亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文首次在全卷積目標檢測器上去除了NMS(非極大值抑制)后處理,做到了端到端訓練。我們分析了主流一階段目標檢測方法,并發現傳統的一對多標簽分配策略是這些方法依賴NMS的關鍵,并由此提出了預測感知的一對一標簽分配策略。此外,為了提升一對一標簽分配的性能,我們提出了增強特征表征能力的模塊,和加速模型收斂的輔助損失函數。我們的方法在無NMS的情況下達到了與主流一階段目標檢測方法相當的性能。在密集場景上,我們的方法的召回率超過了依賴NMS的目標檢測方法的理論上限。

付費5元查看完整內容

相關內容

目標檢測,也叫目標提取,是一種與計算機視覺和圖像處理有關的計算機技術,用于檢測數字圖像和視頻中特定類別的語義對象(例如人,建筑物或汽車)的實例。深入研究的對象檢測領域包括面部檢測和行人檢測。 對象檢測在計算機視覺的許多領域都有應用,包括圖像檢索和視頻監視。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

預訓練已被證實能夠大大提升下游任務的性能。傳統方法中經常利用大規模的帶圖像標注分類數據集(如 ImageNet)進行模型監督預訓練,近年來自監督學習方法的出現,讓預訓練任務不再需要昂貴的人工標簽。然而,絕大多數方法都是針對圖像分類進行設計和優化的。但圖像級別的預測和區域級別 / 像素級別存在預測差異,因此這些預訓練模型在下游的密集預測任務上的性能可能不是最佳的。

基于此,來自阿德萊德大學、同濟大學、字節跳動的研究者設計了一種簡單且有效的密集自監督學習方法,不需要昂貴的密集人工標簽,就能在下游密集預測任務上實現出色的性能。目前該論文已被 CVPR 2021 接收。

//www.zhuanzhi.ai/paper/4b31c2807b7c37ca49ca8f7c43b4b7d4

該研究提出的新方法 DenseCL(Dense Contrastive Learning)通過考慮局部特征之間的對應關系,直接在輸入圖像的兩個視圖之間的像素(或區域)特征上優化成對的對比(不相似)損失來實現密集自監督學習。

兩種用于表征學習的對比學習范式的概念描述圖。

現有的自監督框架將同一張圖像的不同數據增強作為一對正樣本,利用剩余圖像的數據增強作為其負樣本,構建正負樣本對實現全局對比學習,這往往會忽略局部特征的聯系性與差異性。該研究提出的方法在此基礎上,將同一張圖像中最為相似的兩個像素(區域)特征作為一對正樣本,而將余下所有的像素(區域)特征作為其負樣本實現密集對比學習。

具體而言,該方法去掉了已有的自監督學習框架中的全局池化層,并將其全局映射層替換為密集映射層實現。在匹配策略的選擇上,研究者發現最大相似匹配和隨機相似匹配對最后的精度影響非常小。與基準方法 MoCo-v2[1] 相比,DenseCL 引入了可忽略的計算開銷(僅慢了不到 1%),但在遷移至下游密集任務(如目標檢測、語義分割)時,表現出了十分優異的性能。

付費5元查看完整內容

盡管主動學習在圖像識別方面取得了長足的進步,但仍然缺乏一種專門適用于目標檢測的示例級的主動學習方法。在本文中,我們提出了多示例主動目標檢測(MI-AOD),通過觀察示例級的不確定性來選擇信息量最大的圖像用于檢測器的訓練。MI-AOD定義了示例不確定性學習模塊,該模塊利用在已標注集上訓練的兩個對抗性示例分類器的差異來預測未標注集的示例不確定性。MI-AOD將未標注的圖像視為示例包,并將圖像中的特征錨視為示例,并通過以多示例學習(MIL)方式對示例重加權的方法來估計圖像的不確定性。反復進行示例不確定性的學習和重加權有助于抑制噪聲高的示例,來縮小示例不確定性和圖像級不確定性之間的差距。實驗證明,MI-AOD為示例級的主動學習設置了堅實的基線。在常用的目標檢測數據集上,MI-AOD和最新方法相比具有明顯的優勢,尤其是在已標注集很小的情況下。

代碼地址為//github.com/yuantn/MI-AOD

付費5元查看完整內容

我們提出了一種新的群組協作學習框架(GCoNet),該框架能夠實時(16ms)檢測共同顯著對象,通過同時基于兩個必要標準挖掘群組層面的共識表示:1)組內部的緊密性,利用我們的組親和模塊捕捉共同顯著對象內在的共享屬性,從而更好地制定共同顯著對象之間的一致性;2)組間可分離性,通過引入我們新的組協作模塊,有效地抑制了噪聲對象對輸出的影響。為了在沒有額外計算開銷的情況下學習更好的嵌入空間,我們明確地使用了輔助分類監督。在三個具有挑戰性的數據上,即CoCA、CoSOD3k和Cosal2015上進行的大量實驗表明,我們的簡單GCoNet優于10個最新模型,并實現了新的最先進水平。我們展示了本文在一些重要的下游計算機視覺應用上的新技術貢獻,包括內容感知的共同分割,基于共同定位的自動縮略圖等。

//arxiv.org/abs/2104.01108

付費5元查看完整內容

本文提出一種新的卷積操作----動態區域注意卷積(DRConv: Dynamic Region-Aware Convolution),該卷積可以根據特征相似度為不同平面區域分配定制的卷積核。這種卷積方式相較于傳統卷積極大地增強了對圖像語義信息多樣性的建模能力。標準卷積層可以增加卷積核的數量以提取更多的視覺元素,但會導致較高的計算成本。DRConv使用可學習的分配器將逐漸增加的卷積核轉移到平面維度,這不僅提高了卷積的表示能力,而且還保持了計算成本和平移不變性。 圖片 DRConv是一種用于處理語義信息分布復雜多變的有效而優雅的方法,它可以以其即插即用特性替代任何現有網絡中的標準卷積,且對于輕量級網絡的性能有顯著提升。本文在各種模型(MobileNet系列,ShuffleNetV2等)和任務(分類,面部識別,檢測和分割)上對DRConv進行了評估,在ImageNet分類中,基于DRConv的ShuffleNetV2-0.5×在46M計算量的水平下可實現67.1%的性能,相對基準提升6.3%。

//www.zhuanzhi.ai/paper/5ab3f5fa3690be4e5e52724c176bc252

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cb3378314b648e21f7e04d86c3bc5727

GID提出了一種基于檢測任務的新型蒸餾方法。通過從teacher和studnet中分別提取general instance (GI),并提出GISM模塊自適應選擇差異大的instance進行feature-based、relation-based以及response-based蒸餾。本方法首次將關系型知識蒸餾應用于檢測框架,且將蒸餾目標從獨立考慮的正負樣本蒸餾統一為更本質GI蒸餾,過程中不依賴于GT,且達到SOTA。

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cc9fa0af60aee58e256bce07f15065a0

code:

本文是新加坡國立大學Qinbin Hou&Jiashi Feng等人在注意力機制方面的一次探索,針對如何有效提升移動網絡的卷積特征表達能力,以及通道注意力(如SE)機制能夠有效建模通道間相關性但忽視了位置信息的問題,提出了一種的新穎的注意力機制:Coordinate Attention。

Coordinate Attention通過水平與垂直方向注意力圖捕獲特征的遠程依賴關系,而且水平與垂直注意力還可以有效保持精確的位置信息。所提注意力集中的精確位置信息無論對于分類,還是檢測與分割而言都是一種非常重要的性能,因而所提注意力機制在圖像分類、目標檢測以及語義分割方面均取得了顯著的性能提升,尤其需要注意的是,所提注意力尤其適合于語義分割等稠密預測任務

移動網絡設計的近期研究表明:通道注意力(如Squeeze-and-Excitation)機制對于提升模型性能極為有效,但是忽略了位置信息,這對于生成空間選擇注意力圖非常重要。

針對通道注意力機制存在的上述問題,我們提出了一種用于移動網絡的新穎注意力機制:它將位置信息嵌入到通道注意力中,我們將其稱之為Coordinate Attention。不同于通道注意力將特征張量通過GAP轉換為特征向量,坐標注意力將通道注意力拆分為兩個1D特征編碼過程,分別沿著兩個空間方向集成特征。

通過這種處理,遠程相關性可以通過空間方向捕獲,于此同時,精確的位置信息可以通過另一個空間方向得以保持。所得到的特征圖分辨編碼為成對的方向相關注意力圖與通道注意力圖(兩者具有互補性),并用于增強輸入特征以增廣目標的表達能力。

所提坐標注意力機制極為簡單,可以靈活嵌入到現有移動網絡(比如MobileNetV2, MobileN2Xt, EfficientNet)中,且幾乎不會導致額外的計算負載。

我們通過實驗證實:坐標注意力不僅有助于ImageNet分類,在下游任務(比如目標檢測、語義分割)上表達更佳。下圖給出了所提注意力與SE/CBAM在不同任務上的性能對比。

付費5元查看完整內容

通過一個transformer編碼器-解碼器架構的目標檢測transformers (DETR)取得了與Faster R-CNN相匹配的性能。受預訓練transformer在自然語言處理中取得的巨大成功的啟發,我們提出了一種基于隨機查詢補丁檢測的無監督預訓練目標檢測任務。具體地說,我們從給定的圖像中隨機裁剪小塊,然后將它們作為查詢輸入解碼器。該模型經過預訓練,從原始圖像中檢測出這些查詢補丁。在預訓練,我們解決了兩個關鍵問題:多任務學習和多查詢定位。(1)為了權衡在前置任務中分類和定位的多任務學習,我們凍結CNN骨干,提出一個與patch檢測聯合優化的patch特征重構分支。(2)為實現多查詢定位,我們引入了單查詢補丁的UP-DETR ,并將其擴展為具有對象查詢洗牌和注意掩碼的多查詢補丁。在我們的實驗中,UP-DETR算法在PASCAL VOC和COCO數據集上具有更快的收斂速度和更高的精度,顯著提高了DETR算法的性能。代碼很快就會發布。

付費5元查看完整內容

目標檢測器通常在完全標注實例的監督學習情況下獲得很好的結果。但是,對于稀疏實例注釋,它們的性能遠遠不能令人滿意。現有的稀疏標注目標檢測方法主要是對難的負樣本的損失進行重加權,或者將未標注的實例轉換為忽略區域,以減少假陰性的干擾。我們認為這些策略是不夠的,因為它們最多可以減輕由于缺少注釋而造成的負面影響。在本文中,我們提出了一個簡單而有效的機制,稱為協同挖掘,稀疏標注的目標檢測。在協同挖掘中,一個連體網絡的兩個分支相互預測偽標簽集。為了增強多視圖學習和更好地挖掘未標記實例,將原始圖像和相應的增強圖像分別作為Siamese網絡的兩個分支的輸入。協同挖掘可以作為一種通用的訓練機制,應用于大多數現代目標檢測器。在三種不同稀疏注釋設置的MS COCO數據集上進行了實驗,使用兩種典型的框架:基于錨的檢測器RetinaNet和無錨檢測器FCOS。實驗結果表明,與RetinaNet的協同挖掘方法相比,在相同的稀疏標注設置下,相比于不同的基線,改進了1.4%~2.1%,超過了現有的方法。

//www.zhuanzhi.ai/paper/26fe94a8c64fbb5140619ab72ed036d1

付費5元查看完整內容

目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。

付費5元查看完整內容
北京阿比特科技有限公司