亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

盡管主動學習在圖像識別方面取得了長足的進步,但仍然缺乏一種專門適用于目標檢測的示例級的主動學習方法。在本文中,我們提出了多示例主動目標檢測(MI-AOD),通過觀察示例級的不確定性來選擇信息量最大的圖像用于檢測器的訓練。MI-AOD定義了示例不確定性學習模塊,該模塊利用在已標注集上訓練的兩個對抗性示例分類器的差異來預測未標注集的示例不確定性。MI-AOD將未標注的圖像視為示例包,并將圖像中的特征錨視為示例,并通過以多示例學習(MIL)方式對示例重加權的方法來估計圖像的不確定性。反復進行示例不確定性的學習和重加權有助于抑制噪聲高的示例,來縮小示例不確定性和圖像級不確定性之間的差距。實驗證明,MI-AOD為示例級的主動學習設置了堅實的基線。在常用的目標檢測數據集上,MI-AOD和最新方法相比具有明顯的優勢,尤其是在已標注集很小的情況下。

代碼地址為//github.com/yuantn/MI-AOD

付費5元查看完整內容

相關內容

主動學習是機器學習(更普遍的說是人工智能)的一個子領域,在統計學領域也叫查詢學習、最優實驗設計。“學習模塊”和“選擇策略”是主動學習算法的2個基本且重要的模塊。 主動學習是“一種學習方法,在這種方法中,學生會主動或體驗性地參與學習過程,并且根據學生的參與程度,有不同程度的主動學習。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“學生除了被動地聽課以外,還從事其他活動。” 在高等教育研究協會(ASHE)的一份報告中,作者討論了各種促進主動學習的方法。他們引用了一些文獻,這些文獻表明學生不僅要做聽,還必須做更多的事情才能學習。他們必須閱讀,寫作,討論并參與解決問題。此過程涉及三個學習領域,即知識,技能和態度(KSA)。這種學習行為分類法可以被認為是“學習過程的目標”。特別是,學生必須從事諸如分析,綜合和評估之類的高級思維任務。

過去的工作大都聚焦在小類樣本類別性能而犧牲了大類樣本的性能。本文提出一種無遺忘效應的小類樣本目標檢測器,能夠在實現更好的小類樣本類別性能的同時,不掉落大類樣本類別的性能。在本文中,我們發現了預訓練的檢測器很少在未見過的類別上產生假陽性預測,且還發現RPN并非理想的類別無關組件。基于這兩點發現,我們設計了Re-detector和Bias-Balanced RPN兩個簡單而有效的結構,只增加少量參數和推斷時間即可實現無遺忘效應的小類樣本目標檢測。

付費5元查看完整內容

本文首次在全卷積目標檢測器上去除了NMS(非極大值抑制)后處理,做到了端到端訓練。我們分析了主流一階段目標檢測方法,并發現傳統的一對多標簽分配策略是這些方法依賴NMS的關鍵,并由此提出了預測感知的一對一標簽分配策略。此外,為了提升一對一標簽分配的性能,我們提出了增強特征表征能力的模塊,和加速模型收斂的輔助損失函數。我們的方法在無NMS的情況下達到了與主流一階段目標檢測方法相當的性能。在密集場景上,我們的方法的召回率超過了依賴NMS的目標檢測方法的理論上限。

付費5元查看完整內容

Adaptive Methods for Real-World Domain Generalization

不變方法在解決領域泛化問題方面已經取得了顯著的成功,該問題的目標是對不同于訓練中使用的數據分布進行推斷。在我們的工作中,我們研究是否有可能利用未知測試樣本本身的領域信息。我們提出一個域自適應方法包括兩個步驟: a)我們首先學習區別的域嵌入從無監督訓練的例子,和 b)使用該域嵌入作為補充信息來構建一個domainadaptive模型,這需要輸入以及其域考慮而做出的預測。對于看不見的域,我們的方法簡單地使用少數未標記的測試示例來構建域嵌入。這使得對任何看不見的域進行自適應分類成為可能。我們的方法在各種領域泛化基準上實現了最先進的性能。此外,我們還引入了第一個真實世界的大規模域泛化基準Geo-YFCC,該基準包含超過40個訓練域、7個驗證域和15個測試域的1.1萬個樣本,比之前的工作大了幾個數量級。我們表明,現有的方法要么不能擴展到這個數據集,要么不如基于所有訓練領域的數據聯合的訓練模型的簡單基線。相比之下,我們的方法獲得了顯著的1%的改進。

//www.zhuanzhi.ai/paper/6e7661967d0879ebfd0236873a75386b

付費5元查看完整內容

類不平衡數據的半監督學習雖然是一個現實的問題,但已經得到了研究。雖然現有的半監督學習(SSL)方法在少數類上表現不佳,但我們發現它們仍然在少數類上生成高精度的偽標簽。通過利用這一特性,在這項工作中,我們提出了類再平衡自我訓練(CReST),這是一個簡單而有效的框架,用于改進現有的對類不平衡數據的SSL方法。CReST通過從一個未標記集中添加偽標記樣本擴展了一個標記集,迭代地重新訓練一個基線SSL模型,在該模型中,根據估計的類分布,從少數類中更頻繁地選擇偽標記樣本。我們還提出了一種漸進式分布對齊,以適應調整CReST+的再平衡強度。我們展示了CReST和CReST+在各種類不平衡的數據集上改進了最先進的SSL算法,并始終優于其他流行的再平衡方法。

//www.zhuanzhi.ai/paper/fdb3245caf8bded4d2ba340c2a9c64cc

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cb3378314b648e21f7e04d86c3bc5727

GID提出了一種基于檢測任務的新型蒸餾方法。通過從teacher和studnet中分別提取general instance (GI),并提出GISM模塊自適應選擇差異大的instance進行feature-based、relation-based以及response-based蒸餾。本方法首次將關系型知識蒸餾應用于檢測框架,且將蒸餾目標從獨立考慮的正負樣本蒸餾統一為更本質GI蒸餾,過程中不依賴于GT,且達到SOTA。

付費5元查看完整內容

論文:Adaptive Consistency Regularization for Semi-Supervised Transfer Learning 鏈接: //www.zhuanzhi.ai/paper/43d085f2c66d68b77584edcb0ee36ba0 代碼:

盡管最近半監督學習的研究在利用標記和未標記數據方面有顯著進步,但大多數假設模型的基本設置是隨機初始化的。

因此本文將半監督學習和遷移學習相結合提出了一種半監督的轉移學習框架,該方法不僅能利用目標域(目標任務數據集)中的標記/未標記數據,還能利用源域(具有不同語義的通用數據集,如:ImageNet)中的預訓練模型。為了更好地利用預訓練權重和未標記目標數據,我們引入了自適應一致性正則化,它由兩個互補組件組成:源模型和目標模型之間的示例上的自適應知識一致性(AKC),以及自適應表示一致性(ARC) ),在目標模型上標記和未標記的示例之間,根據它們對目標任務的潛在貢獻,自適應地選擇一致性正則化中涉及的示例。

通過微調ImageNet預訓練的ResNet-50模型,我們在幾個流行的基準上進行了廣泛的實驗,包括CUB-200-2011,MIT Indoor-67,MURA。結果表明,我們提出的自適應一致性正則化性能優于最新的半監督學習技術,例如Pseudo Label,Mean Teacher和MixMatch。此外,我們的算法能與現有方法共同使用,因此能夠在MixMatch和FixMatch之上獲得其他改進。

本文的主要貢獻包含以下三點:

1、第一個提出用于深度神經網絡的半監督轉移學習框架 2、利用半監督學習和轉移學習的特性引入自適應一致性正則化來改善半監督轉移學習 3、實驗結果表明所提出的自適應一致性正則化性能優于最新的半監督學習技術

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cc9fa0af60aee58e256bce07f15065a0

code:

本文是新加坡國立大學Qinbin Hou&Jiashi Feng等人在注意力機制方面的一次探索,針對如何有效提升移動網絡的卷積特征表達能力,以及通道注意力(如SE)機制能夠有效建模通道間相關性但忽視了位置信息的問題,提出了一種的新穎的注意力機制:Coordinate Attention。

Coordinate Attention通過水平與垂直方向注意力圖捕獲特征的遠程依賴關系,而且水平與垂直注意力還可以有效保持精確的位置信息。所提注意力集中的精確位置信息無論對于分類,還是檢測與分割而言都是一種非常重要的性能,因而所提注意力機制在圖像分類、目標檢測以及語義分割方面均取得了顯著的性能提升,尤其需要注意的是,所提注意力尤其適合于語義分割等稠密預測任務

移動網絡設計的近期研究表明:通道注意力(如Squeeze-and-Excitation)機制對于提升模型性能極為有效,但是忽略了位置信息,這對于生成空間選擇注意力圖非常重要。

針對通道注意力機制存在的上述問題,我們提出了一種用于移動網絡的新穎注意力機制:它將位置信息嵌入到通道注意力中,我們將其稱之為Coordinate Attention。不同于通道注意力將特征張量通過GAP轉換為特征向量,坐標注意力將通道注意力拆分為兩個1D特征編碼過程,分別沿著兩個空間方向集成特征。

通過這種處理,遠程相關性可以通過空間方向捕獲,于此同時,精確的位置信息可以通過另一個空間方向得以保持。所得到的特征圖分辨編碼為成對的方向相關注意力圖與通道注意力圖(兩者具有互補性),并用于增強輸入特征以增廣目標的表達能力。

所提坐標注意力機制極為簡單,可以靈活嵌入到現有移動網絡(比如MobileNetV2, MobileN2Xt, EfficientNet)中,且幾乎不會導致額外的計算負載。

我們通過實驗證實:坐標注意力不僅有助于ImageNet分類,在下游任務(比如目標檢測、語義分割)上表達更佳。下圖給出了所提注意力與SE/CBAM在不同任務上的性能對比。

付費5元查看完整內容

Adaptive Consistency Regularization for Semi-Supervised Transfer Learning Abulikemu Abuduweili1,2*, Xingjian Li1,3? , Humphrey Shi2? , Cheng-Zhong Xu3 , Dejing Dou1?

雖然最近關于半監督學習的研究在利用標記和未標記數據方面取得了顯著進展,但大多數研究都假定模型的基本設置是隨機初始化的。在這項工作中,我們將半監督學習和遷移學習結合起來,從而形成一個更實用和更具競爭力的范式,該范式可以利用來自源領域的強大的預訓練模型以及目標領域的標記/未標記數據。更好地利用pre-trained權重和標記的價值目標的例子,我們引入自適應一致性互補正規化,由兩部分組成:自適應知識一致性(AKC)在源和目標之間的示例模型和自適應表示一致性(AKC)標記和未標記示例之間的目標模型。一致性正則化所涉及的實例是根據它們對目標任務的潛在貢獻自適應選擇的。通過微調ImageNet預先訓練的ResNet-50模型,我們對流行基準進行了廣泛的實驗,包括CIFAR-10、CUB-200、Indoor67和MURA。結果表明,我們提出的自適應一致性正則化優于最先進的半監督學習技術,如偽標簽、Mean Teacher和MixMatch。此外,我們的算法與現有的方法是正交的,因此能夠在MixMatch和FixMatch之上獲得額外的改進。我們的代碼可以在//github.com/SHI-Labs/SemiSupervised-Transfer-Learning上找到。

付費5元查看完整內容

我們提出了自監督幾何感知(SGP),這是第一個學習特征描述符進行對應匹配的通用框架,不需要任何真實的幾何模型標簽(例如,相機姿態,剛性轉換)。我們的第一個貢獻是將幾何感知形式化為一個優化問題,在給定大量視覺測量數據(如圖像、點云)的基礎上,聯合優化特征描述符和幾何模型。在這個優化公式下,我們展示了視覺領域的兩個重要的研究流,即魯棒模型擬合和深度特征學習,對應著優化未知變量的一個塊,同時固定另一個塊。這種分析自然引出了我們的第二個貢獻——SGP算法,它執行交替最小化來解決聯合優化。SGP迭代地執行兩個元算法:一個教師對已知的學習特征進行魯棒模型擬合以生成幾何偽標簽,一個學生在偽標簽的嘈雜監督下進行深度特征學習。作為第三個貢獻,我們將SGP應用于大規模真實數據集上的兩個感知問題,即MegaDepth上的相對相機姿態估計和3DMatch上的點云配準。我們證明,SGP達到了最先進的性能,與使用真實標簽訓練的受監督的模型相當。

付費5元查看完整內容
北京阿比特科技有限公司