亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

通過一個transformer編碼器-解碼器架構的目標檢測transformers (DETR)取得了與Faster R-CNN相匹配的性能。受預訓練transformer在自然語言處理中取得的巨大成功的啟發,我們提出了一種基于隨機查詢補丁檢測的無監督預訓練目標檢測任務。具體地說,我們從給定的圖像中隨機裁剪小塊,然后將它們作為查詢輸入解碼器。該模型經過預訓練,從原始圖像中檢測出這些查詢補丁。在預訓練,我們解決了兩個關鍵問題:多任務學習和多查詢定位。(1)為了權衡在前置任務中分類和定位的多任務學習,我們凍結CNN骨干,提出一個與patch檢測聯合優化的patch特征重構分支。(2)為實現多查詢定位,我們引入了單查詢補丁的UP-DETR ,并將其擴展為具有對象查詢洗牌和注意掩碼的多查詢補丁。在我們的實驗中,UP-DETR算法在PASCAL VOC和COCO數據集上具有更快的收斂速度和更高的精度,顯著提高了DETR算法的性能。代碼很快就會發布。

付費5元查看完整內容

相關內容

Transformer是谷歌發表的論文《Attention Is All You Need》提出一種完全基于Attention的翻譯架構

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

盡管主動學習在圖像識別方面取得了長足的進步,但仍然缺乏一種專門適用于目標檢測的示例級的主動學習方法。在本文中,我們提出了多示例主動目標檢測(MI-AOD),通過觀察示例級的不確定性來選擇信息量最大的圖像用于檢測器的訓練。MI-AOD定義了示例不確定性學習模塊,該模塊利用在已標注集上訓練的兩個對抗性示例分類器的差異來預測未標注集的示例不確定性。MI-AOD將未標注的圖像視為示例包,并將圖像中的特征錨視為示例,并通過以多示例學習(MIL)方式對示例重加權的方法來估計圖像的不確定性。反復進行示例不確定性的學習和重加權有助于抑制噪聲高的示例,來縮小示例不確定性和圖像級不確定性之間的差距。實驗證明,MI-AOD為示例級的主動學習設置了堅實的基線。在常用的目標檢測數據集上,MI-AOD和最新方法相比具有明顯的優勢,尤其是在已標注集很小的情況下。

代碼地址為//github.com/yuantn/MI-AOD

付費5元查看完整內容

本文首次在全卷積目標檢測器上去除了NMS(非極大值抑制)后處理,做到了端到端訓練。我們分析了主流一階段目標檢測方法,并發現傳統的一對多標簽分配策略是這些方法依賴NMS的關鍵,并由此提出了預測感知的一對一標簽分配策略。此外,為了提升一對一標簽分配的性能,我們提出了增強特征表征能力的模塊,和加速模型收斂的輔助損失函數。我們的方法在無NMS的情況下達到了與主流一階段目標檢測方法相當的性能。在密集場景上,我們的方法的召回率超過了依賴NMS的目標檢測方法的理論上限。

付費5元查看完整內容

基于Transformers 從序列到序列的角度重新思考語義分割

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

我們希望為語義分割方法提供另一種思路,將語義分割轉變為序列到序列的預測任務。在本文中,我們使用transformer(不使用卷積和降低分辨率)將圖像編碼為一系列patch序列。transformer的每一層都進行了全局的上下文建模,結合常規的Decoder模塊,我們得到了一個強大的語義分割模型,稱之為Segmentation transformer(SETR)。大量實驗表明,SETR在ADE20K(50.28%mIoU),Pascal Context(55.83%mIoU)上達到SOTA,并在Cityscapes上取得了較好結果。

付費5元查看完整內容

自監督學習已被廣泛應用于從未標記圖像中獲取可轉移的表示。特別是,最近的對比學習方法在下游圖像分類任務中表現出了令人印象深刻的性能。這些對比方法主要集中在語義保留變換下的圖像級上生成不變的全局表示,容易忽略局部表示的空間一致性,因此在目標檢測和實例分割等本地化任務的預處理中存在一定的局限性。此外,在現有的對比方法中使用的積極裁剪視圖可以最小化單個圖像中語義不同區域之間的表示距離。

在本文中,我們提出了一種用于多目標和特定位置任務的空間一致表示學習算法(SCRL)。特別地,我們設計了一個新的自監督目標,試圖根據幾何平移和縮放操作產生隨機裁剪局部區域的連貫空間表示。在使用基準數據集的各種下游定位任務上,提出的SCRL顯示了相對于圖像級監督前訓練和最先進的自監督學習方法的顯著性能改進。代碼將會被發布。

//www.zhuanzhi.ai/paper/86fc25415eef2e6e1ed9019494ce1fcf

付費5元查看完整內容

//www.zhuanzhi.ai/paper/cc9fa0af60aee58e256bce07f15065a0

code:

本文是新加坡國立大學Qinbin Hou&Jiashi Feng等人在注意力機制方面的一次探索,針對如何有效提升移動網絡的卷積特征表達能力,以及通道注意力(如SE)機制能夠有效建模通道間相關性但忽視了位置信息的問題,提出了一種的新穎的注意力機制:Coordinate Attention。

Coordinate Attention通過水平與垂直方向注意力圖捕獲特征的遠程依賴關系,而且水平與垂直注意力還可以有效保持精確的位置信息。所提注意力集中的精確位置信息無論對于分類,還是檢測與分割而言都是一種非常重要的性能,因而所提注意力機制在圖像分類、目標檢測以及語義分割方面均取得了顯著的性能提升,尤其需要注意的是,所提注意力尤其適合于語義分割等稠密預測任務

移動網絡設計的近期研究表明:通道注意力(如Squeeze-and-Excitation)機制對于提升模型性能極為有效,但是忽略了位置信息,這對于生成空間選擇注意力圖非常重要。

針對通道注意力機制存在的上述問題,我們提出了一種用于移動網絡的新穎注意力機制:它將位置信息嵌入到通道注意力中,我們將其稱之為Coordinate Attention。不同于通道注意力將特征張量通過GAP轉換為特征向量,坐標注意力將通道注意力拆分為兩個1D特征編碼過程,分別沿著兩個空間方向集成特征。

通過這種處理,遠程相關性可以通過空間方向捕獲,于此同時,精確的位置信息可以通過另一個空間方向得以保持。所得到的特征圖分辨編碼為成對的方向相關注意力圖與通道注意力圖(兩者具有互補性),并用于增強輸入特征以增廣目標的表達能力。

所提坐標注意力機制極為簡單,可以靈活嵌入到現有移動網絡(比如MobileNetV2, MobileN2Xt, EfficientNet)中,且幾乎不會導致額外的計算負載。

我們通過實驗證實:坐標注意力不僅有助于ImageNet分類,在下游任務(比如目標檢測、語義分割)上表達更佳。下圖給出了所提注意力與SE/CBAM在不同任務上的性能對比。

付費5元查看完整內容

在自然語言處理和知識圖構造的信息提取中,三次提取是必不可少的任務。在本文中,我們將重新審視用于序列生成的端到端三重提取任務。由于生成三元組提取可能難以捕獲長期依賴關系并生成不忠實的三元組,因此我們引入了一種新穎的模型,即使用生成Transformer的對比三元組提取。具體來說,我們介紹了一個共享的Transformer模塊,用于基于編碼器-解碼器的生成。為了產生忠實的結果,我們提出了一種新穎的三重態對比訓練對象。此外,我們引入了兩種機制來進一步提高模型性能(即,批量動態注意遮罩和三級校準)。在三個數據集(即NYT,WebNLG和MIE)上的實驗結果表明,我們的方法比基線具有更好的性能。

//www.zhuanzhi.ai/paper/b8ed53721b7162af43614d558adb9c58

付費5元查看完整內容

目標檢測器通常在完全標注實例的監督學習情況下獲得很好的結果。但是,對于稀疏實例注釋,它們的性能遠遠不能令人滿意。現有的稀疏標注目標檢測方法主要是對難的負樣本的損失進行重加權,或者將未標注的實例轉換為忽略區域,以減少假陰性的干擾。我們認為這些策略是不夠的,因為它們最多可以減輕由于缺少注釋而造成的負面影響。在本文中,我們提出了一個簡單而有效的機制,稱為協同挖掘,稀疏標注的目標檢測。在協同挖掘中,一個連體網絡的兩個分支相互預測偽標簽集。為了增強多視圖學習和更好地挖掘未標記實例,將原始圖像和相應的增強圖像分別作為Siamese網絡的兩個分支的輸入。協同挖掘可以作為一種通用的訓練機制,應用于大多數現代目標檢測器。在三種不同稀疏注釋設置的MS COCO數據集上進行了實驗,使用兩種典型的框架:基于錨的檢測器RetinaNet和無錨檢測器FCOS。實驗結果表明,與RetinaNet的協同挖掘方法相比,在相同的稀疏標注設置下,相比于不同的基線,改進了1.4%~2.1%,超過了現有的方法。

//www.zhuanzhi.ai/paper/26fe94a8c64fbb5140619ab72ed036d1

付費5元查看完整內容

最近提出的DETR,以消除在目標檢測中許多手工設計的組件的需要,同時顯示良好的性能。但由于Transformer注意模塊在處理圖像特征圖時的局限性,導致收斂速度慢,特征空間分辨率有限。為了減輕這些問題,我們提出了可變形的DETR,其注意力模塊只關注參考點周圍的一小組關鍵采樣點。可變形的DETR比DETR(特別是在小物體上)可以獲得更好的性能,訓練周期少10個。在COCO數據集上的大量實驗證明了我們的方法的有效性。

付費5元查看完整內容
北京阿比特科技有限公司