亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Active Learning: From Theory to Practice

簡介:

近年來,機器學習領域取得了相當大的進步,但主要是在定義明確的領域中使用了大量帶有人類標記的訓練數據。機器可以識別圖像中的物體并翻譯文本,但它們必須接受比人一生所能看到的更多的圖像和文本的訓練。生成必要的訓練數據集需要大量的人力工作。Active ML旨在解決這個問題,它設計了一種學習算法,能夠自動、自適應地選擇最具信息性的數據進行標記,這樣就不會浪費人類的時間來標記不相關、冗余或瑣碎的例子。本教程將概述應用程序,并介紹主動機器學習的基本理論和算法。它將特別關注可證明的健全的主動學習算法,并量化學習所需的標記訓練數據的減少。

邀請嘉賓:

Robert Nowak是威斯康星大學麥迪遜分校的諾斯布施工程教授,他的研究重點是信號處理、機器學習、優化和統計。

Steve Hanneke是芝加哥豐田技術研究所的研究助理教授。他的研究探索了機器學習理論:設計新的學習算法,能夠從更少的樣本中學習,理解交互式機器學習的好處和能力,開發遷移學習和終身學習的新視角,并在學習理論的基礎上重新審視基本的概率假設。Steve于2005年在UIUC獲得了計算機科學學士學位,2009年在卡內基梅隆大學獲得了機器學習博士學位,并完成了一篇關于主動學習理論基礎的論文。

付費5元查看完整內容

相關內容

主題: Machine learning for protein engineering

摘要: 機器學習指導的蛋白質工程是一種新的范例,可以優化復雜的蛋白質功能。 機器學習方法使用數據來預測蛋白質功能,而無需詳細的基礎物理或生物學途徑模型。

付費5元查看完整內容

統計學習理論是一個新興的研究領域,它是概率論、統計學、計算機科學和最優化的交叉領域,研究基于訓練數據進行預測的計算機算法的性能。以下主題將包括:統計決策理論基礎;集中不平等;監督學習和非監督學習;經驗風險最小化;complexity-regularized估計;學習算法的泛化界VC維與復雜性;極大極小下界;在線學習和優化。利用一般理論,我們將討論統計學習理論在信號處理、信息論和自適應控制方面的一些應用。

付費5元查看完整內容

【導讀】如何利用未標記數據進行機器學習是當下研究的熱點。最近自監督學習、對比學習等提出用于解決該問題。最近來自Google大腦團隊的Luong博士介紹了無標記數據學習的進展,半監督學習以及他們最近重要的兩個工作:無監督數據增強和自訓練學習,是非常好的前沿材料。

深度學習盡管取得了很大成功,但通常在小標簽訓練集中表現不佳。利用未標記數據改善深度學習一直是一個重要的研究方向,其中半監督學習是最有前途的方法之一。在本次演講中,Luong博士將介紹無監督數據增強(UDA),這是我們最近的半監督學習技術,適用于語言和視覺任務。使用UDA,我們僅使用一個或兩個數量級標記較少的數據即可獲得最先進的性能。

在本次演講中,Luong博士首先解釋了基本的監督機器學習。在機器學習中,計算機視覺的基本功能是利用圖像分類來識別和標記圖像數據。監督學習需要輸入和標簽才能與輸入相關聯。通過這樣做,您可以教AI識別圖像是什么,無論是對象,人類,動物等。Luong博士繼續進一步解釋神經網絡是什么,以及它們如何用于深度學習。這些網絡旨在模仿人類大腦的功能,并允許AI自己學習和解決問題。

付費5元查看完整內容

題目: Compositionality In Machine Learning

摘要:

現實世界是固有的結構,如句子是由詞語組成的,圖像是由物體組成的,物體本身是由部分組成的。人們如何度量這些,過程是合成的,而不是輸出的。本次教程主要講述了機器學習中的組合性,解釋了機器學習中組合模型的歷史以及原理,還講述了為什么我們要期望普通的模型是組成型學習者?

作者:

Angeliki Lazaridou是DeepMind的高級研究科學家,在此之前是Marco Baroni的研究生,在意大利特倫托大學(map)心智/腦科學中心CLIC實驗室從事基礎語言學習。在薩爾大學(University of Saarland)獲得了計算語言學理學碩士學位,研究情感分析,并獲得了伊拉斯謨?蒙德斯(Erasmus Mundus)語言與通信技術碩士獎學金(EM-LCT)的支持。研究興趣是緊急通信,計算語言學,自然語言處理,人工智能。

付費5元查看完整內容

主題: Causal Confusion in Imitation Learning

簡介: 行為克隆通過訓練判別模型來預測觀察到的專家行為,從而將策略學習轉換為監督學習,這樣的判別模型不是因果關系,因為訓練過程并不了解專家與環境之間相互作用的因果結構。我們認為,由于模仿學習中的分布變化,忽略因果關系尤其有害。特別是,這會導致違反直覺的“因果識別錯誤”現象:訪問更多信息可能會導致性能下降。我們調查了此問題的產生方式,并提出了一種解決方案,可通過有針對性的干預措施(環境互動或專家查詢)來解決,以確定正確的因果模型。

嘉賓介紹: Dinesh Jayaraman,賓夕法尼亞大學的新任助理教授,還是Facebook AI Research的客座研究員,致力于視覺和機器人技術的交叉問題,在此之前,曾是加州大學伯克利分校伯克利人工智能研究實驗室的博士后。

Pim de Haan,高通 AI的助理研究員,研究方向機器學習和數學幾何的交叉。

付費5元查看完整內容

書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。

作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。

大綱介紹:

  • 介紹
  • PAC學習框架
  • rademacher復雜度和VC維度
  • 支持向量機
  • 核方法
  • Boosting
  • 線上學習
  • 多類別分類
  • 排序
  • 回歸
  • 算法穩定性
  • 降維
  • 強化學習

作者主頁//cs.nyu.edu/~mohri/

付費5元查看完整內容

報告主題: 模仿學習前沿進展

報告摘要: 時空跟蹤和傳感數據的不斷發展,現在使得在廣泛的領域中對細粒度的行為進行分析和建模成為可能。例如,現在正在收集每場NBA籃球比賽的跟蹤數據,其中包括球員,裁判和以25 Hz跟蹤的球,以及帶有注釋的比賽事件,如傳球,射門和犯規。其他設置包括實驗動物,公共場所的人員,設置諸如手術室,演員講話和表演的演員,虛擬環境中的數字化身,自然現象(如空氣動力學)以及其他計算系統的行為等專業人員。 在本演講中,我將描述正在進行的研究,這些研究正在開發結構化模仿學習方法,以開發細粒度行為的預測模型。模仿學習是機器學習的一個分支,它處理模仿模仿的動態行為的學習。結構化模仿學習涉及施加嚴格的數學領域知識,這些知識可以(有時被證明)可以加速學習,并且還可以帶來附帶利益(例如Lyapunov穩定性或政策行為的可解釋性)。我將提供基本問題設置的高級概述,以及對實驗動物,專業運動,語音動畫和昂貴的計算神諭進行建模的特定項目。

嘉賓介紹: Yisong Yue,博士,是加州理工學院計算與數學科學系的助理教授。他以前是迪斯尼研究院的研究科學家。在此之前,他是卡耐基梅隆大學機器學習系和iLab的博士后研究員。 Yisong的研究興趣主要在于統計機器學習的理論和應用。他對開發用于交互式機器學習和結構化機器學習的新穎方法特別感興趣。過去,他的研究已應用于信息檢索,推薦系統,文本分類,從豐富的用戶界面中學習,分析隱式人類反饋,臨床治療,輔導系統,數據驅動的動畫,行為分析,運動分析,實驗設計科學,優化學習,機器人技術政策學習以及自適應計劃和分配問題。

付費5元查看完整內容

主題: Introduction to Machine Learning

課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。

邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。

Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。

Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等

付費5元查看完整內容

報告主題: Scalable Deep Learning: from theory to practice

簡介:

人工智能的一個基本任務是學習。深度神經網絡已被證明可以完美地應對所有的學習范式,即監督學習、非監督學習和強化學習。然而,傳統的深度學習方法利用云計算設施不能很好地擴展到計算資源少的自主代理。即使在云計算中,它們也受到計算和內存的限制,不能用于為假定網絡中有數十億神經元的代理建立適當的大型物理世界模型。這些問題在過去幾年通過可擴展和高效的深度學習的新興主題得到了解決。本教程涵蓋了這些主題,重點是理論進步、實際應用和實踐經驗,分為兩部分。

  • 第一部分 -可擴展的深度學習:從修剪到演化。

    本教程的第一部分側重于理論。首先修正目前有多少代理使用深度神經網絡。然后介紹了神經網絡的基本概念,并從功能和拓撲的角度將人工神經網絡與生物神經網絡進行了比較。我們接著介紹了90年代早期的第一篇關于高效神經網絡的論文,這些論文使用稀疏執行或基于不同顯著性標準的全連通網絡的權值剪枝。然后,我們回顧了近年來一些從全連通網絡出發,利用剪枝再訓練循環壓縮深度神經網絡,使其在推理階段更有效的工作。然后我們討論另一種方法,即增強拓撲的神經進化及其后續,使用進化計算來增長有效的深度神經網絡。

  • 第二部分:可擴展的深度學習:深度強化學習

    到目前為止,一切都是在監督和非監督學習的背景下討論的。在此基礎上,我們引入了深度強化學習,為可擴展的深度強化學習奠定了基礎。我們描述了在深度強化學習領域的一些最新進展,這些進展可以用來提高強化學習主體在面對動態變化的環境時的性能,就像在能量系統中經常出現的情況一樣。

邀請嘉賓:

Decebal Constantin Mocanu是埃因霍芬理工大學(TU/e)數學與計算機科學系數據挖掘組人工智能與機器學習助理教授(2017年9月至今),TU/e青年工程院院士。他的研究興趣是利用網絡科學、進化計算、優化和神經科學的原理,構想可擴展的深度人工神經網絡模型及其相應的學習算法。

Elena Mocanu是特溫特大學(University of Twente)數據科學小組的機器學習助理教授,也是艾恩德霍芬理工大學(Eindhoven University of Technology)的研究員。2013年10月,埃琳娜在德國理工大學開始了她在機器學習和智能電網方面的博士研究。2015年1月,她在丹麥技術大學進行了短暫的研究訪問,2016年1月至4月,她是美國奧斯汀德克薩斯大學的訪問研究員。2017年,埃琳娜在德國理工大學獲得了機器學習和智能電網的哲學博士學位。

Damien Ernst目前在列日大學(University of Liege)擔任全職教授。在列日大學獲得碩士學位,博士后研究期間,由FNRS資助,在CMU、美國麻省理工學院和蘇黎世聯邦理工學院度過。他現在正在做能源和人工智能領域的研究。

付費5元查看完整內容
北京阿比特科技有限公司