亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Jane Wang是DeepMind神經科學團隊的一名研究科學家,研究元強化學習和受神經科學啟發的人工智能代理。她的背景是物理、復雜系統、計算和認知神經科學。

Kevin Miller是DeepMind神經科學團隊的研究科學家,也是倫敦大學學院的博士后。他目前正在研究如何理解mice和機器的結構化強化學習。

Adam Marblestone是施密特期貨創新公司(Schmidt Futures innovation)的研究員,曾是DeepMind的研究科學家,此前他獲得了生物物理學博士學位,并在一家腦機接口公司工作。

Where Neuroscience Meets AI

地址: //sites.google.com/view/neurips-2020-tutorial-neurosci/home

大腦仍然是唯一已知的真正通用智能系統的例子。對人類和動物認知的研究已經揭示了一些關鍵的見解,如并行分布式處理、生物視覺和從獎賞信號中學習的想法,這些都極大影響了人工學習系統的設計。許多人工智能研究人員繼續將神經科學視為靈感和洞察力的來源。一個關鍵的困難是,神經科學是一個廣泛的、異質的研究領域,包括一系列令人困惑的子領域。在本教程中,我們將從整體上對神經科學進行廣泛的概述,同時重點關注兩個領域——計算認知神經科學和電路學習的神經科學——我們認為這兩個領域對今天的人工智能研究人員尤其相關。最后,我們將強調幾項正在進行的工作,這些工作試圖將神經科學領域的見解引入人工智能,反之亦然。

概要:

  • 概述 Introduction / background (15 min)
  • 認知神經科學 Cognitive neuroscience (30 min)
  • 學習電路與機制神經科學, Learning circuits and mechanistic neuroscience (30 min)
  • 交叉最新進展 Recent advancements at the intersection (25 min)
付費5元查看完整內容

相關內容

來自MILA,Aaron Courville的《自監督表示學習綜述》, Introduction II - Overview of self-supervised representation learning?

付費5元查看完整內容

因果學習

因果推理在許多領域都很重要,包括科學、決策制定和公共政策。確定因果關系的金標準方法使用隨機控制擾動實驗。然而,在許多情況下,這樣的實驗是昂貴的、耗時的或不可能的。從觀察數據中獲得因果信息是可替代的一種選擇,也就是說,從通過觀察感興趣系統獲得的數據中獲得而不使其受到干預。在這次演講中,我將討論從觀察數據中進行因果學習的方法,特別關注因果結構學習和變量選擇的結合,目的是估計因果效果。我們將用例子來說明這些概念。

付費5元查看完整內容

Google 研究科學家Mathieu Blondel在PSL大學的“機器學習的對偶性”課程材料。主題包括共軛函數,平滑技術,Fenchel對偶性,Fenchel-Young損失和塊對偶坐標上升算法。

//mblondel.org/teaching/duality-2020.pdf

付費5元查看完整內容

來自DeepMind研究人員Feryal Behbahani, Matt Hoffman 和 Bobak Shahriari講解的強化學習教程。

付費5元查看完整內容

來自DeepMind 的S. M. Ali Eslami · Irina Higgins · Danilo J. Rezende的ICML 2020教程-自監督學習,222頁ppt,非常干貨!

無標簽表示學習,也稱為無監督或自監督學習,正在取得重大進展。新的自監督學習方法在大規模基準測試中取得了接近甚至超過了完全監督技術的性能,如圖像分類。因此,無標簽表示學習最終開始解決現代深度學習中的一些主要挑戰。然而,為了繼續取得進步,系統地理解學習表示的性質以及產生這些表示的學習目標是很重要的。

付費5元查看完整內容

【導讀】DeepMind開設了一系列深度學習課程。本次課講述了深度學習計算機視覺。

繼上一講之后,DeepMind研究科學家Viorica Patraucean介紹了圖像分類之外的經典計算機視覺任務(目標檢測、語義分割、光流估計),并描述了每種任務的最新模型以及標準基準。她討論了視頻處理任務的類似模型,如動作識別、跟蹤和相關挑戰。她特別提到了最近提高視頻處理效率的工作,包括使用強化學習的元素。接下來,她介紹了單模態和多模態(vision+audio, visio+language)自監督學習的各種設置,在這些設置中,大規模學習是有益的。最后,Viorica討論了視覺中的開放問題,以及計算機視覺研究在構建智能代理這一更廣泛目標中的作用。

付費5元查看完整內容

在過去幾年里,注意力和記憶已經成為深度學習的兩個重要的新組成部分。本講座由DeepMind研究科學家Alex Graves講授現在廣泛使用的注意力機制,包括任何深度網絡中的內隱注意力,以及離散和可區分的變體的顯性注意力。然后討論了具有外部記憶的網絡,并解釋了注意力是如何為他們提供選擇性回憶的。它簡要地回顧了Transformer,一種特別成功的注意力網絡類型,最后看可變計算時間,這可以被視為一種形式的“注意力集中”。

地址:

//ua-cam.com/video/AIiwuClvH6k/deepmind-x-ucl-deep-learning-lectures-8-12-attention-and-memory-in-deep-learning.html

Alex Graves在愛丁堡大學(University of Edinburgh)完成了理論物理學的理學學士學位,在劍橋大學(University of Cambridge)完成了數學的第三部分,在IDSIA與尤爾根·施米德胡貝爾(Jurgen Schmidhuber)一起完成了人工智能博士學位,之后在慕尼黑工業大學(technology University of Munich)和杰夫·辛頓(Geoff Hinton)一起完成了博士后學位。他現在是DeepMind的一名研究科學家。他的貢獻包括用于序列標簽的連接主義時態分類算法,隨機梯度變分推理,神經圖靈機/可微分神經計算機架構,以及用于強化學習的A2C算法。

關于講座系列:

深度學習講座系列是DeepMind與UCL人工智能中心之間的合作。在過去的十年中,深度學習已發展成為領先的人工智能范例,使我們能夠以前所未有的準確性和規模從原始數據中學習復雜的功能。深度學習已應用于對象識別,語音識別,語音合成,預測,科學計算,控制等問題。由此產生的應用程序觸及我們在醫療保健和醫學研究,人機交互,通信,運輸,保護,制造以及人類努力的許多其他領域中的所有生活。認識到這一巨大影響,深度學習的先驅獲得了2019年圖靈獎,這是計算機領域的最高榮譽。

在本系列講座中,來自領先的AI研究實驗室DeepMind的研究科學家針對深度學習中的一系列令人興奮的主題進行了12次講座,內容涵蓋了通過圍繞記憶,注意力和生成建模的先進思想來訓練神經網絡的基礎知識,以及重要的 負責任的創新主題。

深度學習注意力與記憶機制

付費5元查看完整內容
北京阿比特科技有限公司