以研究科學創新與演化規律為目的的科學學近年來迎來了進一步的發展, 科技大數據領域知識圖譜在其中發揮了重大的作用. 本文將從科技大數據知識圖譜構建及應用研究角度, 對科學學研究過程中發揮重大推動作用的科技領域知識圖譜技術進行系統、深入的綜述, 闡述科技大數據知識圖譜構建過程中涉及的科技實體抽取、科技實體消歧、科技關系抽取、科技關系推斷等問題, 對科技實體推薦、科技社區發現、科技實體評價、學科交叉以及學科演化等科技大數據知識圖譜分析挖掘方法進行系統梳理, 并給出科技大數據知識圖譜未來的研究及應用方向.
//engine.scichina.com/publisher/scp/journal/SSI/50/7/10.1360/SSI-2019-0271?slug=abstract
摘要:知識圖譜由Google公司提出, 作為增強其搜索功能的知識庫, 在近幾年得到了迅速發展. 隨著知識圖譜價值不斷地被發掘, 各類領域知識圖譜也迅速建設起來. 本文通過領域知識圖譜和通用知識圖譜的對比來清晰化領域知識圖譜的定義, 介紹了領域知識圖譜的架構, 并以醫學知識圖譜為例講解了領域知識圖譜的構建技術. 最后, 本文介紹了當前熱門的領域知識圖譜的發展狀況和應用, 對當前領域知識圖譜狀況進行了較為全面的總結.
近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.
//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext
圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.
圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.
目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.
本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.
awesome-taxonomy