地面戰斗單位應利用和加強機動作戰的作戰理念,將人機協作和人機結合概念化,以實現和利用更快的節奏、更多的機動選擇和對海軍陸戰隊的保護。
半人馬機動作戰的目的是探索海軍陸戰隊下一代地面作戰單元(GCE)如何利用人機協作(HM-C)和有人無人協同作戰(MUM-T)來實現機器人和自主系統的協同效益,從而提高海軍陸戰隊在戰場上的戰斗力。在古典希臘神話中,半人馬代表著 "一種擁有人的頭部、手臂和軀干,馬的身體和腿的生物"。與這種神話生物如何利用邊緣存在的好處類似,HM-C 和 MUM-T 反映了半人馬的各種表現形式。在這一構想中,新興的戰斗網絡通過利用自主性和狹義人工智能方面的商業進步,將人類的精華與機器的精華結合在一起,以實現相對于對手的比較優勢。由此產生的 "第五代地面作戰單元半人馬"(Centaurs for the Fifth-Generation Ground Combat Element)概念涉及海軍陸戰隊作戰概念中的軍種方向、海軍陸戰隊司令部提出的為 21 世紀重振機動作戰思維的任務,以及為 GCE 提供第五代能力的任務。探索這些方向的方法包括:對戰爭中的 "人馬 "進行文獻綜述;對 "UE CITY "行動進行歷史案例研究,以檢查 GCE 所特有的問題集;以及通過作戰決策游戲對最初的概念假設進行測試。這些工作為最終概念的形成提供了依據。
第五代地面作戰單元 "半人馬 "利用、加強并充當了重振機動作戰這一作戰理念的工具。最近的技術進步為取得相對優勢所提供的價值在于人機協同作戰,以提高人類作戰人員的效能,而不是取代他們。HM-C 加強了 GCE 創造時間優勢的能力,利用速度和時間作為武器。與作戰網絡連接的高性能計算、自主性和狹義人工智能有助于過濾大量數據中的噪音,以發現作戰環境中的相關線索、異常值和異常現象。這種機器輔助功能可幫助指揮官及其參謀人員確定敵方的方向,從而更快地做出與敵方或與作戰環境相關的競爭因素有關的正確決策。MUM-T 加強了全球指揮和控制中心創造空間優勢、利用敵方空隙和弱點的能力。無人系統可作為有人編隊的先頭部隊和側翼屏障,發現、固定和擾亂敵方編隊,而主力部隊則以速度、出其不意和集中果斷的行動來利用這些塑造行動。利用無人系統提供的戰術阻隔,可加強對配對有人編隊的保護。MUM-T 加強了 GCE 創造心理優勢的能力,將欺騙作為一種武器加以利用。多領域無人系統擴大了欺騙和誤導能力,以破壞敵方決策的速度和準確性。第五代地面作戰單元的 "半人馬 "并不會降低對陸戰隊空中地面特遣部隊(MAGTF)航空作戰單元或后勤作戰單元的需求或取代其價值。地面半人馬編隊是對 MAGTF 構建的補充,是聯合武器小組的擴展,旨在使敵方失去平衡,陷入無法取勝的困境。作為 "唯一能奪取和占領地形的 MAGTF 要素",第五代地面作戰要素應成為發展 21 世紀 MAGTF 聯合武器小組屬性的主要工作方向。
為了在分布式行動中取得成功,本文建議美空軍特別調查辦公室(OSI)反情報(CI)兵力必須盡量減少 "冷啟動",在危機或沖突前的競爭階段建立必要的關系;加強與將要支持的作戰部隊的聯系;并為自己接受分布式作戰模式。
由于反介入/區域拒止(A2/AD)作戰,特別是遠程精確火力的發展和擴散,空軍已經認識到其目前以庇護所為基礎的作戰結構是無法生存的。也就是說,依賴潛在敵對武器交戰區(WEZ)內的主要作戰基地(MOB)將極易受到遠程精確火力的攻擊,并有可能在危機或沖突期間無法產生戰斗空中力量。2018 年《國防戰略》強調需要動態兵力部署(DFE),以可擴展的方式優先發揮美國的作戰優勢。動態兵力部署通過美國兵力提供作戰不可預測性,改變對手的計算,迫使對手陷入不利境地。敏捷作戰部署(ACE)概念是美國空軍解決方案的一部分。ACE 是一種作戰演習計劃,旨在遠離主要作戰基地生成作戰空中力量。特別調查辦公室(OSI)目前的設置是為了向兵力保護提供反情報(CI)支持,同時在敵對和允許的環境下在作戰基地開展反威脅行動,并在這方面有很好的實踐經驗。為了向未來的 ACE 戰斗行動提供有效的 CI 支持,OSI 必須采取一種跨越競爭連續性的方法,在競爭階段建立威脅圖景和關系,并在危機和沖突場景中迅速執行 CI 行動。
OSI的分布式作戰(ACE)方法必須包括在潛在部署地點建立關系、線人網絡和實地情報情況;擴大參與單位一級的ACE演習;探索與部署的作戰單位建立直接支持關系的可能性;接受OSI的分布式行動;擴大OSI代理任務的范圍。
自 1987 年以來,"任務式指揮訓練計劃"(MCTP)已為美國陸軍各軍團、師、軍種司令部以及整個作戰部隊的功能/多功能旅提供了世界一流的集體訓練機會。在過去六年中,MCTP 的重點是讓陸軍兵力做好準備,在大規模作戰行動(LSCO)中與自由思想、同級威脅的敵對部隊作戰并取得勝利。
在 2021 財年(FY21)的剩余時間里,陸軍領導人面臨著在 COVID-19 限制性環境中進行訓練的挑戰。在 21 財年后半期,MCTP 監督執行了另外三次作戰演習。其中包括 21-4 號作戰演習,這是 MCTP 歷史上規模最大的多國互操作性演習。21-4 號作戰演習對互操作性系統提出了挑戰,因為任務伙伴環境為美國陸軍軍團、陸軍師以及來自英國第三師和法國第三師的北大西洋公約組織(NATO)盟國提供了支持。
本出版物中的信息是 MCTP 在 LSCO 環境下陸軍訓練觀察結果的縮影。這些觀察結果由經驗豐富的軍官、士官和一級準尉組成的合作小組與高素質專家高級指導員(HQE-SMs)共同撰寫。
無人機(UAVs)在軍事領域的應用已經非常成熟,在現代戰爭中具有巨大優勢。使用無人機蜂群的概念已經討論了二十多年,但現在以色列國防兵力首次使用了真正意義上的無人機蜂群系統。無人機蜂群沒有確切的定義,但有人提出它應滿足以下三個要求。蜂群的人為控制應該是有限的,蜂群中的代理數量至少應該是三個,其合作執行共同的任務。控制多架自主無人機的復雜性帶來了如何利用作戰員的認知和戰術能力來控制蜂群以有效執行軍事偵察任務的問題。使用行為樹作為控制結構的方法源自之前在蜂群系統方面的研究。行為樹是一種組織自主系統行動并對其進行優先排序的結構化方法。行為樹類似于有限狀態機(FSM),具有模塊化、反應靈敏、可讀性強等優點。在游戲引擎 Unity 中創建并模擬了三種不同的行為樹,其復雜程度不斷增加。我們還創建了第四棵更為真實的行為樹,并以此為基礎討論了使用行為樹與之前工作的優缺點。使用行為樹作為創建蜂群的統一結構,將操作員的戰術能力與自主蜂群的力量整合在一起,似乎大有可為。我建議將所提出的使用行為樹的方法用作討論蜂群所需的功能的平臺,并為作戰員和工程師創建蜂群應如何運作的共同愿景。
圖 A.2. 用于邏輯模擬的第三行為樹和預期目標的圖形表示。
無人駕駛飛行器的熱度空前高漲。歷史上,這些飛行器只能用于軍事領域,如今,它們在公共領域有了新的用途。隨著技術的不斷成熟和普及,無人機的應用范圍也在不斷擴大。"蜂群 "和 "蜂群機器人 "的概念并不新鮮,但直到現在,支持這一概念的技術還沒有出現。關于什么是機器人蜂群,目前還沒有確切的定義,但 R. Arnold 等人[1]提出,機器人蜂群需要滿足三個要求。一個蜂群應受到有限的人為控制,蜂群中的機器人數量至少應為三個,蜂群中的機器人應合作執行共同的任務。
支持無人機群的硬件已經具備,但如何控制無人機群還有許多問題有待解決。本碩士論文旨在研究如何利用操作員的認知和戰術能力來控制蜂群,從而有效地執行軍事偵察任務。這項工作著眼于如何將人類操作員與自主蜂群整合在一起,以及如何對如何做到這一點進行高層次的描述。
使用所謂的行為樹來控制蜂群的方法是一種有趣的方法,我們對此進行了研究,并創建了三個模擬來進行測試。此外,還對照以前的工作對行為樹方法進行了評估,以突出其優缺點。此外,還就如何在創建蜂群控制器時使用行為樹提出了建議。
本論文的第一章包括引言,介紹了該領域的前人工作,并進一步描述了問題。第二章和第三章介紹了行為樹和執行偵察任務背后的理論。第四章研究了使用行為樹控制無人機群的方法。第五章總結了這項工作,并介紹了可能有意義的未來工作。
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
自主機動的戰術行為(TBAM)合作研究聯盟(CRA)的目標是為小型自主智能體團體開發協調行為,以便在復雜軍事相關環境的現實模擬中執行理論和新的戰術機動。
執行者開發了新的技術來學習以及展示在復雜地形的現實模擬中的協調機動模型,如森林/叢林、起伏的沙漠/草原、流域/濕地和農村環境(有邊界圍欄的田地、稀疏的道路網絡、間歇性的流域和森林地區)。地面機器人小組表現出的協調行為應該找到與軍事有關的路線,最大限度地提高掩護和隱蔽性,并像對手即將接觸一樣進行機動。在沒有環境掩護,但任務需要穿越的地區,團隊成員應該為其前進的隊友提供掩護。
TBAM CRA是一個6.1基礎研究計劃。它由一系列兩年期的沖刺工作和年度計劃審查組成。每個兩年的沖刺主題都集中在解決一組不同的科學領域,這將支持與內部DEVCOM ARL主題專家進行更高的技術準備水平(TRL)研究。第一個兩年沖刺課題是 "復雜地形下的協調和對抗性戰術演習",其作戰方案名為 "運動到接觸"。在這種情況下,與對手陣地的接觸是一個持續關注的問題--在某些情況下,應該通過利用地形特征和掩體來避免這種接觸;在其他任務中,應該通過協調機動--分布式系統的同步行動--以戰術上的超越姿態迎接對手陣地。
2018年,TRADOC發布了《多域作戰中的美國陸軍(2028年)》,TP 525-3-1。眾所周知,MDO是陸軍的作戰概念,旨在威懾并在必要時在戰斗中擊敗有能力和實力挑戰美國的對手,在所有領域和每個戰爭要素中進行對等戰爭。盡管戰爭的性質、原因和目標在歷史上保持不變,但21世紀的信息時代戰爭的開展在許多極其重要的方面不同于20世紀的機械化戰爭,美國軍隊,特別是美國陸軍必須改變以應對這些問題。最明顯的區別之一是和平與戰爭的模糊,MDO是第一個包括從和平競爭到武裝沖突的全部沖突的陸軍作戰概念,從而解決了這個問題。雖然兩者在過渡時期的區別是模糊的,但在MDO環境下的大規模作戰行動本身就是與眾不同的。
以下概念,即《美國陸軍多域作戰機動概念(2028-2040年)》,描述了陸軍在多域作戰戰場上的大規模作戰行動中如何進行機動。盡管它涉及到機動在競爭中的作用,但這一概念主要集中在陸軍如何在梯隊中作戰,以贏得與同行競爭者的戰斗。雖然看起來是 "進攻"性質的,但不能忘記,威懾的首要前提是在戰斗中獲勝的能力是毋庸置疑的。這一概念描述了陸軍將如何排兵布陣以克服對手的對峙,并深入細致地擊敗敵人的戰斗編隊。機動概念牢牢地嵌套在MDO中,但也在MDO的基礎上進行了擴展,包括兩年的全球作戰經驗,以及機構研究、兵棋推演和實驗。
有幾個關鍵的想法支撐并促成了這個概念。機動同時發生在師、軍團和更高級別的每個梯隊。機動發生在競爭和恢復競爭的過程中,而不僅僅是武裝沖突。在競爭中,我們通過機動來獲得優勢地位,塑造安全環境,支持區域安全,并能迅速過渡到武裝沖突。在武裝沖突中,我們通過機動來摧毀或擊敗敵軍,控制土地區域和資源,并保護民眾。這一概念描述了戰役,其設計必須包括所有領域的所有梯隊。
一個概念是變革的起點。它是變革過程的開始,而不是其結束。2018年發布的MDO啟動了一系列的研究、兵棋推演和實驗,從而形成了這個機動概念,并描述了在梯隊中進行的具體作戰功能。在這個概念之后,必須在未來和概念中心以及卓越功能中心內進一步努力,以確定所有的作戰功能,而不僅僅是機動,如何整合以在每個梯隊的MDO戰斗中取得成功。同時,這個概念應該在作戰部隊中啟動探索,以發展戰術、技術和程序(TTP),從而使MDO的機動性得以實現。正是作戰部隊和體制內的軍隊一起努力實現本概念中所描述的規則,將確保美國陸軍仍然是世界上最有統治力的陸軍。
圖:多域作戰中的機動
歷史。這本新的美國陸軍未來司令部(AFC)小冊子介紹了陸軍如何描述2028-2040年的機動功能的概念。這個概念與《美國陸軍旅級戰斗隊跨域機動概念(2028-2040年)》一起取代了2017年2月的TRADOC Pam 525-3-5《美國陸軍行動和機動功能概念》。
摘要。這一概念描述了陸軍部隊如何在動態和擴大的作戰環境中進行機動,包括有爭議的戰場和領域,綜合對手的防御與對峙,作戰和戰略威懾的挑戰,以及多國和政府合作。陸軍部隊在不可預測的作戰環境中面對高度致命的對手,這與新的作戰環境相結合,為軍事問題提供了參考,以確定陸軍部隊如何取得相對優勢地位并產生超額效果。中心思想是計算來自所有領域的多軍種同時匯合的成功,并促進加強聯合和作戰指揮與控制、分層機動和決定性的戰役。
適用性。本概念適用于陸軍部所有發展理論、組織、訓練、物資、領導和教育、人員、設施和政策能力的活動。這一概念指導實驗和部隊發展,并支持聯合能力整合和發展系統的進程。它還支持《陸軍未來司令部概念和能力指南》中描述的陸軍能力發展過程。當與陸軍概念框架的其他內容發生沖突時,本文件具有優先權。
目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。
人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。
隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。
論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略。
信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。
圖1. AI-AMD系統框架圖。
這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。
圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。
圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。
基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。
關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。
圖3. 建議的信任因素
圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。
圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
美國缺乏一套專門的人工智能(AI)戰爭的理論。這導致了在戰爭的作戰層面上缺乏對人工智能影響的討論。人工智能的定義通常采用技術視角,不考慮對作戰藝術的影響。提議的作戰藝術的新要素 "抓手(Grip)"解釋了人工智能和人類在兩個方面的基本關系:自主性和角色交換。“抓手”為人工智能戰爭的理論奠定了基礎,除了揭示改變任務指揮理論的必要性外,還提出了作戰的假設。美國空軍陸戰隊的發展以及由此產生的戰爭作戰水平(和作戰藝術)在歷史上有類似的案例,說明關鍵假設如何影響戰場的可視化。去除“人在回路中”的人工智能戰爭的假設,揭示了需要一種新的作戰藝術元素來安排部隊的時間、空間和目的,此外,美國陸軍任務指揮理論需要調整,以使指揮官能夠在各種形式的控制之間移動。
“機器人和人工智能可以從根本上改變戰爭的性質......誰先到達那里,誰就能主宰戰場。”- 美國陸軍部長馬克-埃斯佩爾博士,2018年
預計人工智能(AI)將極大地改變21世紀的戰爭特征。人工智能的潛在應用只受到想象力和公共政策的限制。人工智能擁有縮短決策周期的潛力,超過了人類的理論極限。人工智能也有望執行人類、機器和混合編隊的指揮和控制功能。人工智能在自主武器系統(AWS)中的潛力同樣是無限的:分布式制造、蜂群和小型化的先進傳感器為未來的指揮官創造了大量的配置變化。與圍繞人工智能的技術、倫理和概念問題相關的無數問題,為如何將這項技術整合到戰爭的戰術層面上蒙上了陰影。現代軍隊幾個世紀以來一直在為正確整合進化(和革命)的技術進步而奮斗。美國內戰期間的鐵路技術對 "鐵路頭 "軍隊和格蘭特將軍在維克斯堡戰役中的勝利都有貢獻。25年后,法國人忽視了普魯士的鐵路試驗,給第三帝國帶來了危險,同時也沒能把握住小口徑步槍的優勢。卡爾-馮-克勞塞維茨在《論戰爭》中指出,每個時代都有自己的戰爭和先入為主的觀念。本專著將探討當前的先入為主的觀念和人工智能在戰爭的操作層面的出現。
對作戰層面的討論側重于作戰藝術,以及指揮官和他們的參謀人員如何通過整合目的、方式和手段,以及在時間、空間和目的上安排部隊來發展戰役。在作戰藝術中缺乏以人工智能為主題的討論,增加了不適當地部署裝備和以不充分的理論進行戰斗的風險;實質上是在邦聯的火車上與追兵作戰。美國的政策文件和技術路線圖主要集中在能力發展和道德影響上,而沒有描述一個有凝聚力的人工智能戰爭的理論。但美國和中國在自主行動方面的實驗趨于一致;這引起了沖突的可能性,其特點是越來越多的被授權的人工智能和AWS沒有得到實際理論框架的支持。這個問題導致了幾個問題。美國軍隊的人工智能戰爭理論是什么?大國競爭者的人工智能戰爭理論是什么?有哪些關于顛覆性技術的歷史案例?理論應該如何改變以解釋顛覆性技術?
本專著旨在回答上述問題。它還提出了兩個概念,以使指揮官能夠在戰場上可視化和運用人工智能;一個被暫時稱為 "抓手"的作戰藝術的新元素和一個任務指揮理論的延伸。該論點將分三個主要部分進行闡述。第一節(理論)將證明人工智能需要一個認知工具來在時間、空間和目的上安排部隊,方法是:綜合美國的人工智能戰爭理論,描述中國的人工智能戰爭理論,以及揭示當前文獻中的“抓手”理論。第二節(歷史)是對1973年為應對技術轉變而從主動防御演變而來的空地戰(ALB)的案例研究。第二節將重點討論戰場維度的思想、任務指揮理論的演變以及相關的作戰藝術的正式出現。第三節(新興理論)提出了作戰藝術的新要素,作為一種認知工具,幫助指揮官和參謀部將21世紀的戰場可視化。第三節將把以前的章節整合成一個有凝聚力的模型,讓指揮官和參謀部在時間、空間和目的方面可視化他們與AI和AWS的關系。第三節還將提供一個任務指揮理論的建議擴展,以說明人機互動的情況。
人工智能的復雜性導致了正式的戰爭理論的缺乏;然而,在美國的政策和發展文件中存在著一個初步的美國人工智能戰爭理論。人工智能戰爭理論必須解釋人類和人工智能之間的關系,這樣才能完整。通過作戰藝術和任務指揮的視角來看待人工智能,揭示了自主性和角色互換的兩個頻譜,通過不同的組合創造了人工智能戰爭理論的維度。這些維度,或者說掌握的形式,代表了作戰藝術的一個新元素。同樣,需要將任務指揮理論擴展到一個過程-產出模型中,以實現掌握形式之間的移動。
綜合美國目前的人工智能政策和AWS的發展路線圖,提供了一幅戰略領導人如何看待人工智能的圖景,允許發展一個暫定的戰爭理論。由于缺乏關于武器化人工智能的歷史數據,政策和發展路線圖是必需的,因此本專著中提出的理論是由提煉出來的概念產生的。由于中國的工業和技術基礎的規模,中國被選為對抗模式,預計在10到15年內,中國將超越俄羅斯成為美國最大的戰略競爭對手。
圖文并茂的案例研究方法將被用來分析主動防御和空地戰之間的過渡。該案例研究將整合技術、政策和戰爭理論,以喚起人們對多域作戰(MDO)和人工智能在21世紀戰爭中作用的疑問。第二節的批判性分析側重于理論的發展,而不是其應用。第二節的詳細程度是有限制的,因為它仍然是一個更大(和有限)整體的一部分,因此重點應繼續揭示戰場可視化和認知輔助工具之間的聯系。第三節通過作戰藝術的新元素和任務指揮理論的調整來回答每一節中發現的問題,從而將前幾節連接起來。人工智能缺乏歷史,考慮到人們不能直接分析以前的沖突,以獲得教訓或原則。在這種情況下,任務指揮理論提供了一種間接的方法來理解使人類能夠集中式和分布式指揮和控制功能的機制,以及為什么人工智能缺乏相應的機制會抑制我們感知機會的能力。第三節將把美國現行政策和路線圖中的幾個抓手成分匯總到任務指揮理論提供的框架中。
本專著存在于美國陸軍多域作戰概念的框架內,其理解是解決方案是聯合性質的,因為 "陸軍不能單獨解決問題,概念發展必須在整個聯合部隊中保持一致,清晰的語言很重要。"本專著不能被理解為對MDO中提出的問題的單一解決方案,而是一種幫助實現戰斗力聚合的方法。
關于人工智能的討論充滿了倫理、法律和道德方面的考慮,本專著不會涉及這些方面。本專論的假設是,人工智能的軍事用途在政治上仍然是可行的,而且 "戰略前提 "允許該技術的軍事應用走向成熟。由于運用的變化幾乎是無限的,人工智能的戰術實施將不會被詳細討論,而重點是在作戰層面上的概念整合。一般能力將被限制在與作戰藝術和作戰過程有關的具體趨勢上。