盡管大型語言模型(LLMs)的表現令人印象深刻,但由于在推理過程中需要大量的計算和內存資源,它們的廣泛應用面臨挑戰。最近在模型壓縮和系統級優化方法方面的進展旨在增強LLM的推理能力。本綜述提供了這些方法的概覽,強調了近期的發展。通過對LLaMA(/2)-7B的實驗,我們評估了各種壓縮技術,為高效部署LLM提供了實用的見解。在LLaMA(/2)-7B上的實證分析突出了這些方法的有效性。借鑒綜述洞察,我們識別了當前的局限性,并討論了提高LLM推理效率的潛在未來方向。我們在//github.com/nyunAI/Faster-LLM-Survey上發布了代碼庫,以復現本文中呈現的結果。
大型語言模型(LLMs)的出現,特別是通過如GPT [Brown et al., 2020]和LLaMa [Touvron et al., 2023a; Touvron et al., 2023b]系列等模型的顯著標志,為與語言相關的任務開啟了新的革命,這些任務范圍從文本理解和總結到語言翻譯和生成。這些通常由數十億參數組成的模型,在捕捉復雜模式、細節豐富的上下文和自然語言的語義表達方面展現出了卓越的性能。因此,它們已成為各種應用中不可或缺的工具,推動了人工智能、信息檢索和人機交互等多個領域的發展。 盡管LLMs的性能無與倫比,但它們廣泛應用受到了巨大的計算和內存需求的阻礙,這在資源受限的環境中部署它們時構成了挑戰。例如,加載一個LLaMa-70B模型需要140GB的VRAM,這還不包括模型推理所需的內存。對高效部署的需求促使近期研究開始關注模型壓縮以及特別為LLMs量身定制的系統級修改技術。這些早期工作已經識別出改進LLMs推理效率的潛在方法。然而,當前的改進往往伴隨著模型性能的顯著下降,需要確定新的研究方向來找到解決這一問題的理想解決方案。 最近的一項綜述研究提供了最新提出的LLM壓縮方法的簡明概覽,以及用于基準測試它們的評估指標和數據[Zhu et al., 2023]。然而,為了進一步推動研究前沿,朝著LLMs的實際推理改進方向努力,還缺少一項全面的研究。在本綜述論文中,我們探索旨在通過模型壓縮以及系統級優化使LLMs高效的現有方法。為了公平比較各種方法,我們提供了使用不同壓縮技術對LLaMa(/2)-7B應用的經驗觀察。我們的評估包括了提供實際優勢的方法,包括現有文獻中不同推理引擎提供的結構化剪枝、量化和系統級優化。我們分享從這些實驗中獲得的寶貴見解,以呈現高效LLMs的有用和實際理解。此外,我們還將與實驗相關的代碼和基準測試公開。我們還檢查了當前壓縮方法在通用深度學習以及特別為LLMs提出的方法中的困難,并討論了克服這些問題的潛在研究方向。 總的來說,本文的貢獻如下。
我們提供了模型壓縮領域的簡要概述,強調了對輕量化和加速LLMs領域作出顯著貢獻的基本方法。
作為模型壓縮的補充,系統級修改在加速LLM推理中發揮了重要作用,我們也討論了這些方法。
為了提供一個實踐視角,我們對在標準化設置下的LLMs的知名壓縮方法進行了實證分析。從中得到的洞察可以幫助根據部署環境做出有關選擇LLM壓縮方法的明智決定。
基于我們的綜述和實證分析得出的見解,我們系統地指出了現有的局限性,并提出了實現LLM推理最佳效率的可行途徑
因果推斷在提高自然語言處理(NLP)模型的預測準確性、公平性、魯棒性和可解釋性方面顯示出潛力,它通過捕捉變量間的因果關系來實現這一點。生成式大型語言模型(LLMs)的出現顯著影響了各種NLP領域,特別是通過它們先進的推理能力。本綜述集中于從因果視角評估和改進LLMs,在以下幾個方面:理解和提升LLMs的推理能力,解決LLMs中的公平性和安全性問題,為LLMs提供解釋,以及處理多模態問題。同時,LLMs的強大推理能力反過來也可以通過幫助發現因果關系和估計因果效應來促進因果推斷領域的發展。本文探討了因果推斷框架與LLMs之間的相互作用,從兩個角度強調它們共同的潛力,以進一步發展更高級和更公平的人工智能系統。 //www.zhuanzhi.ai/paper/a6cd1586ee23edc1bc238d9cfa310439
近年來,大型語言模型(LLMs)在一系列關鍵任務中展現出了非凡的多功能性。LLM擅長的任務包括文案創作、用其獨特的風格和聲音增強原始句子、響應知識庫查詢、生成代碼、解決數學問題以及根據用戶需求執行分類或生成任務。此外,最近還擴展到了多模態變體,如大型視覺語言模型(LVLMs)或大型多模態語言模型,這些變體擴大了它們的輸入/輸出能力,以涵蓋各種模態。這種演變顯著提高了這些模型的潛力和應用范圍。 在本綜述中,我們主要關注基于變換器(Transformers)的大型語言模型(LLMs)。LLMs的能力根本上源于它們的推理能力,這決定了它們在理解、處理和提供各種查詢的解決方案方面的熟練程度,以及它們適應對社會有影響的領域的能力。因此,大量研究工作致力于測量和增強這些能力,范圍從評估LLMs的推理能力到審查它們的決策過程,并解決概念在不同模態間對齊以及減少幻覺等挑戰。此外,由于LLMs在數十億參數的基礎上訓練了大量人類知識,它們有時面臨在不同場景下適當優先級或淡化所學的挑戰。這可能導致領域偏移,即模型在與訓練集不同的數據上的性能下降,以及長尾偏差,即不常見的示例處理不夠有效。 在許多情況下,語言任務不僅需要基于數據中的模式預測或生成文本,還需要理解驅動這些模式的潛在因果機制。因果推斷在提高自然語言處理(NLP)模型的預測準確性、公平性、魯棒性和可解釋性方面顯示出了巨大的潛力。隨著生成式LLMs的出現,各個NLP領域發生了重大變革,吸引了越來越多的研究興趣,應用因果推斷來解決與LLM相關的挑戰并增強其功能。這種轉變也激勵了本綜述概述因果方法及其在LLMs中的實施,強調它們在豐富我們對語言模型的理解和應用中的作用。 同時,本綜述還旨在探索LLMs如何幫助因果推斷框架。因果推斷正式定義為一個智力學科,它考慮了允許研究者基于數據得出因果結論的假設、研究設計和估計策略。因果推斷有三個主要來源:潛在結果、圖表和結構方程,每個來源都有獨特的用途。潛在結果框架側重于通過統計推斷和治療比較來估計因果效應。圖形模型則擅長繪制因果路徑和可視化關系,節點代表變量,邊表示方向性影響。在本綜述中,我們主要討論Pearl對因果圖的公式化,它用有向無環圖(DAGs)形式化了表示隨機變量間條件獨立關系的因果圖形模型。 我們總結了LLMs如何在其兩個重要組成部分中幫助因果推斷,即因果關系發現和治療效果估計。確定變量間的因果關系是因果推斷框架的一個基本步驟,因為估計變量A對變量B的因果效應需要對與A和B相關的其他變量的因果關系進行因果假設。傳統上,研究人員依靠具有主題知識的專家為這些因果關系奠定基礎。因果發現方法為從觀察數據中發現因果圖提供了一種替代方法。LLMs已經展示了根據預訓練知識或給定文本確定這種因果關系的能力。它們也可以與因果發現方法結合,進一步提高結果的可靠性。估計治療效果是因果推斷的核心,但在許多情況下由于缺乏反事實數據而受阻。利用LLMs強大的反事實推理能力,研究人員開發了各種方法來生成高質量的反事實,以實現治療效果估計。 本綜述的結構如圖1所示。我們從第2節開始介紹大型語言模型的最新進展。然后我們在第3節提供了用于改進LLMs的因果推斷方法概述。在論文的前半部分,我們討論了這些方法在LLM社區的各種問題中的應用:第4.1節概述了因果方法用于衡量和改進LLM的推理能力,第4.2節和第4.3節關注公平性和安全性問題,而第4.4節介紹了因果推斷方法如何處理LLM的可解釋性。我們還在第4.5節討論了構建和開發多模態大型模型的擴展。最后,我們在第4.6節列出了從因果視角對LLMs進行評估和基準測試的現有工作。在綜述的后半部分,我們轉向LLMs如何擴展因果推斷的邊界。第5.1節解釋了因果推斷的當前假設、限制和瓶頸。第5.3節和第5.2節陳述了改進治療效果估計和因果發現的當前工作。我們在第6節突出了幾個未來方向。 LLMs可以顯著受益于因果推斷,因為它增強了它們理解和推理數據內因果關系的能力。在本節中,我們回顧LLMs如何從以下幾個角度受益于因果視角,包括理解和提升LLMs的推理能力(第4.1節)、解決LLMs中的公平性問題(第4.2節)和安全性問題(第4.3節)、用解釋補充LLMs(第4.4節)以及處理多模態問題(第4.5節)。然后我們在第4.6節中從這些角度組織基準數據集。 大型語言模型用于因果推斷
因果推斷作為解決LLMs挑戰的有力工具,重度依賴于世界知識。如前所述,因果推斷有三個主要來源:潛在結果框架、基于圖的因果方法和結構方程社區。潛在結果框架在很大程度上依賴于幾個假設,以促進對群體/個體之間治療效果的比較。應用潛在結果框架的最具挑戰性的方面之一在于確保這些假設在現實中成立。在本節中,我們首先審查這些假設,隨后說明現有文獻是如何放寬這些假設的。基于圖的因果方法和結構方程模型也需要對潛在的因果圖有一定水平的理解。例如,有向無環圖(DAGs)作為一個基本假設,許多結構方程模型假設一定程度的線性或者輸入分布遵循特定的概率分布。在我們的回顧中,我們還探索了現有方法如何驗證輸入數據中的分布,并在LLMs的幫助下擴展當前方法以容納更復雜的分布。 結論 在其核心,一個大型語言模型(LLM)就像一個龐大的知識庫。一個持續的挑戰是如何有效地提取和使用這些知識。改進LLM的關鍵在于增強它們理解因果關系的能力——本質上,理解事物之間是如何連接的。因果推理對于讓LLM更智能至關重要。從因果推斷的角度來看,我們發現了一個寶貴的框架,有助于提高LLM的效果。同時,作為人類知識的保管者,LLM甚至可以通過提供超越現有限制的廣泛專業知識,幫助克服因果推斷中的局限性,重新塑造我們在這一重要領域的理解,并為該領域帶來新的活力。 在這篇綜述中,我們提供了一個徹底的考察,探索了大型語言模型(LLM)與因果推斷交匯處的當前景觀。我們深入探討了因果推斷如何對LLM做出貢獻,增強了推理、公平性、安全性以及LLM的可解釋性等方面。此外,我們探索了LLM反過來如何拓寬因果推斷的視野。跨越這些類別,我們的綜述提供了深入的討論、比較和對審視方法的簡潔總結,提供了一個全面的研究現狀概覽。可用的基準數據集和這些方法的開源代碼也被列出。 對因果推斷和大型語言模型當前進展的考察服務于雙重目的。首先,它增強了我們對這兩個領域如何相互受益的理解。其次,它催生了新的問題,推動我們更接近于實現人工通用智能。此外,這一探索有潛力擴展到多個領域,并在現實世界場景中找到應用,展示了因果推斷與LLM之間協同作用的深遠影響。
基于Transformer的大型語言模型取得了巨大成功。然而,在推理過程中產生的顯著內存和計算成本,使得在資源受限的設備上部署大型模型變得具有挑戰性。在本文中,我們從算法角度調查了大型語言模型的壓縮和高效推理方法。就分類而言,類似于較小的模型,大型語言模型的壓縮和加速算法仍可以分為量化、剪枝、蒸餾、緊湊架構設計、動態網絡。然而,與較小模型相比,大型語言模型有兩個突出的特點:(1)大多數壓縮算法在壓縮后需要進行微調甚至重新訓練模型。大型模型最顯著的方面是與模型微調或訓練相關的非常高成本。因此,許多針對大型模型的算法,如量化和剪枝,開始探索無需調整的算法。(2)大型模型強調的是通用性和泛化能力,而不是在單一任務上的性能。因此,許多算法,如知識蒸餾,關注于如何在壓縮后保持其通用性和泛化能力。由于這兩個特點在早期的大型模型中并不十分明顯,我們進一步將大型語言模型區分為中等模型和“真正”的大型模型。此外,我們還提供了一些成熟框架的介紹,這些框架可以支持大型模型的高效推理,支持基本的壓縮或加速算法,極大地便利了用戶的模型部署。
大型語言模型(LLMs)已成為人工智能領域中一個重要且受歡迎的話題。與以往的語言模型相比,LLMs(例如ChatGPT、LLaMA、Claude)對未見數據顯示出了更強的泛化能力。此外,它們甚至展現出了較小模型所不具備的能力(即,突現能力),如多步驟推理和指令跟隨能力。這些進展展示了LLMs的巨大潛力。然而,在推理過程中的高昂內存和計算預算也阻礙了LLMs的部署。例如,一個帶有float32權重的10B模型消耗37GB內存,更不用說隨著序列長度增加,推理內存成本會以平方速度進一步增加。為了在資源受限的設備上,甚至是移動設備上部署模型,許多LLMs采用模型壓縮方法,如量化,以減少推理內存和計算成本。深度學習模型的模型壓縮是一個比LLMs出現得早得多的領域。它假設我們已經有了一個預定義的(甚至是預訓練的)模型。模型壓縮致力于減少模型在推理過程中的內存和計算成本,以便模型可以在各種資源受限的設備上運行。從算法上講,常見的模型壓縮方法包括:
許多之前的模型壓縮方法經常需要在壓縮后對模型進行微調。然而,由于微調LLMs的巨大預算,研究人員不得不探索免微調或至少更高效的微調方法。
與處理單一任務(如神經機器翻譯)不同,大型語言模型強調跨各種任務和未見數據的通用性和泛化能力,甚至是突現能力。因此,壓縮后的大型語言模型需要更仔細地驗證其通用性和泛化能力。 面對這些挑戰,提出了許多專門針對LLMs的壓縮方法。在本文中,我們將對這些方法進行全面綜述。為了更好地展示這些方法,我們進一步將參數約為十億或更少的語言模型,如BERT、GPT2,稱為中等模型,盡管它們通常被視為大型語言模型。參數超過十億的模型,如LLaMA、Claude、ChatGPT等,保持大型語言模型的名稱。原因是中等模型受上述兩個挑戰的影響較小,即中等模型相對容易進行微調,展示較少的突現能力。結果,許多針對中等模型的壓縮方法仍與較小模型的方法相似。 以下各節的組織如下:第2節將介紹一些初步知識。然后,我們將在第3、4、5、6、7、8節分別討論剪枝、知識蒸餾、量化、緊湊架構設計和動態網絡。
量化
量化是指將輸入值(在一個大的(通常是連續的)集合中)映射到輸出值(在一個小的(通常是有限的)集合中)的過程(例如,見圖2)。量化是減少內存成本和提高LLMs推理速度的最直接方法,特別是在支持低位數據類型(如INT4)快速操作的硬件上。值得注意的是,量化在神經網絡訓練和推理中都取得了令人印象深刻的成功,而本綜述的焦點僅在推理部分。量化方法相比其他壓縮方法(如剪枝和蒸餾)有幾個優勢。1)高壓縮比:將LLMs中的權重從32位浮點數量化為4位整數,可以將模型大小大幅壓縮至大約1/8,這對于內存受限的過程(如LLMs推理)至關重要。2)低成本:許多量化方法不需要重新訓練整個LLMs,使其對于計算資源有限的研究人員更加可行。3)高靈活性:量化與大多數其他壓縮方法兼容,為進一步提高性能引入了異常的機會。為了幫助讀者更好地理解量化方法,我們首先在3.1小節介紹標準量化方法和一些基本概念。然后,在3.2節,我們將簡要總結LLMs出現之前一些針對中等大小語言模型(如BERT,GPT2等)的最重要工作。3.3節和3.4節涵蓋了專注于LLMs推理的量化方法的最新進展。考慮到重新訓練擁有數十億參數的模型的困難,我們根據技術是否需要重新訓練,將LLMs量化方法分為兩部分。不需要重新訓練的方法(即,訓練后量化,PTQ)在3.3節討論,而需要重新訓練的方法(即,量化感知訓練,QAT)在3.4節討論。最后,在3.5節,我們討論了一些展現未來研究潛力但在前面章節中未覆蓋的高級話題。
剪枝
作為一種常規技術,用于壓縮和加速神經網絡,剪枝通過消除模型中非必需的權重或結構,同時保持網絡性能幾乎等同于它們原始狀態。盡管剪枝在卷積神經網絡(CNNs)中顯示出顯著結果,但與量化和蒸餾等其他壓縮技術相比,其對于LLMs的有效性較不穩健。剪枝效果減弱的原因來自于微調過程。由于模型參數數量龐大,微調的高成本使得實現剪枝的全部效果變得更加困難。然而,剪枝是壓縮模型的關鍵技術,需要進一步探索以增強和完善其在LLMs中取得改進結果的有效性。在接下來的部分,我們將在4.1節提供剪枝方法和基本概念的概覽。隨后,在4.2節,我們將詳細闡述為中等大小語言模型(即,參數達到數十億的模型)量身定制的剪枝技術,鑒于它們與LLMs的結構相似性。4.3節將深入探討專門為LLMs設計的剪枝方法論。最后,在4.4節,我們將介紹一些輔助技術,這些技術雖然不是剪枝方法,但與剪枝相關,用于改進LLMs的剪枝結果,并討論LLMs剪枝領域未來進步的挑戰。
知識蒸餾知識蒸餾(KD)是一種常用的模型壓縮和加速技術。具體實施過程包括將復雜教師模型獲得的知識轉移到一個更簡單的學生模型中,從而實現教師模型知識的更簡潔高效的表示。在5.1節中,我們將介紹知識蒸餾的一些基本概念,并提供知識蒸餾方法的簡要分類。然后我們將在5.2節總結使用中等大小語言模型(具有大約10億參數的語言模型)的各種知識蒸餾方法,并根據蒸餾發生在預訓練階段、微調階段還是兩者都有進行分類。最后,我們將在5.3節提供大型語言模型(具有超過10億參數的語言模型)知識蒸餾的詳細概述,將它們分類為黑盒蒸餾和白盒蒸餾。
緊湊架構設計是一種追求效率和簡化的設計哲學,其目標是通過優化網絡結構和算法,在減少計算資源和內存使用的同時,實現模型效率的顯著提升。具體而言,它可以分為微觀和宏觀兩個研究層次。本節將重點優化注意力計算和Transformer架構設計。由于Transformer層目前是LLM的主要組成部分,并且對于大型和中等大小模型來說沒有區別,因此我們在這里不會特別按模型大小分類方法。
動態網絡
擴大語言模型的規模已被證明是提升其在自然語言處理(NLP)任務上性能的有效方法。然而,擴展帶來的大量計算成本和內存需求構成了LLMs進步的主要挑戰。為了解決這些問題,同時仍然利用規模增加的好處,動態神經網絡(DyNNs)只針對每個輸入處理網絡的一個子集,使整個模型在資源受限的環境下更加靈活和高效地滿足計算需求。在NLP領域和LLMs領域,當前對DyNNs的研究主要包括以下三種方法:提前退出、級聯推理和專家混合(MoE)。提前退出旨在動態地在深度神經網絡(DNNs)的早期層次終止推理過程,從而減少計算成本并提高響應時間。直覺是,對于不太復雜的詞匯,往往可以在網絡的較早層次中準確完成預測。這些方法通常在網絡內部集成了一系列內部分類器,這些分類器在推理過程中提供提前退出的信號。已經提出了各種退出標準。這一系列工作主要關注并應用于小型或中型語言模型,如Bert。并且準確度可能不足以支持一般LLMs在更復雜和現實的場景中的應用。級聯推理利用不同大小的一系列語言模型處理不同復雜度級別的請求。Tabi提出了一個具有多級推理模型和基于概率的調度器的推理系統,以確定輸入查詢的處理策略,并平衡準確度和效率。FrugalGPT學會適應性地分類來自不同數據集和任務的查詢,并將它們引導至合適的LLMs API組合。EcoAssistant和另一個研究利用查詢緩存引用歷史數據以加快響應速度,并使用LLMs的層級結構來處理那些不匹配的新查詢。Mixture-of-Thoughts考慮了來自較弱LLMs的答案一致性作為問題難度的指標,以決定是否利用更強大的LLMs。一般來說,這一系列工作最近才出現,并顯示出發展更高效LLM系統的有希望的方向。與上述兩種方法相比,MoE的研究有著橫跨多個機器學習領域(包括NLP)的廣泛歷史。MoE通過多個子網絡水平擴展前饋網絡(FFN),其中只有一個或少數幾個會在單次前向傳播中被激活。它被廣泛地整合到今天的LLMs架構中,以提供高效而強大的服務。因此,在本節的剩余部分,我們將深入探討MoE的領域。7.1節首先介紹MoE的基本概念,接著是對將MoE整合到LLMs中的當代研究的廣泛綜述,包括算法和架構設計、訓練策略和實際應用。7.2節提供了一些代表性研究的簡要回顧,這些研究將MoE與之前討論的模型壓縮和加速技術集成在一起,突出了其在開發更全面和成本效益更高的LLM系統中的潛力。
隨著基于Transformer的模型的快速發展,出現了各種模型。由于不同的應用場景,它們在延遲、吞吐量、內存等方面有著額外的需求,這使得我們難以部署模型。在本節中,我們介紹了一些最近開發的針對LLM的推理加速框架,這些框架有效地提高了不同場景下模型的效率,如表6所示。我們根據通用性將框架分為通用框架和專用框架。這里還有一些特定于訓練的加速框架[351]、[352]、[353]、[354]、[355]、[356]、[357],由于本文關注于推理,我們不會具體討論它們。如果您想要部署訓練好的模型以快速獲得高效推理,可以參考這些框架[358]、[359]、[360]、[361]、[362]、[363]。
結論
在本文中,我們從算法角度對大型語言模型的壓縮和高效推理進行了全面調查,包括量化、剪枝、蒸餾、緊湊架構設計、動態網絡。此外,我們還介紹了一些為大型語言模型量身定制的流行壓縮和加速框架。然而,正如我們在引言中提到的,與較小模型相比,大型模型的壓縮和加速面臨更多挑戰。盡管現有算法已經做出了重大努力來應對這些挑戰,但許多算法仍然依賴于為壓縮小型模型而設計的框架,壓縮大型模型的挑戰依然存在。未來,需要進一步探索,以開發更高效、更有效的壓縮算法,同時確保大型模型的通用性和泛化能力。
將大型語言模型(LLMs)與圖表示學習(GRL)的整合標志著分析復雜數據結構的一次重要進化。這種合作利用LLMs的復雜語言能力來提高圖模型的上下文理解和適應性,從而擴大了GRL的范圍和潛力。盡管越來越多的研究致力于將LLMs整合到圖領域,但顯著缺乏一篇深入分析這些模型內核組成部分和操作的全面綜述。我們的綜述通過提出一種新穎的分類法來填補這一空白,該分類法從新的技術角度將這些模型分解為主要組成部分和操作技術。我們進一步將近期文獻分解為兩個主要組成部分,包括知識提取器和組織器,以及兩種操作技術,包括整合和訓練策略,揭示了有效的模型設計和訓練策略。此外,我們識別并探索了這一新興但尚未充分探索的領域中潛在的未來研究方向,提出了持續進步的路徑。
表格推理旨在根據提供的表格以及可選的表格文本描述,按照用戶需求生成相應的問題答案,有效提高獲取信息的效率。近來,使用大型語言模型(LLMs)已成為表格推理的主流方法,因為它不僅顯著降低了注釋成本,還超過了以往方法的性能。然而,現有研究仍然缺乏基于LLM的表格推理工作的總結。由于現有研究的缺乏,哪些技術可以在LLMs時代提高表格推理性能、LLMs為何在表格推理上表現出色、以及如何在未來增強表格推理能力的問題,仍然大部分未被探索。這一差距顯著限制了研究進展。為了回答上述問題并推進LLMs下的表格推理研究,我們呈現了這篇綜述,以分析現有研究,激發未來的工作。在這篇論文中,我們分析了在LLM時代用于提高表格推理性能的主流技術,以及LLMs相比于LLMs之前的模型在解決表格推理問題時的優勢。我們從現有方法的改進和實際應用的擴展兩個方向提供研究指導,以激發未來的研究。
大型語言模型(LLMs)在廣泛的任務中取得了顯著的成功。由于LLMs令人印象深刻的規劃和推理能力,它們被用作自動執行許多任務的自主智能體。最近,基于將一個LLM作為單一規劃或決策智能體的發展,基于LLM的多智能體系統在復雜問題解決和世界模擬方面取得了相當的進展。為了向社區提供這一動態領域的概覽,我們呈現這篇綜述,以提供關于基于LLM的多智能體系統的基本方面及挑戰的深入討論。我們的目標是讓讀者對以下問題獲得實質性的見解:基于LLM的多智能體模擬哪些領域和環境?這些智能體如何被描述,它們如何通信?什么機制有助于智能體能力的增長?對于那些有興趣深入研究這一領域的人,我們還總結了常用的數據集或基準,以便他們方便地訪問。為了讓研究人員了解最新的研究,我們維護一個開源的GitHub倉庫,致力于概述基于LLM的多智能體系統的研究。
1 引言
最近,大型語言模型(LLMs)展現出了達到與人類相當的推理和規劃能力的顯著潛力。這種能力完全符合人類對能夠感知周圍環境、做出決策并作出響應的自主智能體的期待[Xi等,2023;Wooldridge和Jennings,1995;Russell和Norvig,2009;Guo等,2023;Liang等,2023]。因此,基于LLM的智能體已被研究和快速發展,以理解和生成類似人類的指令,促進在廣泛的上下文中進行復雜的互動和決策[Yao等,2023;Shinn等,2023;Li等,2023d]。及時的綜述文章系統地總結了基于LLM的智能體的進展,如在文獻[Xi等,2023;Wang等,2023b]中所見。
基于單個LLM智能體的啟發性能力,已提出基于LLM的多智能體,以利用多個智能體的集體智能和專業化輪廓及技能。與使用單一LLM驅動的智能體的系統相比,多智能體系統通過1) 將LLMs專業化為具有不同能力的各種不同智能體,以及2) 使這些多樣化的智能體之間進行互動,有效地模擬復雜的現實世界環境,提供了先進的能力。在這一背景下,多個自主智能體協作參與規劃、討論和決策,反映了人類團隊工作在解決問題任務中的合作本質。這種方法利用了LLMs的溝通能力,借助它們生成文本進行交流和對文本輸入的響應能力。此外,它利用了LLMs在各個領域的廣泛知識和專門化特定任務的潛力。最近的研究已經展示了使用基于LLM的多智能體解決各種任務的有希望的結果,如軟件開發[Hong等,2023; Qian等,2023]、多機器人系統[Mandi等,2023; Zhang等,2023c]、社會模擬[Park等,2023; Park等,2022]、政策模擬[Xiao等,2023; Hua等,2023]以及游戲模擬[Xu等,2023c; Wang等,2023c]。由于這個領域的跨學科研究性質,它吸引了來自社會科學、心理學和政策研究等不同背景的研究者,研究論文的數量正在迅速增加,如圖1所示(受[Gao等,2023b]設計的啟發),從而擴大了基于LLM的多智能體研究的影響。盡管如此,早期的工作是獨立進行的,導致缺乏系統回顧以總結它們,建立這個領域的全面藍圖,并檢查未來的研究挑戰。這強調了我們工作的重要性,并作為呈現這篇綜述論文的動機,致力于基于LLM的多智能體系統的研究。
我們期望我們的綜述能對LLMs的研究和開發以及利用LLMs進行的更廣泛的跨學科研究做出重大貢獻。讀者將獲得關于基于LLM的多智能體(LLM-MA)系統的全面概覽,把握基于LLMs建立多智能體系統所涉及的基本概念,并捕捉到這一動態領域中最新的研究趨勢和應用。我們認識到這個領域正處于初級階段,并且隨著新方法和應用的迅速發展。為了提供一種持續的資源來補充我們的綜述論文,我們維護了一個開源的GitHub倉庫。我們希望我們的綜述能激發進一步的探索和創新,以及在廣泛的研究領域中的應用。
為了幫助來自不同背景的個人理解LLM-MA技術,并補充現有的綜述通過解決未解決的問題,我們以以下方式組織了我們的綜述論文。在第2節中闡述背景知識后,我們提出了一個關鍵問題:LLM-MA系統如何與協作任務解決環境對齊?為了回答這個問題,我們在第3節提出了一個全面的框架,用于定位、區分和連接LLM-MA系統的各個方面。我們通過討論: 1)智能體-環境界面,詳細說明智能體如何與任務環境互動; 2)智能體輪廓,解釋一個智能體如何被LLM描述以以特定方式行為; 3)智能體通信,考察智能體如何交換信息和協作;以及 4)智能體能力獲取,探索智能體如何發展其解決問題的能力。
關于LLM-MA研究的另一個視角是它們的應用。在第4節,我們將當前應用分為兩個主要流:用于問題解決的多智能體和用于世界模擬的多智能體。為了指導個人識別合適的工具和資源,我們在第5節提出了用于研究LLM-MA的開源實現框架,以及可用的數據集和基準。基于前面的總結,我們在第6節開放了對未來研究挑戰和機會的討論。結論在第7節中總結。
解析LLM-MA系統:界面、輪廓、通信和能力
在本節中,我們深入探討LLM-MA系統的復雜性,其中多個自主智能體參與類似于人類群體動力學的協作活動,應對問題解決場景。我們要解決的一個關鍵問題是,這些LLM-MA系統如何與它們的操作環境以及它們旨在實現的集體目標對齊。為了闡明這一點,我們在圖2中展示了這些系統的通用架構。我們的分析解剖了這些系統的操作框架,重點關注四個關鍵方面:智能體-環境界面、智能體輪廓、智能體通信和智能體能力獲取。
應用
LLM-MA系統已在廣泛的應用中被使用。我們在表1中總結了兩類應用:問題解決和世界模擬。我們將在下面詳細闡述這些應用。請注意,這是一個快速發展的研究領域,幾乎每天都有新應用出現。我們維護一個開源倉庫來報告最新的工作。
使用LLM-MA進行問題解決的主要動機是利用具有專門專業知識的智能體的集體能力。這些智能體,每個都作為個體行動,協作以有效地解決復雜問題,例如軟件開發、具體化智能體、科學實驗和科學辯論。 LLM-MA的另一個主流應用場景是世界模擬。這一領域的研究正在迅速增長,涵蓋了包括社會科學、游戲、心理學、經濟學、政策制定等在內的多種領域。在世界模擬中使用LLM-MA的關鍵原因在于它們出色的角色扮演能力,這對于現實地描繪模擬世界中的各種角色和觀點至關重要。世界模擬項目的環境通常被設計來反映被模擬的特定場景,智能體以各種輪廓設計以匹配這一背景。與專注于智能體合作的問題解決系統不同,世界模擬系統涉及多種智能體管理和通信方法,反映了現實世界交互的復雜性和多樣性。
結論
基于LLM的多智能體展現了激勵人心的集體智能,并迅速在研究者中獲得了越來越多的興趣。在這篇綜述中,我們首先系統回顧了LLM-MA系統的發展,通過從不同方面定位、區分和連接它們,涉及智能體-環境界面、LLMs對智能體的描述、管理智能體通信的策略以及能力獲取的范式。我們還總結了LLM-MA在問題解決和世界模擬中的應用。通過突出常用的數據集和基準,并討論挑戰和未來機會,我們希望這篇綜述能成為各個研究領域的研究者們的有用資源,激發未來的研究去探索基于LLM的多智能體的潛力。
大型語言模型(LLMs)的出現代表了自然語言處理(NLP)領域的一個顯著突破,為文本理解和生成方面的顯著進展做出了貢獻。然而,在這些進展中,值得注意的是,LLMs在上下文長度外推方面常常面臨限制。理解并擴展LLMs的上下文長度對于提高它們在各種NLP應用中的性能至關重要。在這份調查報告中,我們深入探討了為什么它是重要的多方面因素以及卓越技術可能為NLP應用帶來的潛在變革。我們研究了與擴展上下文長度相關的固有挑戰,并對研究人員采用的現有策略進行了有組織的概述。此外,我們討論了評估上下文擴展技術的復雜性,并強調了研究人員在該領域面臨的未解之謎。此外,我們探討了研究社區是否就評估標準達成共識,并確定了需要進一步協商的領域。這份全面的調查旨在為研究人員提供有價值的資源,引導他們了解上下文長度擴展技術的細微之處,并促進對這一不斷發展領域未來進展的討論。
大型語言模型(LLMs)的成功案例隨處可見,隨著現代LLMs的出現,它們顯著推動了眾多自然語言處理(NLP)挑戰的發展,達到了前所未有的高度。科學努力的自然進展是朝著新的和具有挑戰性的領域前進。在雄心勃勃的倡議中,一個值得注意的努力是擴展LLMs的可理解性以包括非常長的上下文。OpenAI提出了128頁上下文可理解性的概念,而Anthropic最近提出了超過200頁的更長上下文。然而,這些商業發布和公告中存在顯著的科學嚴謹不足。在這個背景下,引發了幾個問題:(a) 有哪些應用需要理解如此擴展的上下文?(b) 當LLMs理解更長的上下文時,我們如何有效地衡量應用程序的改進性能?(c) 雖然注意力機制在NLP中得到了廣泛研究,但是否需要設計一種專門針對更長上下文的新型注意力形式?
采用旨在處理長上下文的高級技術有望重塑語言模型的格局。改進的長上下文管理方法可以提高模型性能,從而實現更準確和細致入微的語言理解。這些進步有望增強模型捕捉長距離依賴性的能力,從而提高其在各種語言任務中的整體有效性,如:(接下來列舉具體的任務)。
? 文檔摘要:改進長上下文處理有助于更加連貫和簡明地進行文檔摘要,捕捉擴展文本段落中的關鍵信息,并提高生成摘要的質量。全面理解整個文檔,同時識別關鍵詞和主題,需要熟練管理廣泛的上下文范圍。在這種情況下使用較短的窗口將限制生成能力,可能導致關鍵細節的忽視。此外,使用較長的上下文窗口有助于減少歧義,因為它妨礙了沒有對文檔的復雜性進行全面把握的情況下利用微妙信息。這反過來使LLM能夠以更高的洞察力和準確性進行摘要過程的導航。
? 問答系統:考慮長上下文的能力提高了模型對復雜的問答關系的理解,從而產生更準確和上下文相關的回答。此外,LLMs在處理問答任務方面表現出更高的熟練度,因為解決代詞的共指問題與上下文實體密切相關。此外,在面對多輪對話時,擴展上下文窗口在促進連續對話中話題一致性跟蹤方面發揮了關鍵作用。
? 語言翻譯:在更大文本段落中改進上下文保留增強了模型提供準確翻譯的能力,特別是在上下文微妙性起關鍵作用的情況下。多義詞匯在翻譯領域(Falkum和Vicente,2015)中構成了重要障礙,而擴展上下文窗口是在上下文中定位這種詞匯的明顯輔助。此外,在面對技術術語時,LLMs在擁有擴展的輸入范圍時表現出更高的效能,尤其是在容納特定領域上下文微妙性方面。
? 指代消解:高級處理長上下文有助于解決擴展文本跨度內對實體的引用,從而提高了指代消解的準確性。指代消解過程涉及建立代詞與其對應的先行詞之間的聯系。LLMs中上下文窗口的擴展有助于更全面地評估信息,因此通過包括遠程引用和上下文相關的詳細信息來協助精確的代詞解析。
? 對話型人工智能:通過長上下文模型促進對擴展對話的更好跟蹤和理解,可以在對話型人工智能系統中產生更具上下文適應性的回應。擴展上下文窗口在為LLMs定位幽默、諷刺或微妙表達在對話環境中的作用方面起到關鍵作用。這對于生成符合正在進行的對話中的語氣和風格微妙之處的回應至關重要。
盡管持續的研究工作,仍然缺乏一份全面的涵蓋了用于外推上下文長度的技術范圍的概述。此外,LLMs的不斷發展已經引入了用于外推上下文長度的創新方面,這給現有的擴展方法帶來了挑戰,并強調了需要全面、多樣化的外推方法的必要性。 本文標志著LLMs上下文長度擴展技術的第一次全面調查。如圖1所示,我們深入研究了在微調期間可以實現的上下文長度擴展的現有工作。隨后,我們探討了LLMs上下文長度外推的潛在未來挑戰。 當代技術 已經引入了多種方法來增強LLMs的上下文能力。為了進行系統分類和增強清晰度,我們提出了一個分類法,如圖1所示。該分類法劃分為兩個主要類別:插值和外推技術。插值包括從不同的來源或上下文中融合信息以提高預測精度。這種技術適用于混合來自不同文本段落或包含不同上下文長度的不同模型的信息。相反,外推涉及對觀察數據的范圍之外的值進行預測,旨在擴展模型的理解能力超出其規定的訓練上下文長度。然后,還有用于進一步分類的零樣本(Rashid等人,2021)和微調技術。分類法中的其他小節將在隨后的部分中討論。
位置技術
與絕對位置嵌入不同,相對位置嵌入是基于鍵(keys)和查詢(queries)之間的差異制定的(Shaw等人,2018)。相對位置嵌入的一種普遍變體在Transformer-XL中引入(Dai等人,2019b;Yang等人,2019)。計算鍵和查詢之間的注意力得分已經改變,以集成與相對位置對應的可訓練嵌入。與絕對位置嵌入相比,配備相對位置嵌入的Transformer展示了能夠推廣到超出訓練中遇到的長度的序列的能力,表現出了外推的熟練性(Press等人,2021b)。與位置編碼相關的一個重復約束是無法擴展到訓練期間觀察到的上下文窗口之外。已經進行了一些工作來克服這些限制。
外推在這次探索中,我們將其分類并深入探討了兩種主要策略:外推和插值。外推技術旨在擴展模型對超出其最初觀察到的長度的序列的理解,采用創新策略來捕捉在擴展范圍內的依賴關系。另一方面,插值技術集中于改進模型在觀察范圍內平滑擴展對上下文的理解能力,從而提高了在最初遇到的上下文長度內的序列性能。以下部分詳細介紹了每個類別內的技術,提供了有關應對LLMs上下文長度動態特性所采用的多種方法的見解。
插值在上下文長度外推的背景下,插值技術專注于對模型進行微調或優化,以有效處理在訓練期間遇到的上下文長度范圍內的序列。重點是改進模型平滑擴展其對觀察范圍內上下文的理解能力,從而提高其在最初遇到的上下文長度內序列的性能。這些技術有助于更加微妙和改進的上下文理解,確保模型在訓練期間接觸到的上下文長度內表現最佳。
總結而言,本文全面審查了擴展LLMs上下文長度的多種技術和方法。所提供的分類法將這些方法分為兩種廣泛的策略 - 外推和插值。外推技術旨在擴展模型處理超出其最初訓練上下文長度的序列的能力。這包括利用專門組件,如位置編碼、注意機制和記憶增強來實現即時泛化的零樣本方法。還探討了微調策略,以使模型適應在預訓練期間未遇到的更長上下文。插值技術專注于優化模型,以在觀察訓練長度內平滑擴展上下文理解。專門的注意機制和提示壓縮有助于高效處理長上下文。微調插值適應模型以在序列開始超過訓練長度時實現優雅過渡。本調查提供了有關技術的多樣性的見解,涵蓋提示工程、注意機制、位置編碼和記憶增強等領域。它突出了模型體系結構和訓練方法的創新,旨在解決上下文長度的限制。廣泛的經驗分析證實了這些多樣化技術在基準測試和下游任務上的有效性。通過提供結構化分類法和對現有文獻的綜述,本文有助于更清晰地理解LLMs上下文長度擴展領域的不斷演變。討論確定了有前景的研究方向,強調了繼續努力開發能夠處理廣泛上下文信息的模型的重要性。隨著對長篇文本生成和對大型語料庫進行推理的興趣不斷增加,改進的上下文處理將在未來幾年繼續是一個活躍的研究領域。
這篇綜述論文深入探討了大型語言模型(LLM)的可解釋性領域,這是自然語言處理中的一個關鍵且充滿挑戰的方面。隨著LLM在各種應用中扮演著關鍵角色,它們的“黑盒”特性引發了關于透明度和道德使用的擔憂。本文強調增強LLM可解釋性的必要性,旨在解決公眾對這些模型的信任問題以及技術社區對深入理解這些模型的需求。我們專注于預訓練的基于Transformer的LLM,例如LLaMA(Touvron et al., 2023),它們由于規模和復雜性,呈現出獨特的解釋挑戰。我們的綜述歸類了現有的解釋性方法,并討論了它們在提高模型透明度和可靠性方面的應用。我們還討論了代表性的評估方法,強調它們的優勢和局限性。這篇綜述的目標是在理論理解和實際應用之間架起一座橋梁,為未來LLM可解釋性領域的研究和發展提供洞見。
**1 引言 **
在迅速發展的自然語言處理領域,大型語言模型(LLM)已成為一個基石,展現出在各種任務中的卓越能力。盡管它們效果顯著,LLM通常被視為“黑盒”系統,這在解釋性和透明度方面提出了重大挑戰。這種不透明性可能導致意想不到的后果,例如生成有害或誤導性內容(Gehman et al., 2020),以及模型幻覺的出現(Weidinger et al., 2021)。這些問題凸顯了增強解釋性的緊迫性,不僅是為了理解,更是為了負責任和倫理的應用。 在LLM中,解釋性具有兩個關鍵功能。對于終端用戶,它通過以非技術方式闡明模型的推理過程,增強了對其能力和潛在缺陷的理解,從而培養信任(Zhao et al., 2023)。對于開發者和研究人員,它提供了對意外偏見和改進領域的洞察,作為提升模型在下游任務上性能的工具(Bastings et al., 2022; Meng et al., 2023a; Li et al., 2023b)。然而,LLM的規模為解釋性帶來了獨特的挑戰。更大的模型、更多的參數和廣泛的訓練數據使得解釋變得更加困難。傳統的解釋方法,如SHAP值(Lundberg and Lee, 2017),對于這些大規模模型變得不太實用(Zhao et al., 2023)。此外,全面理解LLM特有現象,包括在上下文中的學習(Halawi et al., 2023; Hendel et al., 2023; Todd et al., 2023; Wang et al., 2023),以及解決模型幻覺(Ji et al., 2023; Chuang et al., 2023)和固有偏見(dev, 2023; An and Rudinger, 2023; Schick et al., 2021)等問題,對于模型設計的持續改進至關重要。 在這篇文獻綜述中,我們關注預訓練的基于Transformer的LLM的解釋性方法,這些模型通常被稱為基礎模型。這些模型通常在訓練數據上進行擴展,并擁有數十億個參數,例如GPT-2(Radford et al., 2019)、GPT-J(Chen et al., 2021)、GPT-3(Brown et al., 2020)、OPT(Yordanov et al., 2022)和LLaMA系列(Touvron et al., 2023)。在第2節中,我們根據文獻綜述對研究問題進行分類。基于這種分類,在第3節中,我們回顧了解釋性方法,隨后在第4節中討論了如何利用這些洞察。我們進一步在第5節中討論評估方法和指標。我們的目標是綜合并批判性地評估當代研究,旨在彌合理論理解與從復雜語言模型中提取的洞見的實際應用之間的差距。
2 概述
大型語言模型(LLM)領域正在迅速發展,使得解釋性不僅成為理解這些復雜系統的工具,而且對它們的改進至關重要。本節對當前的解釋性方法進行分類,強調在倫理和可控生成方面的挑戰,并提出未來探索的研究問題。 方法分類 我們在圖1中呈現了對解釋性方法及其應用的結構化分類。圖1展示了對預訓練語言模型(LM)解釋性方法的結構化分類。我們將這些方法分為兩大領域:局部分析和全局分析。局部分析涵蓋了特征歸因和Transformer塊分析,深入探討模型的詳細操作。另一方面,全局分析包括基于探針的方法和機制性解釋性,提供對模型行為和能力的全面理解。除了理解之外,我們還探索這些洞察在增強LLM能力方面的應用,重點關注模型編輯、能力增強和受控生成。
3 大型語言模型的解釋性
3.1 局部分析 LLM中的局部解釋旨在闡明模型如何為特定輸入生成特定預測,例如情感分類或令牌預測。本節將局部解釋方法分為兩類:特征歸因分析和對單個Transformer(Vaswani et al., 2017)組件的分析。
3.2 全局分析 與側重于闡明單個模型預測的局部分析不同,全局分析旨在理解和解釋模型隱藏狀態激活中編碼的知識或語言屬性。本節探討全局分析的兩種主要方法:審視模型表示的探針方法和機制性解釋性(Transformer Circuits, 2022),這是一種新興的觀點,旨在逆向工程深度神經網絡的內部工作機制。
4 利用解釋性
在本節中,我們討論如何將解釋性作為一個工具來調試和改進模型。雖然各種方法旨在通過微調或重新訓練來提高模型的能力,但我們專注于那些特別基于模型解釋性的強大基礎設計的方法。
4.1 模型編輯
盡管我們能夠訓練出熟練的大型語言模型(LLM),但確保它們的相關性和糾正錯誤的方法仍然難以捉摸。近年來,編輯LLM的技術出現了激增。其目標是在不對其他輸入的性能產生負面影響的情況下,高效地修改LLM在特定領域內的知識或行為(Yao et al., 2023)。
4.2 增強模型能力
雖然大型語言模型(LLM)在各種自然語言處理任務中表現出多樣性,但來自解釋性的洞察可以顯著增強這些能力。本節重點介紹了解釋性在最近的工作中顯示出顯著影響的兩個關鍵任務:改進長文本的利用(Xiao et al., 2023; Liu et al., 2023; Pope et al., 2022)和增強上下文中學習(In-Context Learning, ICL)的性能(Hendel et al., 2023; Halawi et al., 2023; Wang et al., 2023)。
4.3 可控生成
盡管大型語言模型在文本生成方面取得了卓越的表現,但有時它們在生成事實內容方面表現不佳。利用解釋性為構建推理時快速技術提供了機會,這些技術旨在提高生成模型的事實性、校準性和可控性,使其更符合人類偏好。
5 評估
近期,像GPT-4(OpenAI, 2023)這樣的大型語言模型展現了生成其預測的自然語言解釋的令人印象深刻的能力。然而,這些解釋是否真正幫助人類理解模型的推理過程,目前尚不明確(Zhao et al., 2023)。為了更好地評估解釋性方法(如歸因)的性能,需要專門設計的評估方法。此外,還需要校準的數據集和指標來評估解釋性在下游任務中的應用,例如真實性評估。 5.1 評估解釋的合理性 評估歸因解釋合理性的一種常見技術是移除K%估計重要性最高或最低的令牌,以觀察其對模型輸出的影響(Chen et al., 2020; Modarressi et al., 2023)。另一種評估解釋合理性的方法涉及間接方法,例如衡量模型編輯的性能,尤其是對于嚴重依賴解釋準確性的“定位-然后編輯”編輯方法。近期研究(Yao et al., 2023; Zhao et al., 2023)表明,擁有評估數據集對于評估LLM中的事實編輯至關重要。此目的常用的兩個數據集是ZsRE(Levy et al., 2017),一個通過反向翻譯生成問題改寫的問答(QA)數據集,以及CounterFact(Meng et al., 2023a),一個更具挑戰性的數據集,包含了與正確事實相比起始得分較低的反事實。 5.2 評估真實性 模型真實性是衡量生成模型可信度的重要指標。我們期望模型輸出既有信息量又事實正確且忠實。理想情況下,人類評注員會根據標準答案標記模型答案為真或假,但這通常成本較高。(Lin et al., 2022)提出使用兩個微調過的GPT-3-13B模型(GPT-judge)對每個答案進行真實或假的及有信息量或無信息量的分類。使用GPT-judge進行評估是TruthfulQA基準測試的標準做法,這是一個廣泛使用的數據集,對抗性構建以衡量語言模型在生成答案時的真實性(Askell et al., 2021; Li et al., 2023b; Chuang et al., 2023)。TruthfulQA的主要指標是真實*信息量,真實和信息量得分的乘積。這個指標不僅捕捉了有多少問題被真實地回答,還通過評估每個答案的信息量,防止模型無差別地回復“我無可奉告”。
6 結論
在本文中,我們提供了關于LLM的可解釋性及其應用的全面概述。我們總結了基于解釋目標的局部和全局分析方法。此外,我們討論了利用解釋來增強模型和評估這些方法的使用。理解LLM的主要未來研究方向包括開發針對不同語言模型的解釋方法,以及通過利用解釋性知識使LLM更值得信賴且與人類價值觀更一致。隨著LLM的不斷進步,可解釋性將變得極其重要,以確保這些模型是透明的、公平的和有益的。我們希望這篇文獻綜述為這一新興研究領域提供了有用的概述,并突出了未來研究的開放問題和方向。
大型語言模型(LLMs)在自然語言處理領域表現出令人印象深刻的影響,但它們仍然在完整性、時效性、可靠性和適應性等方面存在一些問題。雖然最近的努力集中在將LLMs與外部知識源連接上,但知識庫(KBs)的集成仍未得到充分研究,并面臨一些挑戰。本文介紹了KnowledGPT,一個將LLMs與各種知識庫連接起來的綜合框架,促進知識的檢索和存儲。檢索過程采用思維提示程序,該程序以代碼格式生成用于KB操作的搜索語言。除了檢索外,KnowledGPT還提供了將知識存儲在個性化KB中的能力,以滿足個人用戶的需求。通過廣泛的實驗,我們表明,通過將LLMs與KBs集成,KnowledGPT與普通LLMs相比,能夠適當地回答更廣泛的需要世界知識的問題,利用廣泛存在的KBs中的知識和提取到個性化KB中的知識。
大型的、預訓練的基于Transformer的語言模型,如BERT,已經極大地改變了自然語言處理(NLP)領域。我們對最近的研究進行了調研,這些研究使用了大型語言模型來解決NLP任務,通過預訓練、微調、提示或文本生成方法。我們還提出了使用預訓練語言模型生成數據的方法,用于訓練增強或其他目的。最后,我們討論了局限性,并提出了未來研究的方向。
引言
近年來,大型預訓練的基于Transformer的語言模型(PLMs),如BERT (Devlin et al., 2019)和GPT (Radford et al., 2018)系列模型席卷了自然語言處理(NLP),在許多任務中實現了最先進的性能。
這些大型PLM推動了NLP的范式轉變。以分類任務p(y|x)(將文本輸入x分類為標簽y)為例:傳統統計NLP方法通常設計手工特征來表示x,然后應用機器學習模型(如SVM (Cortes and Vapnik, 1995)、邏輯回歸)來學習分類函數。深度學習模型通過深度神經網絡(LeCun et al., 2015)。注意,每個新的NLP任務都需要重新學習潛在特征表示,而且在許多情況下,訓練數據的大小限制了潛在特征表示的質量。考慮到語言的細微差別對所有NLP任務來說都是共同的,我們可以假設我們可以從一些通用任務中學習一個通用的潛在特征表示,然后在所有NLP任務中共享它。語言建模需要學習如何在給定前一個單詞的情況下預測下一個單詞,這是一項具有大量自然出現的文本的通用任務,可以預訓練這樣一個模型(因此得名預訓練語言模型)。事實上,最新的、正在進行的范式轉換從引入PLMs開始: 對于大量的NLP任務,研究人員現在來利用現有的PLMs通過對感興趣的任務進行微調,提示PLMs執行期望的任務,或者將任務重新構造為文本生成問題,并應用PLMs來解決相應的問題。這三種基于PLM的范式的進步不斷地建立了新的最先進的性能。
本文調研了最近利用PLM進行NLP的工作。我們將這些工作組織成以下三種范式:
先進行預訓練,然后進行微調(§2): 先對大量未標記語料庫進行通用預訓練,然后對感興趣的任務進行少量的任務特定微調。
基于提示的學習(§3):提示一個PLM,這樣解決NLP任務就會減少到類似于PLM的訓練前任務(如預測一個遺漏的單詞),或一個更簡單的代理任務(如文本包含)。提示通常可以更有效地利用PLM中編碼的知識,從而產生“少樣本”的方法。
NLP作為文本生成(§4): 將NLP任務重新定義為文本生成,以充分利用生成語言模型(如GPT-2 (Radford et al., 2019)和T5 (Raffel et al., 2020)中編碼的知識。
生成式PLMs也可以用于文本生成任務。我們向讀者推薦關于文本生成的優秀調研,如Li et al. (2021b) 和Yu et al. (2021b)。除非另有說明,本文主要關注非生成性任務(如分類、序列標注和結構預測),這些任務仍然涵蓋廣泛的NLP任務,包括文本的語法或語義解析、信息抽取(IE)、問答(QA)、文本蘊涵(TE)、情感分析、等等。除了這三種范式之外,還有另一種互補的方法:間接使用上述任何一種PLM范式來改善目標NLP任務的結果:
數據生成(§5): 運行PLM自動生成NLP任務的數據。生成的數據可以是銀色標記的數據,通常生成的PLM是針對任務進行微調的,或者是一些輔助數據,如反例、澄清、上下文或其他。在第一種情況下,銀色標記數據可以添加到現有的標記數據中。在第二種情況下,輔助數據以某種方式支持目標任務。
論文組織如下: 第2節提供了PLM的背景,并描述了第一種范式,即預訓練然后微調。第三節討論第二種范式,即基于提示的學習。第4節總結了第三種范式,即作為文本生成的NLP。在第5節中,我們將描述通過PLM為廣泛的NLP任務生成數據的方法。我們將在第6節討論局限性并提供未來研究的方向,并在第7節進行總結。
范式1: 先訓練,然后微調
傳統統計NLP的工作重點是在標記數據集上訓練特定任務的模型,而這種模式轉變為在一個共享的、“基本”的預訓練任務上訓練一個大型模型,然后在第二步中將其調整(“微調”)到各種任務。預訓練任務幾乎總是一種語言建模任務,它可以利用大量的未標記數據來學習有利于一系列NLP任務的表示(Rogers et al., 2020)。在本節中,我們首先提供關于預訓練的大型語言模型(PLMs)的入門知識,然后描述使用凍結或微調PLM進行NLP任務的方法。
范式2: 基于提示的學習
我們使用提示指的是在輸入或輸出中添加自然語言文本(通常是短語)的做法,以鼓勵預訓練的模型執行特定任務(Yuan et al., 2021)。使用提示符有幾個優點。提示,特別是上下文學習(例如Brown et al., 2020),可能不需要更新PLM的參數,與微調方法相比,或在2.4.4中描述的基礎上,減少了計算需求。提示還能促使新任務的制定與預訓練的目標更好地結合,從而更好地利用預訓練獲得的知識。更緊密的匹配還支持少樣本方法(Liu et al., 2021b),特別是對于具有小訓練數據集的任務;一個好的提示可以值幾百個標簽數據點(Le Scao and Rush, 2021)。最后,提示允許以一種不受監督的方式探索PLM,以評估PLM對特定任務所獲得的知識(如Petroni et al., 2019)。
下面我們討論三種基于提示的學習方法:從指令和演示中學習、基于模板的學習和從代理任務中學習。圖3顯示了這三種方法的說明。
范式3 NLP即文本生成
基于生成式Transformer的PLMs10(如GPT、BART和T5)的成功,最近激發了人們對利用生成式PLM解決各種非生成式NLP任務的興趣。這些任務包括但不限于傳統的判別任務,如分類和結構預測。例如,圖4說明了Raffel等人(2020)所描述的這種“文本到文本”方法。與傳統的NLP任務判別模型不同,這些任務被重新表述為文本生成問題,從而可以直接用生成式PLM解決。生成的輸出序列通常包括給定任務所需的標簽或其他輔助信息,從而能夠準確地重構預期的類標簽(即避免映射中的歧義),并促進生成/解碼過程(即為預測提供足夠的上下文)。
總結
在這篇文章中,我們介紹了三種使用預訓練語言模型進行自然語言處理的趨勢。我們對每一種方法都進行了深入的描述,并對其應用前景進行了總結。此外,我們還描述了使用預先訓練過的語言模型來自動生成用于提高NLP任務性能的數據。我們希望這一調研將為讀者提供關鍵的基本概念和對范式轉變的全面看法。
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。