本教程涵蓋了元學習的原則理論和最新的研究進展,并結合了基于對推進新的生物醫學發現的高度相關性案例,進行研究設計。我們將介紹一種表示學習方法,通過學習跨數據集進行泛化,從而將標記數據和未標記數據連接起來。
教學目的
在生物醫學領域,獲取有標簽的數據集往往非常困難和耗時。在機器學習理論被使用之前,它需要耗費大量的手工勞動和專家知識來進行手工標記。其結果是導致出現了許多幾乎沒有標記或完全沒有標記的數據集。例如,在蛋白質功能預測中,大量的功能標簽只有少數標記基因,或者在單細胞轉錄組學中,新的和罕見的細胞類型出現在龐大的、異質性的單細胞數據集。
雖然機器學習方法擅長處理具有大量標記數據集的任務,這些標記數據集可以支持高度參數化模型的學習,但要解決生物醫學中的核心問題,我們需要的是一種可以推廣到不可見的領域,并且僅給出幾個標記訓練示例數據集,或者在極端情況下,完全沒有標記的數據集的方法。低數據模式任務的主要進展是通過元學習(學習跨任務學習)在相關任務中利用知識。元學習背后的核心思想是在之前的任務中獲取先驗知識,從而實現從少量數據中高效地學習新任務。
本教程將涵蓋元學習的原則理論和最近的研究進展,并結合了基于對推進新的生物醫學發現的高度相關性案例,進行研究設計。我們將介紹一種表示學習方法,通過學習在只有少數標記例子或沒有任何標記數據的數據集上進行泛化,從而架起標記數據和未標記數據之間的橋梁,并強調可解釋性。我們將花相當多的時間來解釋如何將可解釋性作為方法設計中的一個基本特征。本教程將使學員具備理解基礎和最先進的元學習方法的能力,并在自己的研究中使用學到的概念和方法。
學習目標
通過完成課程學習,參與者將獲得關于對元學習技術的基本概念和最新進展的理解和廣泛的知識:
我們如何有效地從幾乎沒有標記的數據集中獲取知識,例如,蛋白功能或結構與幾個標記的例子?我們如何利用先驗知識來學習泛化,即元學習?
我們如何利用現有知識庫中的知識,如基因本體和細胞本體,來提供基于少數標記示例的決策背后的解釋?
在沒有任何標注例子的情況下,我們需要怎樣學習呢?我們是如何發現新的,從未見過的類別/類,如罕見的和未見過的細胞類型的單細胞實驗?
我們如何在不同物種、組織或測序技術之間遷移知識?
什么基本的生物學開放問題可以從元學習技術中受益?元學習如何運用于這些問題?
哪些框架、工具和庫可用來在新的數據集和應用中使用元學習方法?
神經序列標記被廣泛應用于許多自然語言處理(NLP)任務,如命名實體識別(NER)和用于對話系統和語義分析的槽標記。最近,大規模的預訓練語言模型在這些任務中顯示出了顯著的成功,只要對大量特定任務的標記數據進行微調。然而,獲取這樣大規模的標記訓練數據不僅代價昂貴,而且由于數據訪問和隱私限制,在許多敏感用戶應用中可能不可行。如果序列標記任務需要在標記級進行這樣的注釋,這種情況就會加劇。在這項工作中,我們提出以解決標簽短缺的神經序列標記模型。具體來說,我們提出了一個元自訓練框架,它利用很少的手工標注標簽來訓練神經序列模型。自訓練是一種通過迭代知識交換從大量無標記數據中學習的有效機制,而元學習有助于自適應樣本重加權,以減少噪聲偽標記帶來的誤差傳播。在6個基準數據集上的大量實驗表明了該方法的有效性,其中包括2個用于大規模多語言NER的基準數據集和4個用于面向任務的對話系統的槽標記數據集。在每個任務中,每個類別只有10個標注的例子,該方法比目前最先進的方法提高了10%,證明了其在有限的訓練標簽體系中的有效性。
//www.microsoft.com/en-us/research/uploads/prod/2020/10/MetaST_Few_shot_KDD_2021.pdf
機器學習系統通常是在這樣的假設下設計的,即它們將作為一個靜態模型部署在世界上一個單一的靜態區域。然而,世界是不斷變化的,因此未來看起來不再完全像過去,甚至在相對靜態的環境中,系統可能部署在其世界的新的、看不見的部分。盡管數據分布的這種連續變化會給機器學習中獲得的模型帶來重大挑戰,但模型也不必是靜態的:它可以而且應該自適應。在這次演講中,我將討論我們如何允許深度網絡通過適應來魯棒地應對這種分布轉移。首先介紹元學習的概念,然后簡要概述從機器人到藥物設計的幾個成功的元學習應用,最后討論元學習研究前沿的幾項最新工作。
視頻: //www.youtube.com/watch?v=7qOOmtXHilY&feature=youtu.be
從一開始就創建良好的數據,而不是在收集數據之后修復它。通過遵循這本書中的指導方針,你將能夠進行更有效的分析,并產生研究數據的及時演示。
數據分析師通常與數據集提出了勘探和研究設計不良,導致解釋的困難和延誤產生有意義的結果。數據分析培訓的重點是如何在開始認真分析之前清理和轉換數據集。通過使用良好的數據集設計和理解數據類型如何決定可以執行的分析類型,可以避免不恰當或令人困惑的表示、度量單位選擇、編碼錯誤、缺失值、離群值等。
這本書討論了數據集創建的原則和最佳實踐,并涵蓋了基本數據類型及其相關的適當統計和可視化。這本書的一個重點是為什么選擇某些數據類型來表示概念和度量,而不是典型的討論如何分析選定的特定數據類型。
你會: 注意創建和收集數據的原則 了解基本數據類型和表示 選擇數據類型,預測分析目標 理解數據集的結構和用于分析和共享的實踐 由例子引導和用例(好的和壞的) 使用清潔工具和方法創建良好的數據
小樣本學習是當前研究關注的熱點。這篇論文總結了2016年到2020年的小樣本元學習文章,劃分為四類:基于數據增強; 基于度量學習,基于元優化; 和基于語義的。值得查看!
摘要:
在圖像識別和圖像分類等方面,深度神經網絡的表現已經超過了人類。然而,隨著各種新類別的出現,如何從有限的樣本中不斷擴大此類網絡的學習能力,仍然是一個挑戰。像元學習和/或小樣本學習這樣的技術表現出了良好的效果,他們可以根據先驗知識學習或歸納到一個新的類別/任務。在本文中,我們研究了計算機視覺領域中現有的小樣本元學習技術的方法和評價指標。我們為這些技術提供了一個分類法,并將它們分類為數據增強、嵌入、優化和基于語義的學習,用于小樣本、單樣本和零樣本設置。然后我們描述在每個類別中所做的重要工作,并討論他們解決從少數樣本中學習的困境的方法。最后,我們在常用的基準測試數據集Omniglot和MiniImagenet上比較了這些技術,并討論了提高這些技術性能的未來方向,從而達到超越人類的最終目標。
地址: //www.zhuanzhi.ai/paper/8d29a5f14fcd0cc9a1aa508d072fb328
概述:
基于人工智能(AI)的系統正在成為人類生活的重要組成部分,無論是個人生活還是專業生活。我們周圍都是基于人工智能的機器和應用程序,它們將使我們的生活變得更容易。例如,自動郵件過濾(垃圾郵件檢測),購物網站推薦,智能手機中的社交網絡等[1,2,3,4]。這一令人印象深刻的進展之所以成為可能,是因為機器或深度學習模型[5]取得了突破性的成功。機器或深度學習占據了AI領域的很大一部分。深度學習模型是建立在多層感知器與應用基于梯度的優化技術的能力。深度學習模型最常見的兩個應用是:計算機視覺(CV),其目標是教會機器如何像人類一樣看和感知事物;自然語言處理(NLP)和自然語言理解(NLU),它們的目標是分析和理解大量的自然語言數據。這些深度學習模型在圖像識別[6,7,8]、語音識別[9,10,11,12,13]、自然語言處理與理解[14,15,16,17,18]、視頻分析[19,20,21,22,23]、網絡安全[24,25,26,27,28,29,30]等領域都取得了巨大的成功。機器和/或深度學習最常見的方法是監督學習,其中針對特定應用程序的大量數據樣本與它們各自的標簽一起被收集并形成一個數據集。該數據集分為三個部分: 訓練、驗證和測試。在訓練階段,將訓練集和驗證集的數據及其各自的標簽輸入模型,通過反向傳播和優化,將模型歸納為一個假設。在測試階段,將測試數據輸入模型,根據導出的假設,模型預測測試數據樣本的輸出類別。
由于計算機和現代系統的強大能力[31,32],處理大量數據的能力已經非常出色。隨著各種算法和模型的進步,深度學習已經能夠趕上人類,在某些情況下甚至超過人類。AlphaGo[33]是一個基于人工智能的agent,在沒有任何人類指導的情況下訓練,能夠擊敗世界圍棋冠軍。圍棋是一種古老的棋盤游戲,被認為比國際象棋[34]復雜10倍;在另一個復雜的多人戰略游戲《DOTA》中,AI-agent打敗了《DOTA[35]》的人類玩家;對于圖像識別和分類的任務,ResNet[6]和Inception[36,37,38]等模型能夠在流行的ImageNet數據集上取得比人類更好的性能。ImageNet數據集包括超過1400萬張圖像,超過1000個類別[39]。
人工智能的最終目標之一是在任何給定的任務中趕上或超過人類。為了實現這一目標,必須盡量減少對大型平衡標記數據集的依賴。當前的模型在處理帶有大量標記數據的任務時取得了成功的結果,但是對于其他帶有標記數據很少的任務(只有少數樣本),各自模型的性能顯著下降。對于任何特定任務,期望大型平衡數據集是不現實的,因為由于各種類別的性質,幾乎不可能跟上產生的標簽數據。此外,生成標記數據集需要時間、人力等資源,而且在經濟上可能非常昂貴。另一方面,人類可以快速地學習新的類或類,比如給一張奇怪動物的照片,它可以很容易地從一張由各種動物組成的照片中識別出動物。人類相對于機器的另一個優勢是能夠動態地學習新的概念或類,而機器必須經過昂貴的離線培訓和再培訓整個模型來學習新類,前提是要有標簽數據可用性。研究人員和開發人員的動機是彌合人類和機器之間的鴻溝。作為這個問題的一個潛在解決方案,我們已經看到元學習[40,41,42,43,44,45,46,47,48,49,50]、小樣本學習[51,52,53,54]、低資源學習[55,56,57,58]、零樣本學習[59,60,61,62,63,63,64,64,65]等領域的工作在不斷增加,這些領域的目標是使模型更好地推廣到包含少量標記樣本的新任務。
什么是小樣本元學習?
在few-shot, low-shot, n-shot learning (n一般在1 - 5之間)中,其基本思想是用大量的數據樣本對模型進行多類的訓練,在測試過程中,模型會給定一個新的類別(也稱為新集合),每個類別都有多個數據樣本,一般類別數限制為5個。在元學習中,目標是泛化或學習學習過程,其中模型針對特定任務進行訓練,不同分類器的函數用于新任務集。目標是找到最佳的超參數和模型權值,使模型能夠輕松適應新任務而不過度擬合新任務。在元學習中,有兩類優化同時運行: 一類是學習新的任務; 另一個是訓練學習器。近年來,小樣本學習和元學習技術引起了人們極大的興趣。
元學習領域的早期研究工作是Yoshua和Samy Bengio[67]以及Fei-Fei Li在less -shot learning[68]中完成的。度量學習是使用的較老的技術之一,其目標是從嵌入空間中學習。將圖像轉換為嵌入向量,特定類別的圖像聚在一起,而不同類別的圖像聚在一起比較遠。另一種流行的方法是數據增強,從而在有限的可用樣本中產生更多的樣本。目前,基于語義的方法被廣泛地研究,分類僅僅基于類別的名稱及其屬性。這種基于語義的方法是為了解決零樣本學習應用的啟發。
遷移學習與自監督學習
遷移學習的總體目標是從一組任務中學習知識或經驗,并將其遷移到類似領域的任務中去[95]。用于訓練模型獲取知識的任務有大量的標記樣本,而遷移任務的標記數據相對較少(也稱為微調),這不足以使模型訓練和收斂到特定的任務。遷移學習技術的表現依賴于兩項任務之間的相關性。在執行遷移學習時,分類層被訓練用于新的任務,而模型中先前層的權值保持不變[96]。對于每一個新的任務,在我們進行遷移學習的地方,學習速率的選擇和要凍結的層數都必須手工決定。與此相反,元學習技術可以相當迅速地自動適應新的任務。
自監督學習的研究近年來得到了廣泛的關注[97,98,99]。自監督學習(SSL)技術的訓練基于兩個步驟:一是在一個預定義代理任務上進行訓練,在大量的未標記數據樣本上進行訓練;第二,學習到的模型參數用于訓練或微調主要下游任務的模型。元學習或小樣本學習技術背后的理念與自監督學習非常相似,自監督學習是利用先前的知識,識別或微調一個新的任務。研究表明,自監督學習可以與小樣本學習一起使用,以提高模型對新類別的表現[100,101]。
方法體系組織:
元學習、小樣本學習、低資源學習、單樣本學習、零樣本學習等技術的主要目標是通過基于先驗知識或經驗的迭代訓練,使深度學習模型從少量樣本中學習能泛化到新類別。先驗知識是在包含大量樣本的帶標簽數據集上訓練樣本,然后利用這些知識在有限樣本下識別新的任務而獲得的知識。因此,在本文中,我們將所有這些技術結合在了小樣本體系下。由于這些技術沒有預定義的分類,我們將這些方法分為四大類: 基于數據增強; 基于度量學習,基于元優化; 和基于語義的(如圖1所示)。基于數據增強的技術非常流行,其思想是通過擴充最小可用樣本和生成更多樣化的樣本來訓練模型來擴展先驗知識。在基于嵌入的技術中,數據樣本被轉換為另一個低級維,然后根據這些嵌入之間的距離進行分類。在基于優化的技術中,元優化器用于在初始訓練期間更好地泛化模型,從而可以更好地預測新任務。基于語義的技術是將數據的語義與模型的先驗知識一起用于學習或優化新的類別。
【導讀】小樣本學習是一類重要的機器學習方法,旨在解決數據缺少的情況下如何訓練模型的問題。在CVPR2020的Tutorial,來自valeo.ai的學者給了Spyros Gidaris關于小樣本學習的最新教程報告。
在過去的幾年里,基于深度學習的方法在圖像理解問題上取得了令人印象深刻的效果,如圖像分類、目標檢測或語義分割。然而,真實字計算機視覺應用程序通常需要模型能夠(a)通過很少的注釋例子學習,(b)不斷適應新的數據而不忘記之前的知識。不幸的是,經典的監督深度學習方法在設計時并沒有考慮到這些需求。因此,計算機視覺的下一個重大挑戰是開發能夠解決這方面現有方法的重要缺陷的學習方法。本教程將介紹實現這一目標的可能方法。小樣本學習(FSL)利用先驗知識,可以快速地泛化到只包含少量有監督信息的樣本的新任務中。
//annotation-efficient-learning.github.io/
目錄內容:
?【導讀】圖像分類是計算機視覺中的基本任務之一,深度學習的出現是的圖像分類技術趨于完善。最近,自監督學習與預訓練技術的發展使得圖像分類技術出現新的變化,這篇論文概述了最新在實際情況中少標簽小樣本等情況下,關于自監督學習、半監督、無監督方法的綜述,值得看!
地址:
//www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132
摘要
雖然深度學習策略在計算機視覺任務中取得了突出的成績,但仍存在一個問題。目前的策略嚴重依賴于大量的標記數據。在許多實際問題中,創建這么多標記的訓練數據是不可行的。因此,研究人員試圖將未標記的數據納入到培訓過程中,以獲得與較少標記相同的結果。由于有許多同時進行的研究,很難掌握最近的發展情況。在這項調查中,我們提供了一個概述,常用的技術和方法,在圖像分類與較少的標簽。我們比較了21種方法。在我們的分析中,我們確定了三個主要趨勢。1. 基于它們的準確性,現有技術的方法可擴展到實際應用中。2. 為了達到與所有標簽的使用相同的結果所需要的監督程度正在降低。3.所有方法都共享公共技術,只有少數方法結合這些技術以獲得更好的性能。基于這三個趨勢,我們發現了未來的研究機會。
1. 概述
深度學習策略在計算機視覺任務中取得了顯著的成功。它們在圖像分類、目標檢測或語義分割等各種任務中表現最佳。
圖1: 這張圖說明并簡化了在深度學習訓練中使用未標記數據的好處。紅色和深藍色的圓圈表示不同類的標記數據點。淺灰色的圓圈表示未標記的數據點。如果我們只有少量的標記數據可用,我們只能對潛在的真實分布(黑線)做出假設(虛線)。只有同時考慮未標記的數據點并明確決策邊界,才能確定這種真實分布。
深度神經網絡的質量受到標記/監督圖像數量的強烈影響。ImageNet[26]是一個巨大的標記數據集,它允許訓練具有令人印象深刻的性能的網絡。最近的研究表明,即使比ImageNet更大的數據集也可以改善這些結果。但是,在許多實際的應用程序中,不可能創建包含數百萬張圖像的標記數據集。處理這個問題的一個常見策略是遷移學習。這種策略甚至可以在小型和專門的數據集(如醫學成像[40])上改進結果。雖然這對于某些應用程序來說可能是一個實際的解決方案,但基本問題仍然存在: 與人類不同,監督學習需要大量的標記數據。
對于給定的問題,我們通常可以訪問大量未標記的數據集。Xie等人是最早研究無監督深度學習策略來利用這些數據[45]的人之一。從那時起,未標記數據的使用被以多種方式研究,并創造了研究領域,如半監督、自我監督、弱監督或度量學習[23]。統一這些方法的想法是,在訓練過程中使用未標記的數據是有益的(參見圖1中的說明)。它要么使很少有標簽的訓練更加健壯,要么在某些不常見的情況下甚至超過了監督情況下的性能[21]。
由于這一優勢,許多研究人員和公司在半監督、自我監督和非監督學習領域工作。其主要目標是縮小半監督學習和監督學習之間的差距,甚至超越這些結果。考慮到現有的方法如[49,46],我們認為研究處于實現這一目標的轉折點。因此,在這個領域有很多正在進行的研究。這項綜述提供了一個概述,以跟蹤最新的在半監督,自監督和非監督學習的方法。
大多數綜述的研究主題在目標、應用上下文和實現細節方面存在差異,但它們共享各種相同的思想。這項調查對這一廣泛的研究課題進行了概述。這次調查的重點是描述這兩種方法的異同。此外,我們還將研究不同技術的組合。
2. 圖像分類技術
在這一節中,我們總結了關于半監督、自監督和非監督學習的一般概念。我們通過自己對某些術語的定義和解釋來擴展這一總結。重點在于區分可能的學習策略和最常見的實現策略的方法。在整個綜述中,我們使用術語學習策略,技術和方法在一個特定的意義。學習策略是算法的一般類型/方法。我們把論文方法中提出的每個算法都稱為獨立算法。方法可以分為學習策略和技術。技術是組成方法/算法的部分或思想。
2.1 分類方法
監督、半監督和自我監督等術語在文獻中經常使用。很少有人給出明確的定義來區分這兩個術語。在大多數情況下,一個粗略的普遍共識的意義是充分的,但我們注意到,在邊界情況下的定義是多種多樣的。為了比較不同的方法,我們需要一個精確的定義來區分它們。我們將總結關于學習策略的共識,并定義我們如何看待某些邊緣案例。一般來說,我們根據使用的標記數據的數量和訓練過程監督的哪個階段來區分方法。綜上所述,我們把半監督策略、自我學習策略和無監督學習策略稱為reduced減約監督學習策略。圖2展示了四種深度學習策略。
圖2: 插圖的四個深學習策略——紅色和深藍色的圓圈表示標記數據點不同的類。淺灰色的圓圈表示未標記的數據點。黑線定義了類之間的基本決策邊界。帶條紋的圓圈表示在訓練過程的不同階段忽略和使用標簽信息的數據點。
監督學習 Supervised Learning
監督學習是深度神經網絡圖像分類中最常用的方法。我們有一組圖像X和對應的標簽或類z。設C為類別數,f(X)為X∈X的某個神經網絡的輸出,目標是使輸出與標簽之間的損失函數最小化。測量f(x)和相應的z之間的差的一個常用的損失函數是交叉熵。
遷移學習
監督學習的一個限制因素是標簽的可用性。創建這些標簽可能很昂貴,因此限制了它們的數量。克服這一局限的一個方法是使用遷移學習。
遷移學習描述了訓練神經網絡的兩個階段的過程。第一個階段是在大型通用數據集(如ImageNet[26])上進行有無監督的訓練。第二步是使用經過訓練的權重并對目標數據集進行微調。大量的文獻表明,即使在小的領域特定數據集[40]上,遷移學習也能改善和穩定訓練。
半監督學習
半監督學習是無監督學習和監督學習的混合.
Self-supervised 自監督學習
自監督使用一個借托pretext任務來學習未標記數據的表示。借托pretext任務是無監督的,但學習表征往往不能直接用于圖像分類,必須進行微調。因此,自監督學習可以被解釋為一種無監督的、半監督的或其自身的一種策略。我們將自我監督學習視為一種特殊的學習策略。在下面,我們將解釋我們是如何得出這個結論的。如果在微調期間需要使用任何標簽,則不能將該策略稱為無監督的。這與半監督方法也有明顯的區別。標簽不能與未標記的數據同時使用,因為借托pretext任務是無監督的,只有微調才使用標簽。對我們來說,將標記數據的使用分離成兩個不同的子任務本身就是一種策略的特征。
2.2 分類技術集合
在減少監督的情況下,可以使用不同的技術來訓練模型。在本節中,我們將介紹一些在文獻中多種方法中使用的技術。
一致性正則化 Consistency regularization
一個主要的研究方向是一致性正則化。在半監督學習過程中,這些正則化被用作數據非監督部分的監督損失的附加損失。這種約束導致了改進的結果,因為在定義決策邊界時可以考慮未標記的數據[42,28,49]。一些自監督或無監督的方法甚至更進一步,在訓練中只使用這種一致性正則化[21,2]。
虛擬對抗性訓練(VAT)
VAT[34]試圖通過最小化圖像與轉換后的圖像之間的距離,使預測不受小轉換的影響。
互信息(MI)
MI定義為聯合分布和邊緣分布[8]之間的Kullback Leiber (KL)散度。
熵最小化(EntMin)
Grandvalet和Bengio提出通過最小化熵[15]來提高半監督學習的輸出預測。
Overclustering
過度聚類在減少監督的情況下是有益的,因為神經網絡可以自行決定如何分割數據。這種分離在有噪聲的數據中或在中間類被隨機分為相鄰類的情況下是有用的。
Pseudo-Labels
一種估計未知數據標簽的簡單方法是偽標簽
3. 圖像分類模型
3.1 半監督學習
四種選擇的半監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的藍色方框中給出。在右側提供了該方法的說明。一般來說,這個過程是自上而下組織的。首先,輸入圖像經過無或兩個不同的隨機變換預處理。自動增廣[9]是一種特殊的增廣技術。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的,但是共享公共部分。所有的方法都使用了標記和預測分布之間的交叉熵(CE)。所有的方法還使用了不同預測輸出分布(Pf(x), Pf(y))之間的一致性正則化。
3.2 自監督學習
四種選擇的自我監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的紅色方框中給出。在右側提供了該方法的說明。微調部分不包括在內。一般來說,這個過程是自上而下組織的。首先,對輸入圖像進行一兩次隨機變換預處理或分割。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的。AMDIM和CPC使用網絡的內部元素來計算損失。DeepCluster和IIC使用預測的輸出分布(Pf(x)、Pf(y))來計算損耗
3.3 21種圖像分類方法比較
21種圖像分類方法及其使用技術的概述——在左側,第3節中回顧的方法按學習策略排序。第一行列出了在2.2小節中討論過的可能的技術。根據是否可以使用帶標簽的數據,將這些技術分為無監督技術和有監督技術。技術的縮寫也在第2.2小節中給出。交叉熵(Cross-entropy, CE)將CE的使用描述為訓練損失的一部分。微調(FT)描述了交叉熵在初始訓練后(例如在一個借口任務中)對新標簽的使用。(X)指該技術不是直接使用,而是間接使用。個別的解釋由所指示的數字給出。1 - MixMatch通過銳化預測[3],隱式地實現了熵最小化。2 - UDA預測用于過濾無監督數據的偽標簽。3 -盡量減少相互信息的目的作為借口任務,例如視圖之間的[2]或層之間的[17]。4 -信息的丟失使相互信息間接[43]最大化。5 - Deep Cluster使用K-Means計算偽標簽,以優化分配為借口任務。6 - DAC使用元素之間的余弦距離來估計相似和不相似的項。可以說DAC為相似性問題創建了偽標簽。
4. 實驗比較結果
報告準確度的概述——第一列說明使用的方法。對于監督基線,我們使用了最好的報告結果,作為其他方法的基線。原始論文在準確度后的括號內。第二列給出了體系結構及其參考。第三列是預印本的出版年份或發行年份。最后四列報告了各自數據集的最高準確度分數%。
5 結論
在本文中,我們概述了半監督、自監督和非監督技術。我們用21種不同的方法分析了它們的異同和組合。這項分析確定了幾個趨勢和可能的研究領域。
我們分析了不同學習策略(半監督學習策略、自監督學習策略和無監督學習策略)的定義,以及這些學習策略中的常用技術。我們展示了這些方法一般是如何工作的,它們使用哪些技術,以及它們可以被歸類為哪種策略。盡管由于不同的體系結構和實現而難以比較這些方法的性能,但我們確定了三個主要趨勢。
ILSVRC-2012的前5名正確率超過90%,只有10%的標簽表明半監督方法適用于現實問題。然而,像類別不平衡這樣的問題并沒有被考慮。未來的研究必須解決這些問題。
監督和半監督或自監督方法之間的性能差距正在縮小。有一個數據集甚至超過了30%。獲得可與全監督學習相比的結果的標簽數量正在減少。未來的研究可以進一步減少所需標簽的數量。我們注意到,隨著時間的推移,非監督方法的使用越來越少。這兩個結論使我們認為,無監督方法在未來的現實世界中對圖像分類將失去意義。
我們的結論是,半監督和自監督學習策略主要使用一套不同的技術。通常,這兩種策略都使用不同技術的組合,但是這些技術中很少有重疊。S4L是目前提出的唯一一種消除這種分離的方法。我們確定了不同技術的組合有利于整體性能的趨勢。結合技術之間的微小重疊,我們確定了未來可能的研究機會。
參考文獻:
[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.
[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.
[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.
[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.
[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.
摘要:近年來,在開發更準確、高效的醫學和自然圖像分割機器學習算法方面取得了重大進展。在這篇綜述文章中,我們強調了機器學習算法在醫學成像領域有效和準確分割中的重要作用。我們特別關注幾個關鍵的研究涉及到應用機器學習方法在生物醫學圖像分割。我們回顧了經典的機器學習算法,如馬爾可夫隨機場、k均值聚類、隨機森林等。盡管與深度學習技術相比,這種經典的學習模型往往精度較低,但它們通常更具有樣本效率,結構也更簡單。我們還回顧了不同的深度學習結構,如人工神經網絡(ANNs)、卷積神經網絡(CNNs)和遞歸神經網絡(RNNs),并給出了這些學習模型在過去三年中獲得的分割結果。我們強調每種機器學習范式的成功和局限性。此外,我們還討論了與不同機器學習模型訓練相關的幾個挑戰,并提出了一些解決這些挑戰的啟發方法。