主題: Causal Confusion in Imitation Learning
簡介: 行為克隆通過訓練判別模型來預測觀察到的專家行為,從而將策略學習轉換為監督學習,這樣的判別模型不是因果關系,因為訓練過程并不了解專家與環境之間相互作用的因果結構。我們認為,由于模仿學習中的分布變化,忽略因果關系尤其有害。特別是,這會導致違反直覺的“因果識別錯誤”現象:訪問更多信息可能會導致性能下降。我們調查了此問題的產生方式,并提出了一種解決方案,可通過有針對性的干預措施(環境互動或專家查詢)來解決,以確定正確的因果模型。
嘉賓介紹: Dinesh Jayaraman,賓夕法尼亞大學的新任助理教授,還是Facebook AI Research的客座研究員,致力于視覺和機器人技術的交叉問題,在此之前,曾是加州大學伯克利分校伯克利人工智能研究實驗室的博士后。
Pim de Haan,高通 AI的助理研究員,研究方向機器學習和數學幾何的交叉。
題目: Causal Discovery in Physical Systems from Videos
摘要:
因果發現是人類認知的核心。它使我們能夠對環境進行推理,并對看不見的場景做出反事實的預測,這可能與我們以前的經驗大不相同。我們以端到端的方式考慮從視頻中發現因果任務,而無需監督 ground-truth圖結構。特別是,我們的目標是發現環境和對象變量之間的結構相關性:推斷對動力系統的行為有因果關系的相互作用的類型和強度。該模型由(a)感知模塊組成,該感知模塊從圖像中提取語義上有意義且時間上一致的關鍵點表示,(b)推論模塊,用于確定由檢測到的關鍵點引起的圖形分布,(c)動力學模塊,可以通過對推斷的圖進行調節來預測未來。假設可以訪問不同的配置和環境條件,即來自底層系統未知干預的數據;因此,可以希望在沒有明確干預的情況下發現正確的潛在因果圖。我們在平面多體交互環境以及涉及襯衫和褲子等不同形狀的織物的場景中評估了該方法。實驗表明,該模型可以從短圖像序列中正確識別相互作用,并做出長期的未來預測。模型所假設的因果結構還允許它進行反事實預測,并推斷到看不見的交互圖或各種大小的圖系統。
簡介: 許多人工智能任務需要跨域決策。例如,許多NLP任務涉及跨多種語言的預測,其中不同語言可以被視為不同的領域;在人工智能輔助的生物醫學研究中,藥物副作用的預測通常與蛋白質和生物體相互作用的建模并行。為了支持機器學習模型來解決這類跨域任務,需要提取不同域中數據組件的特征和關系,并在統一的表示方案中捕獲它們之間的關聯。針對這一需求,表示學習的最新進展往往涉及到將不同域的未標記數據映射到共享嵌入空間。這樣,就可以通過向量配置或變換來實現跨領域的知識轉移。這種可轉移的表示在涉及跨域決策的一系列人工智能應用中取得了成功。然而,這一領域的前沿研究面臨著兩大挑戰。一是在學習資源很少的情況下,有效地從特定領域提取特征。另一種方法是在最少的監督下精確地對齊和傳輸知識,因為連接在不同域之間的對齊信息常常是不足的和有噪聲的。在本教程中,我們將全面回顧可轉移表示學習方法的最新發展,重點是針對文本、多關系和多媒體數據的方法。除了介紹域內嵌入學習方法外,我們還將討論各種半監督、弱監督、多視圖和自監督學習技術,以連接多個特定域的嵌入表示。我們還將比較域內嵌入學習和跨域對齊學習的改進和聯合學習過程。此外,我們將討論如何利用獲得的可轉移表示來解決低資源和無標簽的學習任務。參與者將了解本主題的最新趨勢和新挑戰,獲得現成模型的代表性工具和學習資源,以及相關模型和技術如何有利于現實世界的人工智能應用。
主講人簡介: Muhao Chen,博士后。他于2019年獲得加州大學洛杉磯分校計算機科學博士學位。他的研究重點是結構化和非結構化數據的數據驅動機器學習方法,并將其應用擴展到自然語言理解、知識庫構建、計算生物學和醫學信息學。特別是,他感興趣的是開發具有概括性且需要最少監督的知識感知學習系統。他的工作在主要會議和期刊上發表了30多篇文章。他的論文研究獲得了加州大學洛杉磯分校的論文獎學金。個人主頁://muhaochen.github.io/等
講座題目
公平意識機器學習:現實挑戰與經驗教訓:Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned
講座簡介
來自不同學科的研究人員和從業人員強調了使用機器學習模型和數據驅動系統所帶來的倫理和法律挑戰,以及由于算法決策系統的偏見,這些系統可能歧視某些群體。本教程概述了過去幾年觀察到的算法偏差/歧視問題,以及在機器學習系統中為實現公平性而吸取的經驗教訓、關鍵法規和法律,以及技術的發展。在為不同的消費者和企業應用開發基于機器學習的模型和系統時,我們將鼓勵采用“按設計公平”的方法(而不是將算法偏差/公平考慮視為事后考慮)。然后,我們將通過展示來自不同技術公司的非專利案例研究,重點關注公平感知機器學習技術在實踐中的應用。最后,根據我們在Facebook、Google、LinkedIn和Microsoft等公司致力于機器學習公平性的經驗,我們將為數據挖掘/機器學習社區提出開放的問題和研究方向。
講座嘉賓
莎拉?伯德(Sarah Bird)領導著人工智能研究與Facebook產品交叉點的戰略項目。她目前的工作集中在人工智能倫理和發展規模負責任人工智能。她還一直致力于開放人工智能系統,是ONNX的共同創造者之一,ONNX是一個用于深度學習模型的開放標準,也是Pythorc1.0項目的領導者。在加入Facebook之前,她曾是微軟紐約研究中心的人工智能系統研究員和微軟數據集團的技術顧問。她是微軟決策服務(Decision Service)背后的研究人員之一,該服務是第一個公開發布的通用強化學習型云系統。她還與人共同創立了微軟人工智能倫理命運研究小組。她擁有加州大學伯克利分校(UC Berkeley)計算機科學博士學位,由戴夫·帕特森(Dave Patterson)、克里斯特·阿薩諾維奇(Krste Asanovic)和伯頓·史密斯(Burton Smith)擔任顧問。Sarah共同組織了多個相關主題的研討會(人工智能、NIPS 2018中的道德、社會和治理問題研討會;NIPS 2018中的機器學習系統研討會;NIPS 2017中的機器學習系統研討會;SOSP 2017中的人工智能系統研討會;NIPS 2016中的機器學習系統研討會),并在2018年伯克利隱私法論壇(Berkeley Privacy Law Forum)上發表了受邀的主題演講(“人工智能與機器學習:Facebook視角”)。
題目: Causal Inference and Stable Learning
簡介:
在一個常見的機器學習問題中,使用一個根據訓練數據集估計的模型,根據觀察到的特征來預測未來的結果值。當測試數據和訓練數據來自相同的分布時,許多學習算法被提出并證明是成功的。然而,對于給定的訓練數據分布,性能最好的模型通常利用特征之間微妙的統計關系,這使得它們在應用于測試數據時更容易出現預測錯誤,因為測試數據的分布與訓練數據的分布不同。對于學術研究和實際應用來說,如何建立穩定、可靠的學習模型是至關重要的。因果推理是一種強大的統計建模工具,用于解釋和穩定的學習。因果推理是指基于某一效應發生的條件,對某一因果關系做出結論的過程。在本教程中,我們將重點討論因果推理和穩定學習,旨在從觀察數據中探索因果知識,以提高機器學習算法的可解釋性和穩定性。首先,我們將介紹因果推理,并介紹一些最近的數據驅動的方法來估計因果效應的觀測數據,特別是在高維設置。摘要為了彌補因果推理與機器學習在穩定學習上的差距,我們首先給出了學習算法的穩定性和魯棒性的定義,然后介紹了一些最近出現的穩定學習算法,以提高預測的穩定性和可解釋性。最后,我們將討論穩定學習的應用和未來方向,并為穩定學習提供基準。
邀請嘉賓:
張潼,香港科技大學計算機科學與數學教授。此前,他是羅格斯大學(Rutgers university)教授,曾在IBM、雅虎(Yahoo)、百度和騰訊(Tencent)工作。張潼的研究興趣包括機器學習算法和理論、大數據統計方法及其應用。他是ASA和IMS的研究員,曾在主要機器學習期刊的編委會和頂級機器學習會議的項目委員會任職。張潼在康奈爾大學獲得數學和計算機科學學士學位,在斯坦福大學獲得計算機科學博士學位。
崔鵬,清華大學計算機系長聘副教授,博士生導師。2010年于清華大學計算機系獲得博士學位。研究興趣包括社會動力學建模、大規模網絡表征學習以及大數據驅動的因果推理和穩定預測。近5年在數據挖掘及人工智能領域高水平會議和期刊發表論文60余篇,曾5次獲得頂級國際會議或期刊論文獎,并先后兩次入選數據挖掘領域頂級國際會議KDD最佳論文專刊。目前擔任IEEE TKDE、ACM TOMM、ACM TIST、IEEE TBD等國際期刊編委。曾獲得國家自然科學二等獎、教育部自然科學一等獎、電子學會自然科學一等獎、CCF-IEEE CS青年科學家獎、ACM中國新星獎。入選中組部萬人計劃青年拔尖人才,并當選中國科協全國委員會委員。
題目: Learning Causality and Learning with Causality: A Road to Intelligence
摘要: 吸煙會引起癌癥嗎?通過分析兩個變量的觀測值,我們能否找到它們之間的因果關系?在我們的日常生活和科學中,人們經常試圖回答此類因果問題,目的是正確理解和操縱系統。在過去的幾十年中,為了回答這些問題,在機器學習,統計和哲學等領域取得了有趣的進步。此外,我們還經常關注如何在復雜的環境中進行機器學習。例如,我們如何在非平穩環境中做出最佳預測?有趣的是,最近發現因果信息可以促進理解和解決各種機器學習問題,包括遷移學習和半監督學習。這篇演講回顧了因果關系研究中的基本概念,并側重于如何從觀察數據中學習因果關系,以及因果關系為何以及如何幫助機器學習和其他任務。最后,我將討論為什么因果表達很重要以便實現通用人工智能。
報告人: 張坤 博士 美國卡內基梅隆大學,也是德國馬克斯·普朗克智能系統研究所的高級研究科學家。他的研究興趣在于機器學習和人工智能,尤其是因果發現,基于因果關系的學習和通用人工智能。他從因果關系的角度開發了用于自動發現因果關系的方法,從因果關系角度研究學習問題,尤其是轉移學習,概念學習和深度學習,并研究了因果關系和各種機器學習任務的哲學基礎。他曾擔任大型機器學習或人工智能會議的區域主席或高級程序委員會成員,包括NeurIPS,UAI,ICML,AISTATS,AAAI和IJCAI。他組織了各種學術活動,以促進因果關系的跨學科研究。
報告主題: 模仿學習前沿進展
報告摘要: 時空跟蹤和傳感數據的不斷發展,現在使得在廣泛的領域中對細粒度的行為進行分析和建模成為可能。例如,現在正在收集每場NBA籃球比賽的跟蹤數據,其中包括球員,裁判和以25 Hz跟蹤的球,以及帶有注釋的比賽事件,如傳球,射門和犯規。其他設置包括實驗動物,公共場所的人員,設置諸如手術室,演員講話和表演的演員,虛擬環境中的數字化身,自然現象(如空氣動力學)以及其他計算系統的行為等專業人員。 在本演講中,我將描述正在進行的研究,這些研究正在開發結構化模仿學習方法,以開發細粒度行為的預測模型。模仿學習是機器學習的一個分支,它處理模仿模仿的動態行為的學習。結構化模仿學習涉及施加嚴格的數學領域知識,這些知識可以(有時被證明)可以加速學習,并且還可以帶來附帶利益(例如Lyapunov穩定性或政策行為的可解釋性)。我將提供基本問題設置的高級概述,以及對實驗動物,專業運動,語音動畫和昂貴的計算神諭進行建模的特定項目。
嘉賓介紹: Yisong Yue,博士,是加州理工學院計算與數學科學系的助理教授。他以前是迪斯尼研究院的研究科學家。在此之前,他是卡耐基梅隆大學機器學習系和iLab的博士后研究員。 Yisong的研究興趣主要在于統計機器學習的理論和應用。他對開發用于交互式機器學習和結構化機器學習的新穎方法特別感興趣。過去,他的研究已應用于信息檢索,推薦系統,文本分類,從豐富的用戶界面中學習,分析隱式人類反饋,臨床治療,輔導系統,數據驅動的動畫,行為分析,運動分析,實驗設計科學,優化學習,機器人技術政策學習以及自適應計劃和分配問題。
簡介: 強大的機器學習技術在數據豐富的領域成為可能。然而,數據稀缺的領域對這類方法具有挑戰性,因為高容量函數逼近器非常依賴大型數據集進行泛化。這可能對從監督醫學圖像處理到增強學習等領域構成重大挑戰,在這些領域中,真實世界的數據收集(例如機器人)構成了重大的后勤挑戰。元學習或小樣本學習為這一問題提供了一個潛在的解決方案:通過學習跨許多以前任務的數據學習,小樣本元學習算法可以發現任務之間的結構,從而使新任務的快速學習成為可能。
本教程的目的是提供一個統一的元學習視角:向讀者講授現代方法,描述圍繞這些技術的概念和理論原則,介紹這些方法以前在哪里被應用,并討論該領域內的基本開放問題和挑戰。我們希望本教程對其他領域的機器學習研究人員有用,同時也為元學習研究人員提供了一個新的視角。總而言之,我們的目標是讓觀眾能夠將元學習應用到他們自己的應用中,并開發新的元學習算法和理論分析,以應對當前的挑戰和現有工作的局限性。
視頻地址:
Part1 //www.facebook.com/icml.imls/videos/4006/
Part2
主講人介紹:
Chelsea Finn是Google Brain的研究科學家,也是加州大學伯克利分校的博士后。在2019年9月,她將加入斯坦福大學的計算機科學系擔任助理教授。 Finn的研究興趣在于使機器人和其他代理能夠通過學習和交互來發展廣泛的智能行為的能力。為此,芬恩開發了深度學習算法,用于同時學習機器人操縱技能中的視覺感知和控制,用于非線性獎勵函數的可伸縮獲取的逆強化方法以及可以在兩個視覺系統中實現快速,少拍適應的元學習算法感知和深度強化學習。 Finn在麻省理工學院獲得EECS的學士學位,并在加州大學伯克利分校獲得CS的博士學位。她的研究得到了NSF研究生獎學金,Facebook獎學金C.V.的認可。她獲得了Ramamoorthy杰出研究獎和《麻省理工學院技術評論35分35獎》,她的工作已被《紐約時報》,《連線》和彭博社等多家媒體報道。
Sergey Levine于2009年獲得斯坦福大學計算機科學學士學位和碩士學位,并獲得博士學位。 2014年獲得斯坦福大學計算機科學博士學位。他于2016年秋天加入加州大學伯克利分校電氣工程與計算機科學系。他的工作重點是決策和控制的機器學習,重點是深度學習和強化學習。他的工作應用包括自動駕駛機器人和車輛,以及計算機視覺和圖形。 他的研究包括開發將感知和控制相結合的深度神經網絡策略的端到端訓練算法,用于逆向強化學習的可擴展算法,深度強化學習算法等。 在許多受歡迎的媒體中,包括紐約時報,BBC,麻省理工學院技術評論和彭博社,他的作品都得到了報道。
論文題目: A Divergence Minimization Perspective on Imitation Learning Methods
論文摘要: 在許多情況下,希望通過專家演示的學習或引導來學習決策和控制策略。這種模仿學習(IL)框架下最常見的方法是行為克隆(BC)和逆強化學習(IRL)。IRL的最新方法已經證明了可以通過訪問非常有限的一組演示來學習有效策略的能力,一種情況BC方法經常失敗。不幸的是,由于變化的多種因素,直接比較這些方法并不能提供足夠的直覺來理解這種性能差異。在這項工作中,我們提出了基于散度最小化的IL算法的統一概率觀點。我們提出了f-MAX,這是AIRL的一種泛化概括,它是一種最新的IRL方法。 f-MAX使我們能夠關聯以前的IRL方法,例如GAIL和AIRL,并了解它們的算法特性。通過散度最小化的鏡頭,我們可以找出BC和成功的IRL方法之間的差異,并在模擬的高維連續控制域上經驗地評估這些細微差別。我們的發現最終確定了IRL的州際匹配目標是其卓越績效的最大貢獻。最后,我們將對IL方法的新理解應用于狀態-邊際匹配的問題,其中我們證明了在模擬推臂環境中,我們可以使用簡單的手動指定狀態分布來教給代理各種行為,而無需獎勵函數或專家。
論文作者: Richard Zemel ,Vector人工智能研究所的聯合創始人兼研究總監,多倫多大學機器學習工業研究主席,加拿大高級研究所高級研究員,研究興趣包括:圖像和文本的生成模型,基于圖的機器學習,少量數據學習,詞典,單詞列表和公平性。
github鏈接: //github.com/KamyarGh/rl_swiss/blob/master/reproducing/fmax_paper.md
報告主題:Learning Causality and Learning with Causality: A Road to Intelligence
報告摘要:
吸煙會引起癌癥嗎?通過分析兩個變量的觀測值,我們能否找到它們之間的因果關系?在我們的日常生活和科學中,人們經常試圖回答此類因果問題,目的是正確理解和操縱系統。在過去的幾十年中,為了回答這些問題,在機器學習,統計和哲學等領域取得了有趣的進步。此外,我們還經常關注如何在復雜的環境中進行機器學習。例如,我們如何在非平穩環境中做出最佳預測?有趣的是,最近發現因果信息可以促進理解和解決各種機器學習問題,包括遷移學習和半監督學習。這篇演講回顧了因果關系研究中的基本概念,并側重于如何從觀察數據中學習因果關系,以及因果關系為何以及如何幫助機器學習和其他任務。最后,我將討論為什么因果表達很重要以便實現通用人工智能。
邀請嘉賓:美國卡耐基梅隆大學張坤博士
嘉賓簡介
張坤博士是卡內基梅隆大學哲學系的助理教授和機器學習系的副教授,也是德國馬克斯·普朗克智能系統研究所的高級研究科學家。他的研究興趣在于機器學習和人工智能,尤其是因果發現,基于因果關系的學習和通用人工智能。他從因果關系的角度開發了用于自動發現因果關系的方法,從因果關系角度研究學習問題,尤其是轉移學習,概念學習和深度學習,并研究了因果關系和各種機器學習任務的哲學基礎。他曾擔任大型機器學習或人工智能會議的區域主席或高級程序委員會成員,包括NeurIPS,UAI,ICML,AISTATS,AAAI和IJCAI。他組織了各種學術活動,以促進因果關系的跨學科研究。
題目: Active Learning: From Theory to Practice
簡介:
近年來,機器學習領域取得了相當大的進步,但主要是在定義明確的領域中使用了大量帶有人類標記的訓練數據。機器可以識別圖像中的物體并翻譯文本,但它們必須接受比人一生所能看到的更多的圖像和文本的訓練。生成必要的訓練數據集需要大量的人力工作。Active ML旨在解決這個問題,它設計了一種學習算法,能夠自動、自適應地選擇最具信息性的數據進行標記,這樣就不會浪費人類的時間來標記不相關、冗余或瑣碎的例子。本教程將概述應用程序,并介紹主動機器學習的基本理論和算法。它將特別關注可證明的健全的主動學習算法,并量化學習所需的標記訓練數據的減少。
邀請嘉賓:
Robert Nowak是威斯康星大學麥迪遜分校的諾斯布施工程教授,他的研究重點是信號處理、機器學習、優化和統計。
Steve Hanneke是芝加哥豐田技術研究所的研究助理教授。他的研究探索了機器學習理論:設計新的學習算法,能夠從更少的樣本中學習,理解交互式機器學習的好處和能力,開發遷移學習和終身學習的新視角,并在學習理論的基礎上重新審視基本的概率假設。Steve于2005年在UIUC獲得了計算機科學學士學位,2009年在卡內基梅隆大學獲得了機器學習博士學位,并完成了一篇關于主動學習理論基礎的論文。