亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural Architecture Search with Random Labels 現有的主流NAS算法通過子網絡在驗證集上的預測性能來進行模型搜索,但是在參數共享機制下,驗證集上的預測性能和模型真實性能存在較大的差異。我們首次打破了這種基于預測性能進行模型評估的范式,從模型收斂速度的角度來進行子網絡評估并假設:模型收斂速度越快,其對應的預測性能越高。

基于模型收斂性框架,我們發現模型收斂性與圖像真實標簽無關,便進一步提出使用隨機標簽進行超網絡訓練的新NAS范式-RLNAS。RLNAS在多個數據集(NAS-Bench-201,ImageNet)以及多個搜索空間(DARTS,MobileNet-like)進行了驗證,實驗結果表明RLNAS僅使用隨機標簽搜索出來的結構便能達到現有的NAS SOTA的水平。RLNAS初聽比較反直覺,但其出乎意料的好結果為NAS社區提出了一組更強的基線,同時也進一步啟發了對NAS本質的思考。 //www.zhuanzhi.ai/paper/73ff2aa2c413ba1035d0c205173ca72a

付費5元查看完整內容

相關內容

本文首次在全卷積目標檢測器上去除了NMS(非極大值抑制)后處理,做到了端到端訓練。我們分析了主流一階段目標檢測方法,并發現傳統的一對多標簽分配策略是這些方法依賴NMS的關鍵,并由此提出了預測感知的一對一標簽分配策略。此外,為了提升一對一標簽分配的性能,我們提出了增強特征表征能力的模塊,和加速模型收斂的輔助損失函數。我們的方法在無NMS的情況下達到了與主流一階段目標檢測方法相當的性能。在密集場景上,我們的方法的召回率超過了依賴NMS的目標檢測方法的理論上限。

付費5元查看完整內容

類不平衡數據的半監督學習雖然是一個現實的問題,但已經得到了研究。雖然現有的半監督學習(SSL)方法在少數類上表現不佳,但我們發現它們仍然在少數類上生成高精度的偽標簽。通過利用這一特性,在這項工作中,我們提出了類再平衡自我訓練(CReST),這是一個簡單而有效的框架,用于改進現有的對類不平衡數據的SSL方法。CReST通過從一個未標記集中添加偽標記樣本擴展了一個標記集,迭代地重新訓練一個基線SSL模型,在該模型中,根據估計的類分布,從少數類中更頻繁地選擇偽標記樣本。我們還提出了一種漸進式分布對齊,以適應調整CReST+的再平衡強度。我們展示了CReST和CReST+在各種類不平衡的數據集上改進了最先進的SSL算法,并始終優于其他流行的再平衡方法。

//www.zhuanzhi.ai/paper/fdb3245caf8bded4d2ba340c2a9c64cc

付費5元查看完整內容

//www.zhuanzhi.ai/paper/d5394f35aef16fb3a4dca59d68fb1882

一個有效的神經網絡結構性能評估方案是神經網絡結構搜索(NAS)成功的關鍵。現有NAS算法通常在訓練時間有限的小型數據集上訓練和評估神經結構。但這樣一種粗糙的評估方式很難對神經網絡結構進行準確評估。本文提出一種新的神經網絡結構評價方案,旨在確定哪個神經網絡結構的性能更好,而不是精確地預測性能絕對值。因此,我們提出了一個結構相對性能預測NAS (ReNAS)。我們將神經結構編碼為特征張量,并利用預測器進一步細化表示。本方法可用于離散搜索,無需額外評估。在NASBench101數據集上抽樣424個(搜索空間的0.1%)神經架構及其標簽已經足夠學習一個準確的架構性能預測器。在NAS-Bench-101和NAS-Bench-201數據集上,我們搜索的神經結構的準確性高于最新的方法,顯示了本方法的優先性。

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cb3378314b648e21f7e04d86c3bc5727

GID提出了一種基于檢測任務的新型蒸餾方法。通過從teacher和studnet中分別提取general instance (GI),并提出GISM模塊自適應選擇差異大的instance進行feature-based、relation-based以及response-based蒸餾。本方法首次將關系型知識蒸餾應用于檢測框架,且將蒸餾目標從獨立考慮的正負樣本蒸餾統一為更本質GI蒸餾,過程中不依賴于GT,且達到SOTA。

付費5元查看完整內容

自監督學習已被廣泛應用于從未標記圖像中獲取可轉移的表示。特別是,最近的對比學習方法在下游圖像分類任務中表現出了令人印象深刻的性能。這些對比方法主要集中在語義保留變換下的圖像級上生成不變的全局表示,容易忽略局部表示的空間一致性,因此在目標檢測和實例分割等本地化任務的預處理中存在一定的局限性。此外,在現有的對比方法中使用的積極裁剪視圖可以最小化單個圖像中語義不同區域之間的表示距離。

在本文中,我們提出了一種用于多目標和特定位置任務的空間一致表示學習算法(SCRL)。特別地,我們設計了一個新的自監督目標,試圖根據幾何平移和縮放操作產生隨機裁剪局部區域的連貫空間表示。在使用基準數據集的各種下游定位任務上,提出的SCRL顯示了相對于圖像級監督前訓練和最先進的自監督學習方法的顯著性能改進。代碼將會被發布。

//www.zhuanzhi.ai/paper/86fc25415eef2e6e1ed9019494ce1fcf

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cc9fa0af60aee58e256bce07f15065a0

code:

本文是新加坡國立大學Qinbin Hou&Jiashi Feng等人在注意力機制方面的一次探索,針對如何有效提升移動網絡的卷積特征表達能力,以及通道注意力(如SE)機制能夠有效建模通道間相關性但忽視了位置信息的問題,提出了一種的新穎的注意力機制:Coordinate Attention。

Coordinate Attention通過水平與垂直方向注意力圖捕獲特征的遠程依賴關系,而且水平與垂直注意力還可以有效保持精確的位置信息。所提注意力集中的精確位置信息無論對于分類,還是檢測與分割而言都是一種非常重要的性能,因而所提注意力機制在圖像分類、目標檢測以及語義分割方面均取得了顯著的性能提升,尤其需要注意的是,所提注意力尤其適合于語義分割等稠密預測任務

移動網絡設計的近期研究表明:通道注意力(如Squeeze-and-Excitation)機制對于提升模型性能極為有效,但是忽略了位置信息,這對于生成空間選擇注意力圖非常重要。

針對通道注意力機制存在的上述問題,我們提出了一種用于移動網絡的新穎注意力機制:它將位置信息嵌入到通道注意力中,我們將其稱之為Coordinate Attention。不同于通道注意力將特征張量通過GAP轉換為特征向量,坐標注意力將通道注意力拆分為兩個1D特征編碼過程,分別沿著兩個空間方向集成特征。

通過這種處理,遠程相關性可以通過空間方向捕獲,于此同時,精確的位置信息可以通過另一個空間方向得以保持。所得到的特征圖分辨編碼為成對的方向相關注意力圖與通道注意力圖(兩者具有互補性),并用于增強輸入特征以增廣目標的表達能力。

所提坐標注意力機制極為簡單,可以靈活嵌入到現有移動網絡(比如MobileNetV2, MobileN2Xt, EfficientNet)中,且幾乎不會導致額外的計算負載。

我們通過實驗證實:坐標注意力不僅有助于ImageNet分類,在下游任務(比如目標檢測、語義分割)上表達更佳。下圖給出了所提注意力與SE/CBAM在不同任務上的性能對比。

付費5元查看完整內容

我們提出了自監督幾何感知(SGP),這是第一個學習特征描述符進行對應匹配的通用框架,不需要任何真實的幾何模型標簽(例如,相機姿態,剛性轉換)。我們的第一個貢獻是將幾何感知形式化為一個優化問題,在給定大量視覺測量數據(如圖像、點云)的基礎上,聯合優化特征描述符和幾何模型。在這個優化公式下,我們展示了視覺領域的兩個重要的研究流,即魯棒模型擬合和深度特征學習,對應著優化未知變量的一個塊,同時固定另一個塊。這種分析自然引出了我們的第二個貢獻——SGP算法,它執行交替最小化來解決聯合優化。SGP迭代地執行兩個元算法:一個教師對已知的學習特征進行魯棒模型擬合以生成幾何偽標簽,一個學生在偽標簽的嘈雜監督下進行深度特征學習。作為第三個貢獻,我們將SGP應用于大規模真實數據集上的兩個感知問題,即MegaDepth上的相對相機姿態估計和3DMatch上的點云配準。我們證明,SGP達到了最先進的性能,與使用真實標簽訓練的受監督的模型相當。

付費5元查看完整內容

對抗攻擊的最新進展揭示了現代深層神經網絡的內在弱點。從那時起,人們就致力于通過專門的學習算法和損失函數來增強深度網絡的魯棒性。在這項工作中,我們從體系結構的角度研究了網絡體系結構的模式,這些模式對對抗攻擊具有彈性。為了獲得本研究所需的大量網絡,我們采用單次神經結構搜索,對一個大網絡進行一次訓練,然后對采樣的子網絡進行細化。采樣的結構及其實現的精度為我們的研究提供了豐富的基礎。我們的“健壯架構Odyssey”揭示了幾個有價值的觀察結果:1)緊密連接的模式提高了健壯性;2)在計算預算下,直接連接邊加入卷積運算是有效的;3)求解過程流(FSP)矩陣是網絡魯棒性的良好指標。基于這些觀察,我們發現了一系列健壯的體系結構(RobNets)。在各種數據集上,包括CIFAR、SVHN、Tiny-ImageNet和ImageNet,與其他廣泛使用的體系結構相比,RobNets具有更好的健壯性性能。值得注意的是,在白盒和黑箱攻擊下,即使參數數更少,RobNets也能顯著提高魯棒精度(~5%的絕對增益)。

付費5元查看完整內容
北京阿比特科技有限公司