學習、圖遷移學習等。本文針對圖神經網絡, 分析對比了六種圖神經網絡方法的優劣,首次對處 理異構圖數據的圖神經網絡技術進行了討論和研究, 綜述了五類圖神經網絡的研究領域,并對未來的發展方向進行了展望。

付費5元查看完整內容

通過學習可觀測數據的概率密度而隨機生成樣本的生成模型在近年來受到人們的廣泛關注, 網絡結構中包含多個隱藏層的深度生成式模型以更出色的生成能力成為研究熱點, 深度生成模型在計算機視覺、密度估計、自然語言和語音識別、半監督學習等領域得到成功應用, 并給無監督學習提供了良好的范式. 本文根據深度生成模型處理似然函數的不同方法將模型分為三類: 第一類方法是近似方法, 包括采用抽樣方法近似計算似然函數的受限玻爾茲曼機和以受限玻爾茲曼機為基礎模塊的深度置信網絡、深度玻爾茲曼機和亥姆霍茲機, 與之對應的另一種模型是直接優化似然函數變分下界的變分自編碼器以及其重要的改進模型, 包括重要性加權自編碼和可用于半監督學習的深度輔助深度模型; 第二類方法是避開求極大似然過程的隱式方法, 其代表模型是通過生成器和判別器之間的對抗行為來優化模型參數從而巧妙避開求解似然函數的生成對抗網絡以及重要的改進模型, 包括WGAN、深度卷積生成對抗網絡和當前最頂級的深度生成模型BigGAN; 第三類方法是對似然函數進行適當變形的流模型和自回歸模型, 流模型利用可逆函數構造似然函數后直接優化模型參數, 包括以NICE為基礎的常規流模型、變分流模型和可逆殘差網絡(i-ResNet), 自回歸模型(NADE)將目標函數分解為條件概率乘積的形式, 包括神經自回歸密度估計(NADE)、像素循環神經網絡(PixelRNN)、掩碼自編碼器(MADE)以及WaveNet等. 詳細描述上述模型的原理和結構以及模型變形后, 闡述各個模型的研究進展和應用, 最后對深度生成式模型進行展望和總結.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190866

受益于當前計算機性能的快速提升, 學習可觀測樣本的概率密度并隨機生成新樣本的生成模型成為熱點. 相比于需要學習條件概率分布的判別模型, 生成模型的訓練難度大、模型結構復雜, 但除了能夠生成新樣本外, 生成模型在圖像重構、缺失數據填充、密度估計、風格遷移和半監督學習等應用領域也獲得了巨大的成功. 當前可觀測樣本的數量和維數都大幅度增加, 淺層的生成模型受到性能瓶頸的限制而無法滿足應用需求, 從而被含有多個隱藏層的深度生成模型替代, 深度生成模型能夠學習到更好的隱表示, 模型性能更好. 本文對有重要意義的深度生成模型進行全面的分析和討論, 對各大類模型的結構和基本原理進行梳理和分類. 本文第1節介紹深度生成模型的概念和分類; 第2節介紹受限玻爾茲曼機和以受限玻爾茲曼機為基礎模塊的幾種深度生成模型, 重點內容是各種模型的不同訓練算法; 第3節介紹變分自編碼器的基本結構、變分下界的推理和重參數化方法; 第4節介紹生成對抗網絡, 主要內容為模型原理、訓練方法和穩定性研究, 以及兩種重要的模型結構; 第5節總結了流模型的結構, 詳細介紹了流模型的技術特點; 第6節分析了自回歸模型的模型結構以及幾種重要分支的研究進展; 第7節將介紹生成模型中的兩個小分支: 矩陣匹配模型和隨機生成模型; 第8節對深度生成模型存在的問題進行分析討論, 并對未來的研究方向和發展趨勢做出了展望.

付費5元查看完整內容

摘要

本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。

關鍵詞:遷移學習,強化學習,綜述,機器學習

介紹

強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。

DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。

在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。

在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。

本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。

在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。

第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。

付費5元查看完整內容

最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。

付費5元查看完整內容

題目: A Survey and Critique of Multiagent Deep Reinforcement Learning

簡介: 近年來,深度強化學習(RL)取得了出色的成績。這使得應用程序和方法的數量急劇增加。最近的工作探索了單智能體深度強化之外的學習,并考慮了多智能體深度強化學習的場景。初步結果顯示在復雜的多智能體領域中的成功,盡管有許多挑戰需要解決。本文的主要目的是提供有關當前多智能體深度強化學習(MDRL)文獻的概述。此外,我們通過更廣泛的分析對概述進行補充:(i)我們回顧了以前RL中介紹的基礎內容,并強調了它們如何適應多智能深度強化學習設置。 (ii)我們為該領域的新開業者提供一般指導:描述從MDRL工作中汲取的經驗教訓,指出最新的基準并概述研究途徑。 (iii)我們提出了MDRL的實際挑戰(例如,實施和計算需求)。

作者介紹: Pablo Hernandez-Leal,Borealis AI的研究員,在此之前,曾與Michael Kaisers一起參與過阿姆斯特丹CWI的智能和自治系統。研究方向:單智能體環境開發的算法以及多智能體。計劃開發一種算法,該算法使用博弈論,貝葉斯推理和強化學習中的模型和概念在戰略交互中得到使用。

付費5元查看完整內容
北京阿比特科技有限公司