該項目建立在美國國家航空和航天局高級數字顧問合作技術(ADAPT)項目(前身為遠程建議和協助(RAA)工具包)的基礎上。開發 RAA 套件是為了填補禁止美軍隨同伙伴部隊行動的政策空白。ADAPT 將 RAA 技術從直接行動任務集擴展到所有潛在任務類型。NPS 研究小組建議開發 JOCTAK,這是一種統一的 TAK 解決方案,可匯總并顯示來自用戶和傳感器網絡的關鍵相關信息。與 ATAK 相似,JOCTAK 有可能在單個操作員層面顯示特定任務和傳感器信息,但也能匯總和即時分析來自整個作戰區域多個單元和傳感器的數據和信息。這種能力提供了作戰層面的 COP,有助于指揮官、參謀人員和戰術人員及時做出決策。除了將眾多信息流匯總到一個單一的綜合系統外,它還將遠程建議協助概念重新用于大規模殺傷性武器行動。集成的 TAK 系統將允許不屬于國防部或不在聯合行動中心的核專家和大規模殺傷性武器專家在應對大規模殺傷性武器行動時為美軍和伙伴部隊提供遠程建議和協助。
第二章回顧了重要的背景信息、指導條令以及對 TAK 及其以往使用情況的熟悉。第三章討論了 TAK 系統作為大規模殺傷性武器 C4I 系統的應用,包括一系列小故事,說明其對戰術級作戰人員和作戰級指揮的附加價值。第四章詳細介紹了為確定 ATAK 系統的能力差距而進行的迭代實驗過程,以確定在聯合作戰中心開發和擴大 TAK 的使用范圍需要做些什么。第四章還包含對開發 JOCTAK 的建議。第五章是結論,討論了在大規模殺傷性武器聯合信息與制造 C4I 解決方案總體框架下有關研究問題的發現。
當前作戰環境的特點是信息時代以及同級和近似同級對手的出現。野戰手冊(FM)3-0《作戰》針對這些模式轉變,引入了多域擴展戰場和陸軍的四種戰略角色--塑造、預防、進行大規模地面作戰和鞏固戰果。FM 3-0 在美國陸軍條令中首次正式提出了鞏固戰果和相關的鞏固區域。鞏固戰果的目的是使任何暫時的作戰成功得以持久,并為向合法當局過渡控制權創造穩定的環境條件。通過分析美國陸軍在二戰末期為被占領德國的過渡所發揮的歷史作用,以及當前的條令和面向未來的概念,提出了 18 項有關鞏固戰果的條令修改建議,涉及美國陸軍的行動、領導和任務指揮條令。其中四項建議的條令修改是引入全面的多領域鞏固區、強調意圖引導的程序控制、編纂虛擬和認知鞏固戰果,以及在條令中承認可能需要臨時軍政府。
像 GPT-3 這樣的大型語言模型 (LLM) 在國防領域有著廣泛的潛在應用。以下是LLM在國防相關領域的一些應用方式:
大型語言模型可用于識別社交媒體數據中可能與國家安全相關的模式和趨勢。例如,它們可用于監控社交媒體平臺,以發現動亂或政治不穩定的跡象。
大型語言模型還可用于分析各種來源的新聞文章,以識別新出現的威脅和趨勢。例如,它們可用于監控新聞文章,以發現恐怖活動或網絡攻擊的跡象。
大型語言模型還可用于分析政府報告和其他官方文件,以識別潛在威脅和趨勢。例如,它們可用于分析情報機構或軍事組織的報告,以識別新出現的威脅。
大型語言模型還可用于生成這些數據的報告和摘要,幫助決策者更輕松地理解信息。例如,它們可用于生成每日或每周報告,介紹可能與國家安全相關的新興威脅和趨勢。
地面戰斗單位應利用和加強機動作戰的作戰理念,將人機協作和人機結合概念化,以實現和利用更快的節奏、更多的機動選擇和對海軍陸戰隊的保護。
半人馬機動作戰的目的是探索海軍陸戰隊下一代地面作戰單元(GCE)如何利用人機協作(HM-C)和有人無人協同作戰(MUM-T)來實現機器人和自主系統的協同效益,從而提高海軍陸戰隊在戰場上的戰斗力。在古典希臘神話中,半人馬代表著 "一種擁有人的頭部、手臂和軀干,馬的身體和腿的生物"。與這種神話生物如何利用邊緣存在的好處類似,HM-C 和 MUM-T 反映了半人馬的各種表現形式。在這一構想中,新興的戰斗網絡通過利用自主性和狹義人工智能方面的商業進步,將人類的精華與機器的精華結合在一起,以實現相對于對手的比較優勢。由此產生的 "第五代地面作戰單元半人馬"(Centaurs for the Fifth-Generation Ground Combat Element)概念涉及海軍陸戰隊作戰概念中的軍種方向、海軍陸戰隊司令部提出的為 21 世紀重振機動作戰思維的任務,以及為 GCE 提供第五代能力的任務。探索這些方向的方法包括:對戰爭中的 "人馬 "進行文獻綜述;對 "UE CITY "行動進行歷史案例研究,以檢查 GCE 所特有的問題集;以及通過作戰決策游戲對最初的概念假設進行測試。這些工作為最終概念的形成提供了依據。
第五代地面作戰單元 "半人馬 "利用、加強并充當了重振機動作戰這一作戰理念的工具。最近的技術進步為取得相對優勢所提供的價值在于人機協同作戰,以提高人類作戰人員的效能,而不是取代他們。HM-C 加強了 GCE 創造時間優勢的能力,利用速度和時間作為武器。與作戰網絡連接的高性能計算、自主性和狹義人工智能有助于過濾大量數據中的噪音,以發現作戰環境中的相關線索、異常值和異常現象。這種機器輔助功能可幫助指揮官及其參謀人員確定敵方的方向,從而更快地做出與敵方或與作戰環境相關的競爭因素有關的正確決策。MUM-T 加強了全球指揮和控制中心創造空間優勢、利用敵方空隙和弱點的能力。無人系統可作為有人編隊的先頭部隊和側翼屏障,發現、固定和擾亂敵方編隊,而主力部隊則以速度、出其不意和集中果斷的行動來利用這些塑造行動。利用無人系統提供的戰術阻隔,可加強對配對有人編隊的保護。MUM-T 加強了 GCE 創造心理優勢的能力,將欺騙作為一種武器加以利用。多領域無人系統擴大了欺騙和誤導能力,以破壞敵方決策的速度和準確性。第五代地面作戰單元的 "半人馬 "并不會降低對陸戰隊空中地面特遣部隊(MAGTF)航空作戰單元或后勤作戰單元的需求或取代其價值。地面半人馬編隊是對 MAGTF 構建的補充,是聯合武器小組的擴展,旨在使敵方失去平衡,陷入無法取勝的困境。作為 "唯一能奪取和占領地形的 MAGTF 要素",第五代地面作戰要素應成為發展 21 世紀 MAGTF 聯合武器小組屬性的主要工作方向。
美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)利用高分辨率傳感器、實驗室儀器和軟件技術,開發了電力測量和分析工具。為支持這些傳感器的使用,開發了一套可擴展的軟件模塊,用戶界面只需一個網絡瀏覽器。ARL 開發的用于 "嵌入式研究系統的可視化和處理 "的軟件框架和模塊稱為 ARL-ViPERS。這種基于傳感器的軟件提供了一種方法,用于配置傳感器以及與傳感器產生的數據進行交互并使其可視化,而無需在終端用戶設備上安裝任何軟件。
美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的幾個傳感器系統原型建立在通用的模塊化數據采集、存儲、處理和通信硬件上,稱為 ARL 的自主實時電力測量和儀器系統(ARL-ARTEMIS)。ARL 的移動式無人值守地面傳感器 (ARL-MUGS) 和移動式功率計 (ARL-MPM) 就是其中的兩個例子(圖 1)。這些系統配備的軟件可用于傳感器配置,以及對電力 (EP) 系統收集的數據進行實時和后處理分析。ARL 開發的 "嵌入式研究系統可視化和處理 "軟件框架稱為 ARLViPERS。以下將 ARL-ARTEMIS 和 ARL-ViPERS 分別稱為 ARTEMIS 和 ViPERS。
ViPERS 包括嵌入式網絡應用程序(可通過用戶設備,如手機、平板電腦或個人電腦上的網絡瀏覽器訪問)和 Dataserver 應用程序(用于運行自定義處理代碼)。網絡應用程序和 Dataserver 都在傳感器上運行,共同提供用戶界面 (UI),方便用戶配置傳感器,并提供多種數據可視化工具,方便用戶進行 "邊緣 "數據分析。Dataserver 的主要職責是在后臺管理正在進行的數據處理任務,而網絡服務器則用于為用戶提供相應的用戶界面。Dataserver 可以看作是 ViPERS 的 "大腦",而網絡服務器則是 "臉面"。
所有需要的 ViPERS 軟件都在 ARL 傳感器硬件上運行;因此,用戶無需在用戶設備上安裝任何軟件。ViPERS 還考慮到了模塊化。它包括幾個用于 EP 分析的基礎模塊,用戶可以輕松擴展軟件,加入自己的模塊。用戶還可以上傳定制的處理代碼和可視化程序,這些程序將在傳感器上實時運行;詳見第 3.18 節。
本《ViPERS 用戶指南》逐步介紹了通過網絡應用程序向用戶提供的各項功能。第 2 部分提供了連接和使用 ViPERS 所需的基本信息。第 3 部分包括 ViPERS 網絡應用程序各模塊的詳細信息;第 4 部分提供 ViPERS 數據服務器的信息。有關添加新模塊和可用應用編程接口(APIs)的說明,請參閱配套的《ViPERS 實施指南》 和《ViPERS 編程手冊》。
ViPERS 軟件框架包括以下內容:
嵌入式網絡服務器,提供與傳感器交互的用戶界面;
Dataserver 應用程序,用于在傳感器后臺運行處理模塊;以及
用于長期數據存儲的嵌入式實時時間序列數據庫。用戶可將本節作為 ViPERS 的基本 "快速入門 "指南。
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
情報、監視和偵察(ISR)行動的目的是收集信息并將信息提供給操作人員,而操作人員則需要就戰區內的各種行動方案做出具體決策。可以肯定的是,ISR 行動是技術密集型的。但與此同時,ISR 行動也是一個非常以人為本的過程。盡管如此,在 ISR 概念開發和評估(CD&E)過程中卻很少甚至根本沒有進行人為因素(HF)研究。通過研究新的 ISR 技術和概念在各種作戰環境下對操作人員表現的影響,研究人員可以提供更加科學嚴謹的建議,為高層政策制定者和決策者提供有關未來 ISR 技術和能力的信息,這些技術和能力適用于所有 ISR 環境:空中、海面、地下和太空,貫穿國內、盟國和整個政府(WoG)的合作關系。因此,HF研究方法應成為任何 ISR CD&E 流程的組成部分,以便為 ISR 指揮系統各級的政策和決策者提供信息和建議。
北大西洋公約組織(NATO)研究與技術組織(RTO)人為因素與醫學(HFM)小組任務組(研究與技術組(RTG)-276 NATO RTG HFM-276)"人為因素與 ISR 概念開發與評估 "的成立是為了確定和了解對有效的 ISR 行動至關重要的HF問題。更確切地說,這項開創性工作的目標是 (1) 確定對有效的 ISR 行動至關重要的HF問題(如態勢感知 (SA)、工作量、組織結構、協調和協調機制、可視化、信任、信息共享和管理、領導力和決策);(2) 使用行為理論模型來制定我們的研究方法并理解我們的研究結果;(3) 就在 ISR CD&E 行動中使用和實施HF研究提出建議。
基于并擴展最初由北約 HFM-163 RTO 小組開發的軍事組織效能模型,北約 HFM RTG-276 小組的工作范圍是確定并了解對 ISR 行動至關重要的HF問題。為此,小組決定于2018年6月11日至2018年6月26日在德國Einsiedlerhof的美國空軍歐洲(USAFE)戰士準備中心(WPC)的 "北約2018聯合愿景"(UV18)試驗模擬內開展關于聯合ISR(JISR)作戰效能的研究。此外,小組還在 2019 年 5 月于芬蘭舉行的 "大膽探索 2019"(BQ19)演習中進行了類似研究。
北約 HFM-276 任務小組使用組織有效性模型制定了一套調查,以確定和了解對有效的 ISR 行動至關重要的HF問題。該模型的核心是由任務分配、收集、處理、利用和傳播(TCPED)組成的聯合監查制度流程。從這一模型和其他來源得出的數據收集計劃審視了一些HF問題在整個 ISR 行動中的作用:基本HF知識、態勢評估、工作量、組織結構、信任、信息共享、信息管理、領導力、文化、組織流程、組織靈活性、共同意識和責任、協調和協調機制、決策、能力、情報需求管理(IRM)、通信、元數據和應用系統。所有這些HF因素都將影響 ISR 的作戰概念,并影響操作人員的績效。此外,本文還總結了改進北約和非北約行動 ISR CD&E 流程的一些實際意義,重點是開發應納入 ISR CD&E 流程的HF研究方法。這種HF方法就像 ISR 概念開發的技術和程序質量控制部分。預計研究結果將有助于為 ISR 指揮系統各級的政策和決策者提供信息和建議,以加強北約 ISR 規劃、任務執行和能力發展方面的信息和決策優勢。預計研究結果還將有助于為 ISR 與其他聯合進程(如聯合目標定位)的整合提供信息,以確定當前與 ISR 有關的HF差距以及與其他進程的整合。
在本節中,我們將為監委會的HF行動提供一個高層次的理論框架。廣義上,理論可以理解為在一組邊界假設和約束條件下對概念間關系的陳述,因此我們對一般假設、約束條件和概念及其與我們框架的關系進行了劃分[1]。我們認為我們的理論框架由三個關鍵概念組成:1)監委會進程;2)各種HF變量;3)產出因素。本節關注的是這些概念之間的關系,以及它們之間關系的支配因素。各節詳細介紹了監委會進程的理論和分析、各種HF因素的影響及其對產出因素的影響。各節還深入介紹了與各小節相關的方法。
人們提出了不同的組織流程方法,如輸入-中介-輸出框架、輸入-中介-輸出-輸入框架以及受結構化啟發的流程框架[2, 3]。從廣義上講,這些方法既包括目的論和順序論的觀點,即假定有明確的目標來指導行動以產生特定的結果,也包括更具突發性的變革觀點,即人類在其中工作的結構會影響其他結構中的人類,并受到其他結構中人類的影響[4]。
我們認為,作為一個基本假設,在聯盟背景下開展的監委會聯合審查進程并不容易采用上述任何一種模式:相反,它是一個預先計劃和設計的順序進程與突發進程的混合體[5]。一方面,有正式定義的程序、理論、戰術、技術和流程(TTP),如《支持北約行動的聯合情報、監視和偵察程序》(AintP)和《作戰命令》(ORBAT);另一方面,也有包括特定節點在內的工作流程的實驗。這表明,我們的研究一方面要對 TTPs 的影響保持不可知論的觀點,另一方面要對執行聯合監查制度時的行動和對這些 TTPs 的看法保持不可知論的觀點。因此,我們的理論框架包含兩種相互作用的兵力:計劃行動和突發行動。計劃中的監委會審查和執行中的監委會審查之間的區別既體現在實驗計劃和實際實驗/演習執行之間的對立,也體現在計劃中的監委會審查行動和執行中的監委會審查行動之間的緊張關系,執行有時甚至是動態的。我們認為,計劃與執行動態之間的矛盾對于理解HF如何影響聯合監委會至關重要。應建立人類決策和協作機制,確保北約的聯合監委會從預先計劃順利過渡到動態執行。
更具體地說,我們的模型試圖將聯合監委會合作的線性和非線性軌跡結合起來。從順序計劃的角度來看,該模型的核心是聯合監委會流程,其中的 TCPED 階段可視為構成伯克等人[6]團隊適應模型的不同階段: SA、計劃制定、計劃執行和團隊學習(可以是評估收集處理、利用和傳播(CPED)是否有助于解決任務)(見下圖 1)。單個 PED 單元的這種相對線性的團隊流程也應結合其在多團隊系統中與其他團隊(單元)的協作來看待,即多個團隊為實現共同目標而集成工作[7]。涉及多個 PED 單元的聯合 PED 對于確保收集必要數據以獲取可采取行動的情報尤為重要。我們預計,由于不同的原因,計劃中的監委會審查流程可能并不總是按照預期的計劃方式可行。例如,從任務的角度來看:一個 PED 單元在執行任務期間的實際工作量可能會嚴重影響其參與整個聯盟聯合監 督和報告進程的能力。北約的事先規劃可在一定程度上減少這一因素,但不能完全消除不確定性。其他一些因素也可能對事先規劃的聯合監查制度進程構成挑戰:如各 PED 單元的動機、經驗、對任務的不同理解程度等。因此,我們認為HF的影響不僅與在單個小組內實現聯合監委會進程的總體目標有先后關系,而且在很大程度上以其他無意方式影響了北約的整體聯合監委會進程。另一方面,所述的監委會進程不一定會因這些障礙而改變,因為這可能取決于多個國家政策、執行和評估小組內部和之間協調和信任的有效性。
在不同的章節中,我們闡述了個人和人際因素、組織因素、文化因素、任務因素、系統因素和團隊因素如何影響聯合監委會。這些輸入因素預計會影響監委會的程序及其在監委會內部以及向外部組織要素(如聯合目標或情報界)提供可用結果的能力,進而影響諸如共享情況意識、數據分析、信息共享和決策以及任務完成的準確性和速度等輸出因素。圖 1 描繪了輸入和輸出因素之間的擬議聯系;該圖概述了本報告研究的所有因素。藍色和帶下劃線的因素是經過實證研究的因素。在隨后的章節中會有更詳細的理論介紹,其中還包括更詳細解釋一般模型中提出的各因素之間擬議相互關系的模型。
自1993年以來,ISI一直從事國防領域的工作,并為陸上、空中和海上應用提供交鑰匙的高質量操作和培訓系統。
專門從事以下方面的規范、設計、開發、集成、安裝、測試和后續支持。
戰術數據鏈接(北約和美國,即鏈接11 A/B,鏈接16,IJMS,JREAP,ATDL-1,鏈接22)。
國家和定制的戰術數據鏈路解決方案
戰術數據鏈規劃和設計工具
任務和戰術C2/C3系統
C2/C3系統的培訓、測試和模擬
監視和偵查應用
開發過程和質量保證已通過ISO 9001:2008認證
按照符合美國防部MIL-STD-498和IEEE12207標準的程序開發和整合硬件和軟件。
系統基于最新的COTS組件,符合苛刻的軍事、工業和環境標準。
美國國防科學委員會博弈、演習、建模和模擬(GEMS)工作組的任務是審查國防部使用GEMS工具的現狀,并提出改進GEMS工具的建議,以充分發揮其在國防部企業中從行政到作戰的潛力。GEMS工具和能力為測試新想法和概念、設計新系統并制作原型、模擬軍事行動、進行地緣政治分析以及提供培訓以提高作戰人員的準備和表現提供了具有成本效益的創新方法。工作隊認為,在當今與大國競爭回歸有關的高度競爭和動態戰略環境中,這種能力越來越重要,技術進步使全球環境監測系統的能力比過去更加強大和有用。
雖然美國防部有一些GEMS的卓越和創新,但特別工作組注意到,國防部缺乏必要的整合、資源和人才來獲得GEMS的全部利益。尤其缺乏的是將GEMS的洞察力有效地整合到高級領導對國防需求和采購項目的決策中的機制。
鑒于GEMS工具的廣泛性以及它們的不同適用性,特別工作組選擇將重點放在五個廣泛的應用領域(數字工程、訓練、實驗和演習、行動建模和分析以及戰略博弈),如圖ExS-1所示,以及它們之間的相互依賴關系。
圖ExS-1:GEMS應用領域
任務組在這五個應用領域以及兩個交叉主題領域提出了建議:基于技術的推動因素和GEMS治理。
數字工程:美國防部正在努力推進數字工程(DE)。例如,各軍種內部一直在推動使用數字工程來考慮新的系統概念;但廣泛采用數字工程仍然是一項正在進行的工作。特別工作組注意到,已經采用嚴格的數字工程的組織獲得了可衡量的好處,并強烈建議在整個企業中加速采用數字工程。此外,這種能力為國防部全面利用GEMS工具和有效地大規模生產作戰能力提供了必要的基礎。特別工作組認為,國防部全面采用DE并不要求對采購過程進行實質性的改變;然而,它將需要一些調整,特別是國防部的評估和審查過程,以便在虛擬測試中獲得DE的全部附加值。另外,虛擬測試依賴于嚴格的紀律,在所有工程活動中使用經過驗證的工具和來自權威代表的數據。這意味著國防部的工程師必須熟練掌握DE的方法、紀律、工具和技術。扶持和支持這支隊伍將需要國防部投資于必要的信息基礎設施,特別是在一系列工程任務中實現更大的自動化。
培訓:各軍事部門的培訓能力長期以來一直受益于GEMS工具和創新的使用,這些工具和創新幫助刺激了幾十年前開始的培訓革命,對美國的軍事優勢做出了重大貢獻。特別工作組注意到,在模擬、建模、虛擬現實(VR)和人工智能(AI)的推動下,軍事部門的第二次訓練革命正在進行中,但它注意到聯合部隊的訓練需要大幅改進。雖然作戰司令部(CCMD)努力保持聯合訓練,但現實情況是,大多數CCMD演習是由對特定場景最負責的軍事部門領導的--因此訓練具有特定軍種的味道。為了讓潛在的對手面臨多種困境,并使他們的計劃變得復雜,聯合部隊必須進行訓練,以便在所有領域內進行協作和同時作戰。為此,特別工作組建議集中精力激勵各軍事部門使其訓練更加聯合--更加代表 "我們將如何作戰",確保各軍事部門之間必要的網絡連接以支持聯合訓練,并建立強大的全領域聯合訓練能力。工作隊還建議不斷努力加強其分布式訓練能力,確定具體的模擬訓練,在主要的訓練中心提供高質量的訓練,但可以從家庭駐地進行操作。與其他GEMS能力一樣,實現這種聯合和全域訓練的能力將需要持續的行政級別領導和多年的充足資源。
實驗和演習:美國防戰略(NDS)委員會報告呼吁 "通過實驗、演習和訓練驗證新的作戰概念以實現戰略優勢"。特別工作組贊同這一呼吁,并得出結論,國防部必須在聯合軍事部門/合作伙伴層面重振基于概念的實驗,以應對同行競爭對手帶來的長期挑戰。特別工作組注意到,聯合概念實驗在國防部已經成為一門失傳的藝術。特別工作組建議重振這種能力,采用一種基于運動的方法,更迅速地提供新的作戰方式和新的能力來應對當前和新出現的作戰挑戰。特別工作組建議采用運動式方法,產生一個反饋循環,反復完善概念和能力,在這個過程中盡早剔除失敗,同時將完善的概念和能力反饋給下一階段的實驗。特別工作組進一步建議,將聯合作戰問題和想法注入正在進行的軍種實驗中;國防部應在軍事部門之外贊助聯合概念實驗;并為軍種和CCMD(特別是美國印太司令部(USINDOPACOM)和美國歐洲司令部(USEUCOM))的實驗運動和演習提供額外支持。
行動建模和分析:國防部目前的行動模型被用來為投資決策提供信息,特別是在各軍事部門之間;然而,這些模型在關鍵領域存在不足。特別是,它們沒有有效地解決國防部所處的多領域安全環境的復雜性,而且它們沒有能力提供快速分析以告知決策者。特別工作組還發現,國防部領導層對行動建模的支持和信心不一。因此,特別工作組的建議側重于發展補充性戰役分析,更加強調及時、簡單、定性/定量的模型,同時也投資于下一代行動建模能力,利用包括人工智能和機器學習領域的技術進步。需要提高這些能力,以灌輸對這些工具的有用性的信心,為投資決策提供信息。工作隊還建議在發展基于情景規劃的聯合作戰概念(CONOPS)方面做出更有力的努力,以推動戰役建模和分析,并為資源分配提供依據。
戰略博弈:美國在冷戰期間很好地利用了戰略博弈技術--在一個長期的分析區間內進行 "移動-反移動 "評估。最近的努力集中在眼前的威脅上(例如,恐怖主義),戰略博弈已經成為分析當今更大和更長期挑戰的一個很少使用的工具。現在,美國面臨著先進的大國對手,其技術能力和經濟實力可以與我們匹敵。為了應對這些挑戰,國防部需要重振其戰略博弈。工具的好壞只取決于使用它們的參與者。有效的戰略博弈將需要高層領導認真參與博弈本身。特別工作組建議利用新的技術和分析發展來重建戰略博弈能力,以更好地了解地緣政治的變化、對手的目標以及對手在大國競爭時代對美國行動和舉措的潛在反應。特別工作組指出,在開發新的博弈工具方面存在利用技術進步的機會--包括社會、金融和通信網絡的算法分析、因子樹、定量建模和分布式博弈技術,以更有效地支持戰略博弈。特別工作組還承認,與大國對手的有效競爭將需要一個整體的政府方法,國防部應率先將戰略博弈擴展到美國政府的相關部門。
基于技術的促進因素:雖然GEMS工具受益于許多領域的技術進步(如不斷提高的計算能力、人工智能/機器學習),但特別工作組重點關注兩個相關技術--游戲引擎和合成環境。商業化的游戲引擎可以加速GEMS工具的開發,強大的合成環境可以提高數字模型的效用。特別工作組注意到,國防部的一些組織已經在使用這些技術,但主要是以臨時的方式使用。因此,建議的重點是:建立一個基礎設施,以實現和激勵重復使用,從而在降低成本的同時加快進展;確保承包商在產品采購(或重大升級)期間建立的符合要求的合成環境可供整個部門重復使用。采用更好的數據分析方法來生成大規模的事后報告,將有助于從游戲、實驗和演習以及原型設計中獲得最大價值。
GEMS管理:特別工作組注意到,雖然工業界的成功案例表明,需要持續的、自上而下的領導和管理來實現變革,并實現GEMS工具的潛在效益,但國防部的管理結構并沒有促進整個企業的做法。鑒于整個國防部顯然需要進行文化和技術變革,必須建立一個更加協調的管理結構。這一領域的建議集中在促進GEMS互操作性和可重復使用性的行動上,以及建立一個由高級領導人領導的治理結構,并為指導國防部的建模和仿真(M&S)企業提供適當的權力和資源。
本報告中的大多數建議是文化和技術轉型的起點,如果美國防部要從GEMS工具中獲得全部利益,就必須進行這種轉型。雖然特別工作組對已經開展的GEMS行動表示贊賞,但結論是,如果美國防部要充分利用GEMS在上述應用領域潛在的改變博弈規則的力量,全企業的努力是必不可少的。
在這個大國競爭的新時代,美國防部(和美國政府)面臨著復雜的選擇,需要有分析性的選擇;對決策速度和敏捷性的需求從未如此迫切。在這方面,特別工作組的結論是,國防部必須大幅提高其全球環境監測系統的能力,以跟上其競爭對手的步伐并有效地應對威脅--今天和未來幾年。要做到這一點,需要整個企業的文化變革和技術變革。在美國今天所處的高度競爭和動態的國家安全環境中,需要一個強大的GEMS工具箱來為國防部的決策提供信息。然而,如果國防部要實現GEMS的潛力,該部的高層領導必須負責提供愿景、支持和持續的資源,以實現所需的變革。本報告為國防部提供了一個路線圖,以充分利用GEMS工具,實現更好的決策、更智能的演習和實驗,并最終實現更強大的軍事力量。
為了支持未來的多域作戰分析,美國DEVCOM分析中心(DAC)正在探索如何在陸軍的作戰模擬中體現天基情報、監視和偵察(ISR)資產的貢獻。DAC正在使用基于能力的戰術分析庫和模擬框架(FRACTALS)作為方法開發的試驗基礎。用于預測衛星軌道路徑簡化一般擾動的4種算法已經被納入FRACTALS。本報告的重點是來自商業衛星群的圖像產品,其分辨率為1米或更低。報告介紹了預測分辨率與傳感器特性、傾斜范圍(包括地球曲率)和觀察角度的關系的方法。還討論了在不同分辨率下可以感知的例子。
在2021年建模與仿真(M&S)論壇期間,空間情報、監視和偵察(ISR)建模被確定為當前/近期的建模差距。美國陸軍作戰能力發展司令部(DEVCOM)分析中心(DAC)提交了一份陸軍M&S企業能力差距白皮書(Harclerode, 2021),描述了幫助填補這一差距的行動方案。陸軍建模和仿真辦公室已經資助DAC開發方法,以代表商業、國家和軍事空間和低地球軌道資產的性能及其對聯合作戰的影響,并在基于能力的戰術分析庫和模擬框架(FRACTALS)內進行測試實施。
FRACTALS是DAC開發的一個仿真框架,它提供了通用的結構 "構件",用于模擬、仿真和評估ISR系統在戰術級任務和工作中的性能。FRACTALS作為DAC開發的各種ISR性能方法的測試平臺,將文件或數據被納入部隊的模擬中。FRACTALS還作為DAC的一個分析工具,在戰術環境中對ISR系統進行性能分析比較。
這項工作需要在一定程度上體現衛星飛行器(高度、軌跡和運動學)、傳感器有效載荷(光電[EO]、紅外、合成孔徑雷達和信號情報)、網絡、控制系統、地面站(時間線、通信、處理、利用和傳播)、終端用戶以及連接它們的過程和行為。本報告描述了DAC為支持這一工作所做的一些基礎工作,重點是可見光波段相機圖像。
美國防部副部長(DSD)Kathleen Hicks于2022年3月14日簽署了國防部JADC2實施計劃。
實施計劃有5條工作路線和多個子任務。
美國國防信息系統局(DISA)是JADC2工作中多個子任務的牽頭單位或共同牽頭單位。
多個數據相關活動
全球部隊管理能力的現代化
電磁波譜企業架構和電磁戰管理(EMBM)。
零信任
身份認證和訪問管理(ICAM)參考設計
分布式和共享的開發環境
網絡現代化和傳輸能力
多個任務伙伴環境倡議