亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

我們將“AI+傳媒”的研究框架體系定義為“通用大模型”+“行業小樣本”的技術架構,“AI+傳媒”在應用層表現效力優劣的關鍵取決于通用大模型對垂直應用的適配程度及迭代速度,

  1、適配程度是指:多模態的輸入及輸出是否匹配應用層的輸入及輸出。比如GPT-4屬于“圖+文”多模態輸入+“文”單模態輸出,因此輸入模態為“圖或文”且輸出模態為“文”的垂直應用更適配GPT-4。   2、迭代速度是指:應用層產生的“行業小樣本”的數據量是否匹配大模型的迭代要求。根據我們對GPT模型的理解,比如BingAI產生的“行業小樣本”源自Bing的搜索結果,ChatGPT產生的“行業小樣本”源自用戶的反饋和互動。因此我們認為,對于超出GPT所使用的預訓練數據庫范圍(2021年9月前)的事實性表述,BingAI反饋的是搜索的結果,ChatGPT反饋的是用戶主動的觀點,BingAI反饋的效果比ChatGPT更好。   我們認為“行業小樣本”的價值取決于數據數量及數據質量,數量大且質量高(多模態)的應用場景復用及迭代AI能力的效力更強,因此更進一步理解我們的研究框架,我們將“行業小樣本”的結構分層(中層小模型+下層應用及內容),并將“行業小樣本”的結合方式分類(調用+訓練):   1、“行業小樣本”的數據集來自小模型或應用及內容:AI產業鏈包括上層大模型、中層小模型、下層應用及內容,包括應用及內容直接接入大模型或通過小模型接入大模型兩種方式,即“大模型+應用及內容”或“大模型+小模型+應用或內容”,其中具備特定功能的AIGC軟件產品及MaaS我們理解為“小模型”+“應用”的技術范式,本身具備較高質量的AI能力,若接入匹配的多模態大模型,有望實現能力上的質變突破。   2、“行業小樣本”的結合方式包括“能力調用”及“能力訓練”兩類:   (1)“能力調用”是指下游垂類場景直接調用通用大模型的通用能力,并基于垂類場景內產生的特性化數據不斷提升調用能力在垂類場景內的適配程度。我們認為現階段下游應用及內容主要采取此類方式接入大模型能力,此類方式可高效快速調用大模型先進能力,在時間上及成本上具備優勢。我們認為“能力調用”匹配“AI+傳媒”的第一層利好,即通過AI降本增效,大幅提高數據及內容的供給量。內容產業本質由供給決定需求,因此內容供給量的明顯提升將有效帶動傳媒基本面拐點及增量空間出現。   (2)“能力訓練”是指下游垂類場景將通用大模型針對特性化數據集進行再訓練,從而形成垂類場景專屬大模型。例如彭博社利用自身豐富的金融數據源,基于開源的GPT-3框架再訓練,開發出了金融專屬大模型BloombergGPT。我們認為“能力訓練”匹配“AI+傳媒”的第二層利好,即下游垂類場景本身的數據或內容反過來“再訓練”通用大模型(或開源大模型),形成傳媒內容場景專屬大模型,形成更穩定且高質的內容輸出。我們認為訓練難度文本<圖片<視頻<影視<游戲,且內容數量逐步遞減但內容質量逐步遞增,即偏后端的影視、游戲在內容數量上訓練量級不足,因此高質量的內容形態首先通過“能力調用”輸出AIGC內容,再將AIGC內容“再訓練”大模型以解決高質量內容數量不足的問題(合成數據“再訓練”范疇)。從投資的角度,按照我們的研究框架,傳媒對應垂類場景的“行業小樣本”,其核心價值取決于數據與內容,第一層對應數據與內容的輸入模態是否匹配大模型的輸出模態;第二層對應數據與內容的數量及質量是否匹配大模型的能力再訓練:   1、按照“模態匹配”的邏輯,AI+文本/虛擬人預計率先兌現案例及業績,其次AI+圖片可通過“大模型”+“小模型”組合方式實現(如GPT+StableDiffusion、GPT+Midjourney)。隨著未來GPT-5提供更多模態的輸入及輸出,下游垂類場景的適配范圍有望擴大,通過“能力調用”適配的應用及內容場景更為豐富,因此后續“AI+視頻/影視/游戲”的案例兌現度存在新的催化空間。     OpenAI最新發布的GPT-4核心特征包括:(1)多模態輸入(圖+文),單模態輸出(文),可以閱讀并總結論文內容、解答較高難度的物理題目、具備較強的OCR能力(如識別網頁草稿并按要求反饋網頁代碼)、理解人類社會常識;(2)具備長文字處理及推理判斷能力,GPT-4上下文上限約2.5萬字,允許使用長格式內容創建、擴展對話以及文檔搜索和分析等,能夠閱讀并記憶更多信息,且具備更高的推理判斷能力;(3)可靠性大幅提升,分辨能力提高,有效減少“虛構”或“有害”信息輸出。2、按照“能力再訓練”的邏輯,AI+內容/IP預計空間及價值更大,其價值核心取決于數據與內容/IP的數量及質量的高低。微軟本周發布的DeepSpeed-Chat大幅提升大模型預訓練速度并大幅降低訓練成本,我們認為最核心意義為大幅降低垂類場景專屬大模型的訓練門檻,小模型層及應用層有望明顯受益。掌握數據及優質內容(多模態數據)的下游場景具備核心競爭力,因此內容及IP(版權)的價值有望重估。     DeepSpeed-Chat集成預訓練語言大模型完整三個步驟,其中針對第三步RLHF訓練集成了高效且經濟的DeepSpeed-RLHF系統,使復雜的RLHF訓練變得快速、經濟并且易于大規模推廣(相比現有系統提速15倍以上,且大幅降低算力要求及成本)。本文將選取國外AI圖像生成領域的龍頭之一進行解析,Midjourney是國外一款搭載在Discord社區上的圖像生成應用,通過差異化產品定位擁有了早期數據積累及活躍社區,截至2023年3月在Discord上的用戶數超1300萬,是目前用戶數最多的服務器,年營收約1億美元。公司團隊成員僅11人,人效極高,團隊成員及顧問擁有AI技術及產品創業的復合背景,從不同緯度賦能公司發展。     基于CLIP及Diffusion的開源模型構建專屬閉源模型,數據飛輪快速構建護城河。Midjourney通過參考CLIP及Diffusion開源模型的基礎上抓取公開數據進行訓練,從而構建自己的閉源模型以適應行業技術的飛速發展。此外,通過收集用戶反饋及數據標注,Midjourney不斷迭代模型,在ValueChain上占據多個數據層、模型層、應用層整個技術棧。     以藝術風格建立差異化競爭優勢,具備廣闊的用戶基礎,目標客群付費意愿強烈。Midjourney擁有多種不同風格可供選擇,藝術風格在市場上具備差異化優勢。prompt簡短生成效果驚艷,具備較強商業性,鎖定基數大付費意愿強的創意設計目標客群,被大量實踐證明能顯著提高工作效率。2022年3月V1發布時仍參考了很多的開源模型,同年4月、7月、11月分別發布V2、V3、V4,其中V4補充了生物、地點等信息,迭代出了自己的模型優勢,增強對細節的識別能力及多物體、多人物的場景塑造能力。2023年3月,在經歷多次更新后的MidjourneyV5版本解決了一些技術難題,完成了跨越性的突破。     Midjourney與Discord雙輪驅動,激勵用戶點贊積累標注數據。Discord為Midjourney的啟動提供了絕佳的社交體驗平臺,成功將其帶入了大眾市場。一方面Discordbot降低了用戶使用門檻;另一方面,圖片創作是一個在討論中不斷迭代的過程,欣賞其他用戶的作品有也助于激發靈感。此外,Midjourney通過贈送免費使用時間來激勵用戶點贊,從而積累標注數據不斷優化模型生成效果。  

付費5元查看完整內容

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

海外發展:現階段海外大模型發展領先,GPT4已呈現出色的內容生成與交互能力,Google、Meta等也已發布相關產品,預計將帶來可觀的增量市場與效率提升,已給相關應用(微軟、彭博等)帶來巨大變化,預計相似的變革也將在國內發生。

  國內大模型:國內成熟大模型落地具備較好的條件:業內已有相對成熟的方法路徑(Transformer等)、大模型(GPT2、Meta-LLaMA等)及相關數據基礎,而芯片短期看并未成為發展限制,百度、阿里、字節、華為、騰訊等巨頭均加速布局,百度、阿里、商湯發布大模型且迭代進展迅速,預計國內GPT3級模型或在不久的將來出現,對國內產業鏈形成巨大影響。     應用場景展望:考慮現階段國內大模型未完全成熟,因此更多是借鑒海外路徑演繹國內發展。目前看海外應用端已經百花齊放,辦公、搜索、教育、對話社交、游戲、金融、電商、圖片視頻等領域已出現大量產品創新,GPTplugin插件推出后相關產品和場景有望進一步擴展。     投資策略:   1)大模型環節:具備哪些稟賦的企業更可能在大模型競爭中脫穎而出?我們認為,大模型整體來說還是大廠的生意,綜合算力資源、算法人才、數據積累及產品先發四個核心要素,目前百度領先,關注字節、阿里、華為、騰訊等企業進展。     2)應用場景環節:具備哪些稟賦的企業能夠在技術變革下守住基本盤并更上一層樓,而哪些企業可能面臨被替代的風險?我們認為,有以下稟賦的企業:①原有產品場景壁壘高,且受益于AIGC出色的信息獲取、內容生成能力;②有獨特垂直的高質量數據;③有用戶粘性與深度;④本身有較強的AI技術研發與落地能力;加持自有大模型或外部模型API有望上臺階,關注騰訊、阿里、百度,以及游戲、金融、教育、辦公等垂直領域有高質量數據與場景的優質企業。反之,如無上述稟賦,或面臨被大模型降維競爭風險。  

付費5元查看完整內容

1、底層技術:AI通過三大能力賦能辦公場景,大模型技術提升辦公生產力

  AI通過提升人類的內容生成能力、人機交互能力和非結構數據處理能力,來賦能辦公場景:1)AIGC技術開啟辦公軟件發展新階段,辦公產品從效率工具向生成工具轉變;2)大模型提升人機交互能力,降低辦公軟件使用成本;3)AI提升辦公軟件非結構化數據處理能力,幫助企業更加高效地挖掘數據資源價值。

  大模型技術的成熟和商業化推廣,為下游辦公應用向智能化演進提供支撐。1)GPT-4在辦公領域展現出四個極為重要的能力:會話式交互方式、跨語言及多模態交流能力、長文本處理能力、復雜推理能力。四大能力作為支撐,使得大模型在辦公軟件市場應用前景廣闊。2)文心一言強大的中文理解能力展現出廣闊的應用前景,中文場景的內容生成方面具有優勢。3)訊飛星火大模型:辦公是星火模型未來重點應用的領域,依托訊飛在各行業積淀的海量數據,可賦能細分領域的辦公場景。

  2、辦公智能化實踐:國內外廠商齊發力,AI+辦公應用百花齊放

  AI與辦公應用的融合,國內外廠商已有諸多實踐案例:微軟和谷歌都發布了融合AI的辦公應用Microsoft365 Copilot和Workspace,幫助用戶提高工具生產力;Salesforce通過接入通用大模型+自研小模型的方式,推出GPT程序賦能協作產品,提升溝通效率;Notion AI和印象筆記等筆記類應用,通過接入大語言模型實現文檔自動寫作;飛書推出AI助手“My AI”,以對話形式提供多種功能,包括優化和續寫文字內容、創建日程、自動匯總會議紀要、搜索公司內部知識庫等。  

付費5元查看完整內容

我們AIGC系列專題《“大模型+小樣本”快速適配下游場景,“AI+傳媒”的效力取決于適配與迭代》將“AI+傳媒”的研究框架定義為“通用大模型”+“行業小樣本”的技術架構。“AI+傳媒”在應用層表現效力優劣的關鍵取決于通用大模型對垂直應用的適配程度及迭代速度,更進一步理解:

  1、“行業小樣本”的數據集來自小模型或應用及內容:AI產業鏈包括上層大模型、中層小模型、下層應用及內容,包括應用及內容直接接入大模型或通過小模型接入大模型兩種方式,即“大模型+應用及內容”或“大模型+小模型+應用或內容”,其中具備特定功能的AIGC軟件產品我們理解為“小模型”+“應用”的技術范式,本身具備較高質量的AI能力,若接入匹配的多模態大模型,有望實現能力上的質變突破。     2、“行業小樣本”的結合方式包括“能力調用”及“能力訓練”兩層:     (1)“能力調用”是指下游垂類場景直接調用通用大模型的通用能力,并基于垂類場景內產生的特性化數據不斷提升調用能力在垂類場景內的適配程度。我們認為現階段下游應用及內容主要采取此類方式接入大模型能力,此類方式可高效快速調用大模型先進能力,在時間上及成本上具備優勢。     (2)“能力訓練”是指下游垂類場景將通用大模型針對特性化數據集進行再訓練,從而形成垂類場景專屬大模型。例如彭博社利用自身豐富的金融數據源,基于開源的GPT-3框架再訓練,開發出了金融專屬大模型BloombergGPT。我們認為未來擁有豐富特性化數據集的下游垂類場景將主要采取此類方式,有助于構筑更強的能力壁壘。圍繞我們對“AI+傳媒”的研究框架體系,我們后續分別針對“技術層”及“產品/應用層”梳理AIGC研究版圖,本篇屬于AIGC系列專題中“GPT系列專題之一”,重點梳理ChatGPT基礎認知。  

付費5元查看完整內容

ChatGPT快速滲透, AI產業迎發展新機   ChatGPT是由OpenAI公司開發的人工智能聊天機器人程序, 于2022年11月發布, 推出不久便在全球范圍內爆火。根據World of Engineering數據顯示, ChatGPT達到1億用戶量用時僅2個月, 成為史上用戶增長速度最快的消費級應用程序。與之相比, TikTok達到1億用戶用了9個月, Instagram則花了2年半的時間。從用戶體驗來看, ChatGPT不僅能實現流暢的文字聊天, 還可以勝任翻譯、 作詩、 寫新聞、 做報表、 編代碼等相對復雜的語言工作。   ChatGPT爆火的背后是人工智能算法的迭代升級。ChatGPT是基于GPT-3.5微調得到的新版本模型, 能夠借助人類反饋的強化學習(RLHF) 技術來指導模型訓練, 實現模型輸出與人類預期的需求, 使對話內容更加人性化和富有邏輯性。從2008年第一代生成式預訓練模型GPT-1誕生以來, GPT系列模型幾乎按照每年一代的速度進行迭代升級, 未來隨著大語言模型(LLM) 技術的不斷突破, AI相關應用有望加速落地, AI產業或將迎來新一輪發展機遇。   ChatGPT激起AI浪潮,大算力芯片迎來產業機遇   ChatGPT是生成式人工智能技術(AIGC) 的一種, 與傳統的決策/分析式AI相比, 生成式AI并非通過簡單分析已有數據來進行分析與決策, 而是在學習歸納已有數據后進行演技創造, 基于歷史進行模仿式、 縫合式創作, 生成全新的內容。AIGC的應用非常廣泛, 包括自然語言生成、 圖像生成、 視頻生成、 音樂生成、 藝術創作等領域。   AIGC產業鏈主要分為上游算力硬件層、 中游數據/算法軟件層和下游行業應用層。硬件層依靠高性能AI芯片、 服務器和數據中心為AIGC模型的訓練提供算力支持, 是承載行業發展的基礎設施;數據/算法層軟件層主要負責AI數據的采集、 清洗、 標注及模型的開發與訓練, 多方廠商入局自然語言處理、 計算機視覺、 多模態模型等領域;行業應用層目前主要涉及搜索、 對話、推薦等場景, 未來有望在多個行業呈現井噴式革新。   多模態賦能下游行業智慧化升級   多模態大模型有望成為AI主流, 賦能下游行業智能升級。生成式AI主要依賴于人工智能大模型, 如Transformer、 BERT、GPT系列等。這些模型通常包含數十億至數萬億個參數, 需要龐大的數據集進行訓練, 致使AI算力的需求也呈現出指數級的增長。多模態是一種全新的交互、 生成模式, 集合了圖像、 語音、 文本等方式, 因其可以結合多種數據類型和模態的學習,將有望徹底改變我們與機器互動的方式, 快速占據人工智能主導地位。我們認為多模態大模型長期來看不僅可以從成本端降本增效, 需求端也將通過快速滲透推廣為下游行業帶來持續增長需求, 從而快速推動下游行業智慧化應用升級。   模型更新升級帶動下游行業不斷發展   從GPT-1到ChatGPT, 模型參數與訓練數據量不斷增加, 所需算力資源不斷提升:   GPT-1:最早的GPT模型之一, 包含了1.17億個參數, 預訓練數據量約為5GB。   GPT-2:參數數量達到了1.5億個, 預訓練數據量達40GB。   GPT-3:是目前為止最大的語言模型之一, 包含了1750億個參數, 預訓練數據量為45TB。   ChatGPT:基于GPT-3模型的變種之一, 參數量預計與GPT-3相近。   GPT-4性能提升顯著, AIGC應用市場空間廣闊   多模態模型是實現人工智能應用的關鍵。3月14日OpenAI發布GPT-4多模態大模型, 擁有1) 強大的識圖能力;2) 文字輸入限制提升至2.5萬字;3) 回答準確性顯著提高;4) 能夠生成歌詞、 創意文本、 實現風格變化。在各種專業和學術基準上,GPT-4已具備與人類水平相當表現。如在模擬律師考試中, 其分數在應試者前10%, 相比下GPT-3.5在倒數10%左右。多模態大模型在整體復雜度及交互性上已有較大提升, 模型升級有望加速細分垂直應用成熟, 賦能下游智慧化升級, 帶動需求快速增長。   AIGC下游市場滲透率低, 增長空間廣闊。根據 Gartner數據, 目前由人工智能生成的數據占所有數據的 1%以下, 預計2023年將有 20%的內容被生成式AI 所創建, 2025 年人工智能生成數據占比將達到 10%。根據前瞻產業研究院數據, 2025年中國生成式商業AI應用規模將達2070億元, CAGR(2020-2025) 為84.06%。

付費5元查看完整內容

ChatGPT系列報告地址://www.zhuanzhi.ai/topic/tpcac5a15a1c8b5293bfc970b97839eaf7

本篇報告主要解答了以下問題:AI、AIGC當下發展處于什么階段?未來將呈現怎樣的趨勢?AIGC的核心生產要素是什么?各生產要素的發展趨勢如何?NLP、CV、ASR、TTS算法及發展?ChatGPT為何“火爆出圈”?AIGC包括什么?已有哪些產品?應用現狀及前景如何有哪些企業進行了布局?商業模式如何?

  行業發展:人工智能步入新發展階段,逐步邁向AGI;AIGC擁抱人類,創造人機交互新變革,將迎來更多新機遇。人工智能從理論發展分為四個階段:規則導向、機器學習、深度學習、自主學習階段,目前處于深度學習階段;從應用成熟度可分為三個階段:弱人工智能階段(ANI)、強人工智能階段(AGI)、超人工智能階段(ASI),目前處于ANI階段;從應用類型可分為四種:感知式AI與分析式AI應用較成熟,決策式AI近年來發展迅速,生成式AI迎來突破。生成式AI,即AIGC,較傳統內容創作模式UGC、PGC可實現更大數量、更高質量、更低單位成本,未來將從輔助創作生成趨向高度自動化自主創造。此外,AIGC將賦能多領域,加速人機共生的建設,迎接更多機遇與挑戰。     技術進步:算力是支撐,數據是瓶頸,算法迎來突破。算力層,近年來大模型流行,模型參數量迅速膨脹,所需計算資源越來越大,算力是AIGC核心生產要素;而AI芯片全球短缺,美對華芯片制裁升級,我們認為國內短期算力充足,長期仍需要逐步實現AI芯片國產化替代。數據是機器學習的核心,AI發展的瓶頸,數據決定模型質量的上限;大模型訓練需要海量且優質數據,AI對數據訓練集的消耗量遠大于人類數據生產的速度,專業領域、圖像視頻等數據獲取和標注成本也將越來越高,我們認為加速商業化,實現數據反哺是對提高數據量、降成本的重要解決辦法。算法層,近年來迎來不少突破,過去NLP領域以RNN及其變體為主,CV領域以CNN及其變體為主,但各有優劣,Transformer架構突破了RNN不能并行計算的限制,較CNN有更好的計算局部特征間的關聯等,自2017年開始在NLP領域應用、變種升級,Transformer在多模態的發展和應用將讓AI越來越多的向人類推理方式靠近,以實現AGI。AIGC包括文本/音頻/圖像/視頻/代碼/3D/數字人/跨膜態生成等,目前文本、音頻和圖像領域都迎來較大突破,圖像生成的突破是Difussion的出現,文本生成的突破則是GPT的出現,AIGC基本采用GAN算法,算法及產品越來越豐富多元,AI因AIGC的蓬勃發展,已開啟技術與應用的新篇章。     應用概覽:技術突破實現應用創新。AI小模型是過去主流的研究和應用方向,在B端部分行業、賽道已有不少企業布局,預計未來仍將依托其細分行業、細分賽道的先發優勢和數據、項目實施經驗、產品優勢等壁壘仍將有較好的發展。但大模型尚未實現商業價值閉環,未來需要重點關注數據、算法層面的突破與變革,探索新的商業模式,目前已在影視、傳媒、電商、C端娛樂規模應用,游戲領域逐步應用,金融、工業、醫療、法律、設計等專業領域還在持續拓展。     產業布局:科技巨頭全面布局,中下游廠商百花齊放。國外主要以微軟、谷歌、Meta為主,國內以百度、騰訊、阿里、華為等為主,既擁有充足的算力支撐,又有優秀的人才團隊,多年算法、數據積累,在大模型領域的發展及應用具備天然優勢。上游除云廠商外,還有光通信廠商、數據服務商、算力相關設備廠商,將較大程度受益于大模型發展帶來的更多計算資源和數據需求。中游有商湯、科大訊飛、曠視、拓爾思等企業多年細分領域布局,部分也有一定算力儲備,垂直行業細分賽道深耕,相關技術、數據儲備豐富。下游主要是受益于AIGC對業務的驅動、降本增效,空間較大,多行業公司均將逐步受益。     商業模式:商業化初啟,期待產業生態、技術與產品發展完善。小模型在B端已應用多年,大模型商業剛剛開始,主要是MaaS,包括大模型廠商自用,實現增量或降本增效;云廠商“MaaS+IaaS”打包輸出;替代翻譯、美工、原畫師、程序員、分析師、設計師等繁瑣重復的低端工作等。大模型商業價值閉環未成,國內SaaS生態、付費意識較差,商業落地還需要各行各業共同發展、相互奔赴,共建良好產業生態。

付費5元查看完整內容

數據、算法、算力共振推動AIGC發展,模型開源及商業化帶來的產品化浪潮及通用人工智能領域的初探推動AIGC破圈。AIGC傳媒相關應用有望超千億。   復盤AIGC算法迭代:競爭中發展,模型開源及商業化推動應用破圈。2017年推出的Transformer架構的并行訓練優勢奠定了大模型訓練的基礎,以GPT為代表的預訓練模型,通過使用無標注數據預訓練及微調,緩解了標注數據不足的問題,并不斷提升參數量級及模型通用性,ChatGPT在此基礎上加入了利用人類反饋強化學習的訓練方法。擴散模型取代GAN成為圖像生成領域的主流模型,CLIP模型推動跨模態生成技術的發展。GPT3的商業化及CLIP及Stable Diffusion模型的開源推動文本生成、文生圖產品化的浪潮。谷歌、Meta持續探索文字生成視頻領域模型。   國內傳媒領域應用有望超千億。Gartner預測至2023年將有20%的內容被生成式AI所創建;至2025年生成式AI產生的數據將占所有數據的10%(目前不到1%)。紅杉預測生成式ai將產生數萬億美元經濟價值。2025年,國內生成式ai應用規模有望突破2000億,我們預測國內傳媒領域應用空間超1000億。   AIGC應用于文本、音頻、跨模態、策略生成,在設計、內容創作、廣告營銷、游戲、企業服務等領域開啟商業化,有望開啟新一輪內容生產力革命。   文本生成:應用于輔助寫作、營銷、社交、瀏覽器、企業級服務、心理咨詢等領域。代表公司Jasper.ai,通過SaaS訂閱收費模式,獲得B端客戶認可,率先實現規模化收入;OpenAI旗下ChatGPT由于其通用性被集成至瀏覽器、辦公自動化軟件、企業級服務產品中,作為增值服務項目。   音頻生成:應用于智能客服、有聲讀物制作、配音、導航、虛擬歌手、作曲等領域。代表公司喜馬拉雅、倒映有聲、標貝科技、StarXMusicXLab等。   跨模態生成:包括文生圖、文生視頻,圖片視頻生成文字等應用。AI繪畫代表產品Midjourney、DALL-E2、Dreamstudio、文心一格,主要按生成次數收費。   策略生成:應用于游戲、自動駕駛、機器人控制、智能交互數字人等領域。游戲領域代表性公司騰訊AILab、網易伏羲、啟元世界、rct.ai、超參數等。

付費5元查看完整內容

ChatGPT:AIGC現象級應用,商業化落地打開成長空間

  ChatGPT上線后熱度持續提升,已超過TikTok成為活躍用戶增長最快的產品。英偉達CEO黃仁勛表示“ChatGPT相當于AI界的iPhone問世”。目前ChatGPT已開啟商業化探索,面向B端開放接口對外輸出服務(如與微軟Bing的結合);面向C端推出收費的Plus版本,月度費用為20美元/月。根據OpenAI預測,2023年將實現2億美元收入,2024年將超過10億美元,未來成長空間廣闊。

  大模型+大數據+高算力,ChatGPT不斷突破

  (1)預訓練大模型:GPT大模型是ChatGPT的基礎,目前已經過多個版本迭代,GPT-3版本參數量達1750億,訓練效果持續優化。(2)數據:數據是預訓練大模型的原材料。GPT-3數據主要來自CommonCrawl、新聞、帖子、書籍及各種網頁,原始數據規模達45TB,訓練效果大幅提升。(3)算力:微軟AzureAI是OpenAI獨家云計算供應商,所用超算擁有285,000個CPU內核、約10,000個GPU。在大模型、大數據和高算力的支撐下,ChatGPT技術持續突破,表現驚艷。

  巨頭積極布局,產業落地加速

  AIGC在AI技術創新(生成算法、預訓練模型、多模態技術等)、產業生態(三層生態體系雛形已現)和政策支持(北京經信局表示支持頭部企業打造對標ChatGPT的大模型)共振下,有望步入發展快車道,根據騰訊研究院發布的AIGC發展趨勢報告,預計2030年AIGC市場規模將達1100億美元,前景廣闊。

  (1)微軟:微軟自2019年與OpenAI展開合作,并表示未來所有產品將全線整合ChatGPT。目前已推出引入ChatGPT技術的搜索引擎NewBing,經過測試后,71%的用戶對ChatGPT版Bing滿意,AI與搜索協同效果顯著。

  (2)谷歌:2023年2月谷歌推出對標ChatGPT的對話機器人Bard。Bard基于谷歌LaMDA模型,參數量最高達1370億,LaMDA已經在多個維度接近人類水平。谷歌表示未來會將AI技術率先應用于搜索領域,或將與微軟展開正面競爭。

  (3)百度:百度在AI領域深耕數十年,在芯片、深度學習框架、大模型以及應用已形成全棧布局,已有文心一格(AI作畫)、文心百中(產業搜索)產品落地。2023年2月,百度推出聊天機器人“文心一言”,目前生態合作伙伴近300家,未來可期。

付費5元查看完整內容

**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **

** **

** **

 AIGC多模態跨模態應用逐漸成熟,市場空間廣闊。   廣義的AIGC指具備生成創造能力的AI技術,即生成式AI。可以基于訓練數據和生成算法模型,自主生成創造新的文本、圖像、音樂、視頻等內容。2022年被稱為AIGC元年,未來兼具大模型和多模態模型的AIGC模型有望成為新的技術平臺。據《中國AI數字商業產業展望2021-2025》報告,預測AI數字商業內容的市場規模將從2020年的40億元,增加到2025年的495億元。   ChatGPT產品歷經多代技術演進,產品與商業模式逐漸成熟。   ChatGPT是文本生成式AI,過去的傳統AI偏向于分析能力,主要基于已有內容;現在文本生成式AI基于底層Transformer模型,不斷訓練數據和迭代生成算法模型,歷經GPT-1、GPT-2、GPT-3,模型不斷升級,到ChatGPT的GPT3.5模型,已可以自主生成各種形式的內容。近期收費版ChatGPTPlus版本發布,AI商業化序幕逐漸拉開。   AI商業化落地在即,行業算法側和算力側投資機會有望超預期。   根據數據顯示,ChatGPT總算力消耗約為3640PF-Days,按國內的數據中心算力測算,需要7-8個數據中心才能支持其運行。各模態AI數據訓練到應用均需要算法和算力的加持,未來要想大規模應用,算法訓練和算力部署均需先行。

付費5元查看完整內容

**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **

** **

** **

ChatGPT是OpenAI推出的聊天機器人模型,月度用戶已破億,正在逐步探索商業化途徑。ChatGPT能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼等任務。根據UBS統計數據顯示,ChatGPT上線2個月后月度用戶數量破1億。   OpenAI的商業模式為,會員收費、開放API以及與微軟的戰略合作。會員服務:2023年2月1日,OpenAI推出付費訂閱項目ChatGPTPlus,價格為$20/月,目前面向美國用戶。API服務:ChatGPT將在未來加入OpenAI的API,目前已在包括游戲虛擬人等泛娛樂內容產業和互聯網的多方面進行應用。1)辦公軟件:微軟計劃將包括ChatGPT等AI工具整合進旗下的所有產品中。ChatGPT已加入瀏覽器擴展程序,集成了ChatGPT-4的BING短暫上線。2)泛娛樂:AI或將不斷趨近人類思維敘事,AIGC是踏入元宇宙的重要一步,且已有公司在直播場景、游戲場景等泛娛樂中應用ChatGPT。   谷歌、百度等眾多公司推出自有AI產品,百度文心一言(ERNIEBot)預計三月份完成內測。百度擁有飛槳(深度學習開源框架)、百度AI大底座(全棧AI基礎設施)和文心大模型(AI應用場景全覆蓋)。ERNIE是百度開創性提出的基于知識增強的持續學習語義理解框架。ERNIE3.0參數量增大到了10B,訓練數據集為4TB。產品應用或可期待。  

付費5元查看完整內容

事件:美國AI公司OpenAI推出基于大語言模型的對話模型ChatGPT,可提供高質量的回答,并能實現創作、編程等復雜功能,備受市場關注。不到兩個月的時間,ChatGPT全球日活用戶已突破千萬。

  ChatGPT是突破式的創新技術ChatGPT是OpenAI公司推出的全新聊天機器人模型。通過引入人類反饋的強化學習,大幅提升了AI在人機對話時的準確度和可控性,具有強大的語言理解能力和語言表達能力。GPT模型仍在持續迭代,更先進大語言模型GPT-4有望在2023年推出,有望進一步推動AIGC產業發展。     ChatGPT應用及商業化落地加速科技公司紛紛涌入AIGC賽道,優秀的AIGC大模型層出不窮,我們認為基于AI文本生成的模型ChatGPT有望率先應用落地。AIGC賽道相關公司受到資本青睞,AIGC頭部初創公司OpenAI最新估值約為290億美元。作為AIGC領域領先的模型ChatGPT在對話機器人、智能創作等領域應用廣泛,亞馬遜、微軟、Jasper等公司已經開啟商業化之路,商業化前景廣闊。  

付費5元查看完整內容
北京阿比特科技有限公司