我們AIGC系列專題《“大模型+小樣本”快速適配下游場景,“AI+傳媒”的效力取決于適配與迭代》將“AI+傳媒”的研究框架定義為“通用大模型”+“行業小樣本”的技術架構。“AI+傳媒”在應用層表現效力優劣的關鍵取決于通用大模型對垂直應用的適配程度及迭代速度,更進一步理解:
1、“行業小樣本”的數據集來自小模型或應用及內容:AI產業鏈包括上層大模型、中層小模型、下層應用及內容,包括應用及內容直接接入大模型或通過小模型接入大模型兩種方式,即“大模型+應用及內容”或“大模型+小模型+應用或內容”,其中具備特定功能的AIGC軟件產品我們理解為“小模型”+“應用”的技術范式,本身具備較高質量的AI能力,若接入匹配的多模態大模型,有望實現能力上的質變突破。 2、“行業小樣本”的結合方式包括“能力調用”及“能力訓練”兩層: (1)“能力調用”是指下游垂類場景直接調用通用大模型的通用能力,并基于垂類場景內產生的特性化數據不斷提升調用能力在垂類場景內的適配程度。我們認為現階段下游應用及內容主要采取此類方式接入大模型能力,此類方式可高效快速調用大模型先進能力,在時間上及成本上具備優勢。 (2)“能力訓練”是指下游垂類場景將通用大模型針對特性化數據集進行再訓練,從而形成垂類場景專屬大模型。例如彭博社利用自身豐富的金融數據源,基于開源的GPT-3框架再訓練,開發出了金融專屬大模型BloombergGPT。我們認為未來擁有豐富特性化數據集的下游垂類場景將主要采取此類方式,有助于構筑更強的能力壁壘。圍繞我們對“AI+傳媒”的研究框架體系,我們后續分別針對“技術層”及“產品/應用層”梳理AIGC研究版圖,本篇屬于AIGC系列專題中“GPT系列專題之一”,重點梳理ChatGPT基礎認知。
1、底層技術:AI通過三大能力賦能辦公場景,大模型技術提升辦公生產力
AI通過提升人類的內容生成能力、人機交互能力和非結構數據處理能力,來賦能辦公場景:1)AIGC技術開啟辦公軟件發展新階段,辦公產品從效率工具向生成工具轉變;2)大模型提升人機交互能力,降低辦公軟件使用成本;3)AI提升辦公軟件非結構化數據處理能力,幫助企業更加高效地挖掘數據資源價值。
大模型技術的成熟和商業化推廣,為下游辦公應用向智能化演進提供支撐。1)GPT-4在辦公領域展現出四個極為重要的能力:會話式交互方式、跨語言及多模態交流能力、長文本處理能力、復雜推理能力。四大能力作為支撐,使得大模型在辦公軟件市場應用前景廣闊。2)文心一言強大的中文理解能力展現出廣闊的應用前景,中文場景的內容生成方面具有優勢。3)訊飛星火大模型:辦公是星火模型未來重點應用的領域,依托訊飛在各行業積淀的海量數據,可賦能細分領域的辦公場景。
2、辦公智能化實踐:國內外廠商齊發力,AI+辦公應用百花齊放
AI與辦公應用的融合,國內外廠商已有諸多實踐案例:微軟和谷歌都發布了融合AI的辦公應用Microsoft365 Copilot和Workspace,幫助用戶提高工具生產力;Salesforce通過接入通用大模型+自研小模型的方式,推出GPT程序賦能協作產品,提升溝通效率;Notion AI和印象筆記等筆記類應用,通過接入大語言模型實現文檔自動寫作;飛書推出AI助手“My AI”,以對話形式提供多種功能,包括優化和續寫文字內容、創建日程、自動匯總會議紀要、搜索公司內部知識庫等。
我們將“AI+傳媒”的研究框架體系定義為“通用大模型”+“行業小樣本”的技術架構,“AI+傳媒”在應用層表現效力優劣的關鍵取決于通用大模型對垂直應用的適配程度及迭代速度,
1、適配程度是指:多模態的輸入及輸出是否匹配應用層的輸入及輸出。比如GPT-4屬于“圖+文”多模態輸入+“文”單模態輸出,因此輸入模態為“圖或文”且輸出模態為“文”的垂直應用更適配GPT-4。 2、迭代速度是指:應用層產生的“行業小樣本”的數據量是否匹配大模型的迭代要求。根據我們對GPT模型的理解,比如BingAI產生的“行業小樣本”源自Bing的搜索結果,ChatGPT產生的“行業小樣本”源自用戶的反饋和互動。因此我們認為,對于超出GPT所使用的預訓練數據庫范圍(2021年9月前)的事實性表述,BingAI反饋的是搜索的結果,ChatGPT反饋的是用戶主動的觀點,BingAI反饋的效果比ChatGPT更好。 我們認為“行業小樣本”的價值取決于數據數量及數據質量,數量大且質量高(多模態)的應用場景復用及迭代AI能力的效力更強,因此更進一步理解我們的研究框架,我們將“行業小樣本”的結構分層(中層小模型+下層應用及內容),并將“行業小樣本”的結合方式分類(調用+訓練): 1、“行業小樣本”的數據集來自小模型或應用及內容:AI產業鏈包括上層大模型、中層小模型、下層應用及內容,包括應用及內容直接接入大模型或通過小模型接入大模型兩種方式,即“大模型+應用及內容”或“大模型+小模型+應用或內容”,其中具備特定功能的AIGC軟件產品及MaaS我們理解為“小模型”+“應用”的技術范式,本身具備較高質量的AI能力,若接入匹配的多模態大模型,有望實現能力上的質變突破。 2、“行業小樣本”的結合方式包括“能力調用”及“能力訓練”兩類: (1)“能力調用”是指下游垂類場景直接調用通用大模型的通用能力,并基于垂類場景內產生的特性化數據不斷提升調用能力在垂類場景內的適配程度。我們認為現階段下游應用及內容主要采取此類方式接入大模型能力,此類方式可高效快速調用大模型先進能力,在時間上及成本上具備優勢。我們認為“能力調用”匹配“AI+傳媒”的第一層利好,即通過AI降本增效,大幅提高數據及內容的供給量。內容產業本質由供給決定需求,因此內容供給量的明顯提升將有效帶動傳媒基本面拐點及增量空間出現。 (2)“能力訓練”是指下游垂類場景將通用大模型針對特性化數據集進行再訓練,從而形成垂類場景專屬大模型。例如彭博社利用自身豐富的金融數據源,基于開源的GPT-3框架再訓練,開發出了金融專屬大模型BloombergGPT。我們認為“能力訓練”匹配“AI+傳媒”的第二層利好,即下游垂類場景本身的數據或內容反過來“再訓練”通用大模型(或開源大模型),形成傳媒內容場景專屬大模型,形成更穩定且高質的內容輸出。我們認為訓練難度文本<圖片<視頻<影視<游戲,且內容數量逐步遞減但內容質量逐步遞增,即偏后端的影視、游戲在內容數量上訓練量級不足,因此高質量的內容形態首先通過“能力調用”輸出AIGC內容,再將AIGC內容“再訓練”大模型以解決高質量內容數量不足的問題(合成數據“再訓練”范疇)。從投資的角度,按照我們的研究框架,傳媒對應垂類場景的“行業小樣本”,其核心價值取決于數據與內容,第一層對應數據與內容的輸入模態是否匹配大模型的輸出模態;第二層對應數據與內容的數量及質量是否匹配大模型的能力再訓練: 1、按照“模態匹配”的邏輯,AI+文本/虛擬人預計率先兌現案例及業績,其次AI+圖片可通過“大模型”+“小模型”組合方式實現(如GPT+StableDiffusion、GPT+Midjourney)。隨著未來GPT-5提供更多模態的輸入及輸出,下游垂類場景的適配范圍有望擴大,通過“能力調用”適配的應用及內容場景更為豐富,因此后續“AI+視頻/影視/游戲”的案例兌現度存在新的催化空間。 OpenAI最新發布的GPT-4核心特征包括:(1)多模態輸入(圖+文),單模態輸出(文),可以閱讀并總結論文內容、解答較高難度的物理題目、具備較強的OCR能力(如識別網頁草稿并按要求反饋網頁代碼)、理解人類社會常識;(2)具備長文字處理及推理判斷能力,GPT-4上下文上限約2.5萬字,允許使用長格式內容創建、擴展對話以及文檔搜索和分析等,能夠閱讀并記憶更多信息,且具備更高的推理判斷能力;(3)可靠性大幅提升,分辨能力提高,有效減少“虛構”或“有害”信息輸出。2、按照“能力再訓練”的邏輯,AI+內容/IP預計空間及價值更大,其價值核心取決于數據與內容/IP的數量及質量的高低。微軟本周發布的DeepSpeed-Chat大幅提升大模型預訓練速度并大幅降低訓練成本,我們認為最核心意義為大幅降低垂類場景專屬大模型的訓練門檻,小模型層及應用層有望明顯受益。掌握數據及優質內容(多模態數據)的下游場景具備核心競爭力,因此內容及IP(版權)的價值有望重估。 DeepSpeed-Chat集成預訓練語言大模型完整三個步驟,其中針對第三步RLHF訓練集成了高效且經濟的DeepSpeed-RLHF系統,使復雜的RLHF訓練變得快速、經濟并且易于大規模推廣(相比現有系統提速15倍以上,且大幅降低算力要求及成本)。本文將選取國外AI圖像生成領域的龍頭之一進行解析,Midjourney是國外一款搭載在Discord社區上的圖像生成應用,通過差異化產品定位擁有了早期數據積累及活躍社區,截至2023年3月在Discord上的用戶數超1300萬,是目前用戶數最多的服務器,年營收約1億美元。公司團隊成員僅11人,人效極高,團隊成員及顧問擁有AI技術及產品創業的復合背景,從不同緯度賦能公司發展。 基于CLIP及Diffusion的開源模型構建專屬閉源模型,數據飛輪快速構建護城河。Midjourney通過參考CLIP及Diffusion開源模型的基礎上抓取公開數據進行訓練,從而構建自己的閉源模型以適應行業技術的飛速發展。此外,通過收集用戶反饋及數據標注,Midjourney不斷迭代模型,在ValueChain上占據多個數據層、模型層、應用層整個技術棧。 以藝術風格建立差異化競爭優勢,具備廣闊的用戶基礎,目標客群付費意愿強烈。Midjourney擁有多種不同風格可供選擇,藝術風格在市場上具備差異化優勢。prompt簡短生成效果驚艷,具備較強商業性,鎖定基數大付費意愿強的創意設計目標客群,被大量實踐證明能顯著提高工作效率。2022年3月V1發布時仍參考了很多的開源模型,同年4月、7月、11月分別發布V2、V3、V4,其中V4補充了生物、地點等信息,迭代出了自己的模型優勢,增強對細節的識別能力及多物體、多人物的場景塑造能力。2023年3月,在經歷多次更新后的MidjourneyV5版本解決了一些技術難題,完成了跨越性的突破。 Midjourney與Discord雙輪驅動,激勵用戶點贊積累標注數據。Discord為Midjourney的啟動提供了絕佳的社交體驗平臺,成功將其帶入了大眾市場。一方面Discordbot降低了用戶使用門檻;另一方面,圖片創作是一個在討論中不斷迭代的過程,欣賞其他用戶的作品有也助于激發靈感。此外,Midjourney通過贈送免費使用時間來激勵用戶點贊,從而積累標注數據不斷優化模型生成效果。
4月11日上午,阿里AI大模型“通義千問”于2023阿里云峰會重磅發布。阿里巴巴集團CEO張勇表示,基礎大模型的核心是能夠支撐各行各業,阿里希望能夠為客戶與合作伙伴提供面向千行百業的專屬大模型。阿里巴巴表示,所有產品未來都要接入大模型進行全面的升級,所有行業和所有服務都值得重新做一遍。
從M6項目到“通義千問”的發展之路。阿里AI大模型“通義千問”前身系阿里達摩院M6項目,阿里達摩院于2020年6月發布3億參數基礎模型,21年1月模型參數規模達百億,同年5月達萬億參數,同年10月達10萬億,成為全球首個10萬億參數多模態大模型,并落地應用于天貓虛擬主播等40多個細分場景。22年9月達摩院發布“通義”大模型系列,打造業界首個AI底座,且兼顧大小模型的層次化建構體系。
C端應用:構造全域智能生態場景。我們認為,阿里入局AI大模型競爭的核心優勢不僅在于算力算法層面的優越性與C端生活場景數據的豐富性,而且在于能夠精準把控C端用戶的生態入口。阿里大模型“通義千問”有望基于其升級版天貓精靈(智能居家入口)、淘寶(智能電商入口)、釘釘(智能辦公入口)、高德地圖(智能汽車入口)等,協同合作廠商共建阿里系生態,借助多項生態入口打造覆蓋“衣食住行工”的全域智能生態場景。目前,發布會已披露三大場景:智能居家:通義千問×智能家居(天貓精靈等),有望成為具備個性化故事生成、個性化歌單推薦、個性化菜譜生成等功能的智能生活助理。智能辦公:通義千問×釘釘,有望實現AI智能生成群聊摘要、AI輔助內容創作、AI自動總結會議紀要、AI拍照生成應用等功能。智能購物:通義千問×淘寶,有望實現對話生成智能購物助手、智能品牌推薦、智能品類推薦、智能活動策劃、文字生成圖片、以圖搜同款、個性化商品生產等功能。
B/G端應用:AGI落地千行百業,AIforX時代將至。阿里生態內A股產業鏈相關公司或將率先受益:恒生電子(通義千問×金融)、千方科技(通義千問×交通)、南威軟件(通義千問×政務)、新開普(通義千問×教育)、光云科技(通義千問×電商)、安恒信息(通義千問×網安)、金橋信息(通義千問×法律)、稅友股份(通義千問×稅務)、超圖軟件(通義千問×設計)、衛寧健康(通義千問×醫療)。
海外大模型助力用戶活躍度增長,ChatGPT/GPT-4+應用或為最大機會 22 年末以來,海外大模型快速更迭,ChatGPT/GPT-4 向開發者開放 API, 且價格下探,帶動應用層面持續落地,并從單一的文字模態向圖文跨模態拓 展。在技術加持下,應用性能極大提升,助力用戶活躍度增加。我們認為, AI 時代,應用層將擁有巨大發展潛力,其中搜索、電商、社交、游戲、營銷、 教育、辦公、文學創作等領域空間較大。產業鏈相關公司包括:昆侖萬維、 湯姆貓、三七互娛、愷英網絡、藍色光標、易點天下、中文在線、光線傳媒、 捷成股份、風語筑、完美世界、吉比特、巨人網絡、寶通科技、三人行、值 得買、平治信息等。 搜索通過分析總結,直接展示結果; 電商實現個性化推薦 搜索領域代表公司包括微軟 new Bing 等。據微軟官網,自 2023 年 2 月 7 日 new Bing 發布以來,在 GPT-4 的加持下,截至 3 月 8 日,Bing 搜索引 擎日活躍用戶破 1 億;據七麥數據,Bing App 在美國 iOS 效率應用免費榜 排名從 1 月初的 100-140 名提升至 3 月末的 15-20 名。此外,一些海外的 電商平臺也紛紛接入 ChatGPT,形態包括:1)聊天客服:能夠為客戶提供 實時信息,實現降本增效;2)個性化推薦:ChatGPT 能夠根據用戶的興趣 和偏好篩選產品并進行推薦,優化購物體驗提升轉化率。代表公司包括 Shopify、Instacart 等。 龍頭布局社交聊天機器人;游戲賦能 NPC 聊天與代碼生成 社交方面,通過在社交媒體中嵌入聊天機器人,能夠解決用戶的實際問題, 如推薦食譜等;同時部分聊天機器人還具備上下文理解能力,具有聆聽、陪 伴等功能。此外,還有社交軟件將 ChatGPT 用于個性化的簡歷生成,提升 用戶的約會體驗。代表公司包括 Snap、Iris Dating 等。游戲方面, ChatGPT/GPT-4 技術在海外應用包括 NPC 聊天內容、劇情大綱、代碼生成 等,同時我們認為伴隨著多模態技術的發展,相關技術在游戲素材生產等領 域或持續落地。代表公司包括湯姆貓、ElectricNoir、中文在線(Chapters、 My Escape 宣布接入 ChatGPT)等。 **ChatGPT 驅動虛擬人交互與營銷內容生成;教育在學與教方面均快速落地 **
在營銷領域,我們認為 ChatGPT/GPT-4 的主要應用領域包括:1)營銷內 容生成:借助 ChatGPT 進行營銷文本、營銷視頻、音頻廣告、評論區回復、 虛擬物品、虛擬空間等內容生成;2)虛擬人:接入 ChatGPT,使得虛擬人 的回復更加智能,提升交互性能。代表公司包括 Jasper、SOCi、藍色光標、 天娛數科等。教育方面,主要落地方向包括:1)面向學生,作為虛擬導師, 提供一對一、個性化的輔導,營造沉浸化的學習環境,此外還能夠更好地總 結教學內容;2)面向教師,自動編寫教學材料,分析學生課堂表現,及時 了解學生的近況。代表公司包括 Duolingo、可汗學院、Nerdy 等。 辦公領域作為生產力工具,提升工作效率;文學創作不斷探索 辦公方面,3 月 16 日,微軟推出 Microsoft 365 Copilot,一方面將 AI 技術 集合到 Word/Excel/Powerpoint/Outlook/Teams 等日常工具中;另一方面, 推出商務聊天功能,通過將數據匯集,通過簡單的聊天即可隨時獲取工作信 息。此外,一些垂直類生產工具持續涌現,在郵件、新聞內容撰寫等結構化 領域落地。代表公司包括微軟、Salesforce、BlueMail、BuzzFeed 等。文 學創作不斷探索,部分作品已商業化。據韓國經濟新聞,全球首本 ChatGPT 撰寫、AI 翻譯校對插圖的圖書在 2023 年 2 月 22 日上架。
百度于2023年3月16日召開關于“文心一言”的主題發布會,“文心一言”作為國內首款正式發布的生成式語言大模型,擁有文學創作、商業文案創作、數理邏輯推算、中文理解、多模態生成等功能。文心平臺依托于百度自研的產業級深度學習平臺飛槳(PaddlePaddle)打造,致力于為用戶提供一站式AI開發服務: AI大模型與行業大模型:文心平臺提供NLP、CV、跨模態、生物計算四大主流AI研究領域的多個基礎大模型,多個模型在技術層面實現突破創新,處于世界領先水平。其中,NLP領域的ERNIE3.0Zeus采用自回歸網絡和自編碼網絡,能夠兼顧自然語言理解和生成功能;CV領域的VIMER-UFO2.0使用超網絡結構,推理時僅需激活總參數量的1/30;ERNIE-ViLG2.0引入基于語言和圖像的知識增強算法,在文本圖像生成任務中的表現已經超越了OpenAI旗下的DALLE-2。文心平臺與各行業企業聯手打造行業大模型,目前已覆蓋能源、金融、航天、制造、傳媒、城市、社科、電影等8個領域。目前已有650余家知名企業宣布接入“文心一言”,涵蓋企業服務、金融IT、汽車、傳媒、教育、家電、金融等10余個行業。 一站式開發平臺與開發工具:開發平臺方面,文心面向專業知識有限的AI應用開發者提供零門檻平臺EasyDL,面向專業開發者提供全功能平臺BML。目前這兩個平臺均僅支持使用百度文心的云端算力,可采用公有云、私有化離線、軟硬一體等部署方式。開發工具方面,文心提供ERNIEKit自然語言處理開發工具及PaddleFleetX全流程開發套件。此外,現階段文心平臺還向開發者免費提供大模型API。 產品與社區:百度文心通過構建產品與社區經營,對外展示生成式模型的強大性能,以此吸引愛好者投入創作,進而構筑成熟的AIGC社區,可在實踐中探索AI商業化模式。目前除“文心一言”外,文心平臺提供產業級搜索系統“文心百中”、藝術創意輔助平臺“文心一格”,以及采用眾創模式的旸谷社區。 目前百度文心生成式語言大模型在參數規模、技術創新、應用落地方面均在國內同業中處于領先水平。3月16日起,“文心一言”首批用戶可通過邀請測試碼接入體驗,同時百度智能云將面向企業客戶開放“文心一言”API調用接口,有望進一步豐富百度AI生態,賦能更多行業伙伴。
自ChatGPT推出以來,國內學術界和科技企業相繼宣布或將推出類似機器人對話模型,有望推動大模型發展。2月7日,百度官宣“文心一言”。2月20日,復旦大學發布了類ChatGPT模型“MOSS”,并面向大眾公開邀請內測,國產大模型有望迎來爆發式增長。 需求和政策兩方面,合力推動AI產業增長。國內應用層面的需求推動AI產業的加速發展。根據IDC數據預測,2021年中國人工智能軟件及應用市場規模為51億美元,預計2026年將會達到211億美元。數據、算法、算力是AI發展的驅動力,其中數據是AI發展的基石,中國數據規模增速有望排名全球第一。政策方面,“十四五”規劃中提到“瞄準人工智能”,“聚焦人工智能關鍵算法”,加快推進“基礎算法”的“突破與迭代應用”;北京、上海、廣州等城市發布相關規劃。 頭部企業采取“模型+工具平臺+生態”三層共建模式,有助于業務的良性循環,也更容易借助長期積累形成競爭壁壘。大模型廠商主要包括百度(文心大模型)、騰訊(HunYuan大模型)、阿里(通義大模型)、商湯、華為(盤古大模型)等企業,也有智源研究院、中科院自動化所等研究機構,同時英偉達等芯片廠商也紛紛入局。大模型增強了AI技術的通用性,助力普惠AI的實現。未來,大模型有望于場景深度融合,配合專業工具和平臺支持應用落地,開放的生態來激發創新,形成良性循環。 技術發展有望促進生產效率提升,并進一步創造新的消費和需求,有利于文娛內容和互聯網行業。在AIGC和ChatGPT方面,我們建議持續關注技術發展和應用情況,把握技術催化和商業化落地帶來的投資機會:1)具備AIGC和ChatGPT的技術探索和應用的公司:百度集團-SW、商湯-W、萬興科技、拓爾思等;2)具有海量內容素材且具有AIGC探索布局的,圖片/文字/音樂/視頻內容及平臺公司騰訊控股,閱文集團、美圖公司、昆侖萬維、湯姆貓、神州泰岳、視覺中國、中文在線、漢儀股份、天娛數科、風語筑等。
AIGC空間廣闊,商業化落地持續推進
AIGC的落地痛點在于成本高昂的通用大模型與下游垂直應用場景需求的不匹配。ChatGPT熱度持續提升,一方面推動了科技巨頭持續加大AI投入,另一方面也直接帶動下游付費意愿提升,進一步加速AIGC應用落地和商業變現,AIGC產業迎來發展良機。 (1)從內容形態來看,AIGC應用包括文本、音頻、圖像、視頻、代碼、多模態等內容生成形式,根據紅衫資本預測,AIGC將首先在文本和代碼領域落地應用,隨后逐漸拓展至圖像和視頻領域。 (2)從應用價值來看,AIGC應用價值體現在降本增效、提升內容質量、增加內容多樣性、生成個性化內容等方面。在垂直領域,目前國內已有機器寫稿、對話式AI、報告生成等AIGC應用落地,技術價值主要在于替代人工實現降本增效。隨著科技巨頭的持續投入以及技術的迭代升級,AIGC技術應用場景進一步拓寬,技術價值也有望從將本增效向額外價值轉移。 AI賦能價值凸顯,AI應用大有可為 (1)AI+搜索:搜索是互聯網的流量入口,微軟、谷歌、百度均表示將率先將AI技術應用于搜索,未來有望重塑信息生成和呈現方式,成為新的流量入口。 (2)AI寫作:AI寫作可大幅提升效率,在具有較強規律性的結構化寫作方面具有豐富應用場景。目前已在辦公軟件、新聞媒體等專業應用場景商業化落地。 (3)AI對話:AI對話主要用于替代人類完成大量重復性、規則性對話任務,在金融、互聯網、運營商等擁有大量C端用戶的行業擁有廣闊應用前景。ChatGPT在多項測試中已經超過人類,將對話AI提升至新的高度,未來應用空間廣闊。 (4)AI翻譯:在AI技術支持下,機器翻譯效果持續優化,但在廣義理解層面仍面臨挑戰。相比專業搜索工具,ChatGPT具有更強的理解能力,在部分場景的翻譯表現優于谷歌翻譯和DeepL,表現驚艷。 (5)AI作畫:AI作畫可解決視覺內容創作門檻高、耗時長的痛點,對于內容創作的價值凸顯。根據6pen預測,未來五年10%-30%的圖片內容將由AI參與生成,預計2027年市場規模有望超過600億,空間廣闊。 (6)AI視頻:AI已經可以輔助完成視頻生成、替換、剪輯等多項任務,已在短視頻、AI修復等領域廣發應用,下游需求旺盛,未來應用潛力廣闊。
國產“ChatGPT”揚帆啟航。OpenAI的商業模式為API接口收費。我們認為此種商業模式具有“卡脖子”的風險,因此我國需要發展自主可控的“ChatGPT”。國產生態正在逐步繁榮,百度打響國產ChatGPT領域“第一槍”,其在算法、算力、數據、生態、平臺五方面皆有儲備;ChatGPT的競爭本質即大模型儲備競賽,大模型是人工智能發展的必然趨勢,也是輔助式人工智能向通用性人工智能轉變的堅實底座。大模型分為NLP(自然語言處理)、CV(計算機視覺)、多模態和科學計算四類。此外,中美科技巨頭已經開啟大模型儲備“軍備賽”。
百度文心一言,開啟國產ChatGPT新征程。百度是少有大模型語言訓練能力的公司,模型儲備方面,百度實現了全生態布局。1、NLP(自然語言處理),已經具備智能創作、摘要生成、問答、語義檢索、情感分析、信息抽取等能力,且可以讓機器人像人一樣具有邏輯且自由對話;2、CV(計算機視覺),可用于應用于圖像分類、目標檢測、語義分割等場景,此外還可以應用于文檔、卡證、票據等圖像文字識別和結構化理解;3、跨境大模型,可實現AI作畫、場景融合視覺常識推理、跨模態圖像檢索、跨模態文本檢索等多場景;4、生物計算,應用場景為蛋白結構預測和小分子藥物研發等領域。 百度為國產ChatGPT“領軍企業”,具有算力積累和生態優勢。平臺方面:擁有自主生態的百度百舸·AI異構計算平臺,具備高效率、多密度、高易用性、多場景部署、樂高式拼接等能力。算力方面:百度自身具有建設智能算力中心的實力,技術領先且自主可控,已有典型落地案例;服務器方面擁有自研的昆侖芯云服務器;芯片方面,昆侖芯AI芯片是百度自主研發的芯片,2代芯片已量產,具備算力支撐強、高速互聯等多重優勢。生態:百度大模型賦能千行百業,已有落地應用,合作廠商分別覆蓋科技、金融、航天、影視、汽車、電子制造等諸多產業。此外,我們推測ChatGPT有望成為搜索引擎的流量入口,百度搜索引擎有望借助文心一言大模型的能力重回巔峰。此外,目前國產科技巨頭已經開啟大模型的“軍備競賽”,因此,我們判斷,未來AI+有望賦能千行百業,具有AI+能力的廠商有望呈現“百花齊放”的態勢。
**刷爆的ChatGPT什么算法這么強!臺大李宏毅老師國語講解《ChatGPT (可能)是怎么煉成的 》! **
** **
** **
AIGC多模態跨模態應用逐漸成熟,市場空間廣闊。 廣義的AIGC指具備生成創造能力的AI技術,即生成式AI。可以基于訓練數據和生成算法模型,自主生成創造新的文本、圖像、音樂、視頻等內容。2022年被稱為AIGC元年,未來兼具大模型和多模態模型的AIGC模型有望成為新的技術平臺。據《中國AI數字商業產業展望2021-2025》報告,預測AI數字商業內容的市場規模將從2020年的40億元,增加到2025年的495億元。 ChatGPT產品歷經多代技術演進,產品與商業模式逐漸成熟。 ChatGPT是文本生成式AI,過去的傳統AI偏向于分析能力,主要基于已有內容;現在文本生成式AI基于底層Transformer模型,不斷訓練數據和迭代生成算法模型,歷經GPT-1、GPT-2、GPT-3,模型不斷升級,到ChatGPT的GPT3.5模型,已可以自主生成各種形式的內容。近期收費版ChatGPTPlus版本發布,AI商業化序幕逐漸拉開。 AI商業化落地在即,行業算法側和算力側投資機會有望超預期。 根據數據顯示,ChatGPT總算力消耗約為3640PF-Days,按國內的數據中心算力測算,需要7-8個數據中心才能支持其運行。各模態AI數據訓練到應用均需要算法和算力的加持,未來要想大規模應用,算法訓練和算力部署均需先行。
近期人工智能研究公司OpenAI推出的聊天機器人模型CHAT-GPT不斷出圈,據Semafor援引知情人士報道,微軟正商談以290 億美元估值,向OpenAI 投資100 億美元,一切均指向人工智能模型的新范式“生成式AI模型(Generative Model)”。此前的決策式AI模型(Discriminant Model)是根據已有數據進行分析、判斷、預測,典型應用為內容的智能推薦(短視頻)、自動駕駛等;而生成式AI更強調學習歸納后進行演繹創造,生成全新的內容,本質是對生產力的大幅度提升和創造,已催生了營銷、設計、建筑和內容領域的創造性工作,并開始在生命科學、醫療、制造、材料科學、媒體、娛樂、汽車、航空航天進行初步應用,為各個領域帶來巨大的生產力提升。
報告獲取方式
報告地址: //pan.quark.cn/s/7f8d7dd502f8