亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國衛生與公眾服務部發布了其人工智能手冊,以提供有關可信賴人工智能的高級信息以及在其典型生命周期中部署人工智能的指導。

該手冊旨在指導HHS領導層圍繞TAI制定政策,并評估與AI投資相關的風險,同時也強調了項目和項目經理如何恰當地將其納入,在構建AI解決方案之前與團隊合作,監督項目的整個生命周期,并降低風險

該手冊沒有鞏固正式的政策或標準,而是為人工智能的采用描繪了一個大致的框架,以推廣白宮的人工智能原則,集中相關的聯邦和非聯邦資源,并為人工智能的整個生命周期和未來的使用設置一個智能采用的框架。

該手冊強調了應在“人工智能項目的所有階段”應用的六條原則,呼吁衛生與公眾服務部把握好人工智能公平、公正、透明、可解釋、負責任、健壯、可靠、安全、保護隱私。

從這些原則出發,該手冊著眼于整個人工智能生命周期,從啟動和概念到部署和運營維護,以強調如何將這些原則應用于人工智能采用的常見和關鍵步驟。

該手冊提供了生命周期各個階段的各種用例,以說明如何在設計解決方案和評估模型風險因素等步驟中應用這些原則。這些用例包括自動化醫療文檔處理、用于醫療賬單欺詐檢測的人工智能、用于客戶服務的聊天機器人等

有了該手冊,HHS 將在 2022 年專注于圍繞人工智能的進一步合作和對話。其中包括:

  • 培養 HHS AI 實踐社區
  • 為 HHS 人員舉辦進一步的 AI 午餐和學習課程
  • 成立 HHS AI 委員會以執行 HHS AI 戰略
  • 根據需要擴展劇本以促進道德和值得信賴的人工智能
  • 開發 AI 用例清單
付費5元查看完整內容

相關內容

摘要

這項工作的目的是深入了解人工智能 (AI) 工具以及如何將它們應用于空中目標威脅評估。人工智能工具是包含人工智能元素的軟件產品。關于人工智能有多種不同的思想流派,并且可以在同一個工具中使用不同的方法。許多現代人工智能方法都涉及機器學習 (ML)。本參考文檔將涵蓋不同類型的 AI 和 ML 以及如何將它們應用于威脅評估。這項工作將介紹所有 ML 模型共有的元素,例如數據收集、數據準備和數據清理。該報告還將討論選擇適合不同問題的最佳人工智能類型

此外,這項工作將描述處理缺失數據或數據不確定性的方法。將提出實用的解決方案,包括通過數據插補填充缺失數據或修改人工智能工具的架構

最后,該報告將檢查人工智能工具的輸出與現有基礎設施的集成。將結合威脅評估過程及其可以改進的元素來描述 AI 工具。還將討論 AI 工具系統的通用架構

國防與安全的意義

威脅評估對于維護國家安全利益和維護各國主權具有重要意義。空中威脅評估對于一個有大片國土需要保護的國家(例如加拿大)很有價值。人工智能和機器學習都可以應用于威脅評估的研究領域。通過學習構建人工智能驅動的工具,加拿大的國防和安全將通過獲得持續的前沿研究得到改善。無論哪個國家開發出最有效和最可靠的威脅評估工具,在決策和威脅反應方面都將獲得優勢。通過利用前面提到的快速擴張的領域,加拿大可以獲得決定性的優勢

1 簡介

評估所有領域(如空中、網絡、陸地、海洋、太空)的威脅是維護任何國家安全的一個重要方面。威脅分析包括查看敵人過去、現在和預期的行動,以及這些行動對友軍資產或單位的影響。威脅評估還考慮了為減少、避免或消除風險而可能采取的任何防御措施[1]。在防空的背景下,空中目標威脅評估的任務需要識別、確定空中目標和優先排序,并管理任何必要的資源以應對威脅[2,3]。

當前的空中目標威脅評估任務由操作室中的一組高技能和經驗豐富的人員執行[3,4]。該任務涉及考慮先驗信息(例如,情報報告和評估標準)和獲取的信息(例如,從傳感器系統動態收集的運動學信息),以確定目標對某個感興趣點/區域(POI/AOI)。此信息(運動學和非運動學)稱為提示。這些信息的心理整合需要相當水平的戰術專業知識,包括有關威脅類型、軍事條令和基于經驗的評估啟發式的知識[4]。人工智能(AI)將允許根據防空作戰員(ADO)可用的線索以及他們的威脅評估決策[5]或專業知識來創建工具。

本報告全面概述了AI工具及其構建。這些方法是尖端的并且非常有效。本報告將清晰地展示人工智能工具的開發方式。它將展示哪些組件是必要的,如何獲取數據并使其對機器學習(ML)模型有用,以及AI工具如何與更廣泛的威脅評估環境進行交互

2 人工智能

本節將介紹人工智能的概念和許多現代人工智能算法。它將包含有關AI和ML主要主題的背景知識。它還將描述AI工具中經常出現的組件。

2.1 概述

從一個非常廣泛的角度來看,人工智能是人工系統“執行與智能生物相關的任務”的能力[6]。然而,這是一個非常寬泛的術語,涵蓋了許多系統。例如,它不區分人工智能系統、智能系統和自動化系統。關于什么構成人工智能,文獻和文化中有許多定義。本報告中使用的“人工智能系統”的定義是文獻和文化中各種來源的觀點的結合。

人工智能系統是一種具有以下能力的人工系統:

1.執行“有趣的”[7]任務,這些任務“通常與智能生物相關”[6]

2.“自學成才”[7,8]

早期的AI開發人員研究的問題在智力上對我們來說很困難,但對計算機來說卻相對簡單。這些問題可以用一組形式和數學規則來描述[9]。例如,國際象棋游戲由一組有限且嚴格的規則定義,這些規則可以編程到人工智能中。然而,人工智能很難處理使用人類直覺而不是使用一組正式的規則來處理的任務,例如圖像識別。人工智能的一種方法是基于知識的方法,它涉及嘗試設計形式語言和手工制作的邏輯推理規則,以使機器能夠推理和解決問題。另一種方法是讓計算機從經驗中收集知識,而不是讓人類對程序的行為進行硬編碼。

機器學習是通過從數據中發現模式來獲取知識的能力。因此,這些數據的表示會顯著影響機器學習算法的性能。換句話說,提供給機器的信息(即特征)會影響它解決問題的能力。然而,手工設計的特征受到人類知識的限制。讓機器發現哪種表示最好稱為表示學習。學習到的表示通常比手工設計的表現要好得多。本報告在2.3小節中探討了人工智能的機器學習方法。

2.2 AI 工具的組成部分

AI 工具的最終目標是通過減少操作員的認知和體力工作量來改善操作員的決策過程。為此,人工智能工具通過提供協作環境來補充操作員的角色。人工智能工具處理可用信息,從數據中獲得洞察力,并以有利于操作員體驗的方式呈現信息和洞察力。圖1顯示了AI工具流程的概覽。該模型基于[3]中提出的決策支持系統(DSS)架構。

1.操作員是與工具交互和監控工具、根據工具輸出做出決策并根據這些決策向相關個人報告的人。輸入工具的信息可以是靜態的或動態的。靜態信息(例如配置文件和靜態操作員首選項)在操作期間不會更改。動態信息,例如數據輸入和設備操作,在整個操作過程中不一定保持不變[3]。將操作員與咨詢能力聯系起來的箭頭強調了該工具的協作方面。

2.咨詢能力負責管理操作員和系統之間的交互。這包括管理操作員輸入(即靜態和動態信息),管理環境輸入(例如,約束和環境信息),促進操作員交互(例如,人機交互,人機界面)和顯示信息。要顯示的關鍵信息包括算法的結果和當前的操作限制。

3.領域知識由用于評估的規則和關系組成。例如,領域知識可能包括操作員對信息變化影響的意見。

4.算法組負責處理數據和執行評估或預測任務。可以考慮許多不同的算法和功能來實現算法組。該組將提供應用程序中的大部分AI功能,并且可以選擇或組合不同的AI或ML應用程序。

5.環境為人工智能工具提供操作約束。更具體地說,環境由檢測和測量目標的傳感器系統以及來自更高級別個人的任務概覽和命令組成。

雖然[3]對圖1中的大多數組件進行了詳細解釋,重點是咨詢能力部分,但本報告側重于架構的算法部分。

圖1:操作員、環境和人工智能工具的交互

上面介紹的AI工具被認為是基于第 2.1 節中介紹的定義的AI系統。評估的復雜性和重要性使其成為一項不容易解決的任務。人工智能工具的學習和適應方面可以通過機器學習方法來完成,這將在2.3小節中進行描述。

2.3 AI 中的機器學習

本節將討論機器學習和人工智能的結合。有許多不同類型的AI算法,ML是這些算法的一個子集。本節將描述使用ML從數據中學習的算法類型,以及這對AI工具有何用處。作者還在他們之前的工作中定義了機器學習中的許多基本概念[5]。

2.3.1 概述

根據柯林斯詞典,機器是“使用電力或發動機來完成特定工作的設備”[10]。在機器學習的背景下,機器就是計算機。更具體地說,是計算機中的程序完成了這項工作。正如[11]中所定義的那樣,“如果計算機程序在T中的任務(由P衡量)上的性能隨著經驗E提高,則可以說計算機程序從經驗E中學習某類任務T和性能度量P。”這個定義提出了機器學習問題的三個主要組成部分:任務T、性能度量P和經驗E。

1.任務是要解決的問題。例如,分類任務涉及確定某個輸入屬于哪個類別(例如,對象分類)。其他任務示例是回歸(例如,成本預測)、異常檢測(例如,欺詐檢測)和去噪(例如,信號處理)。

2.性能度量是用于評估ML算法性能的指標。例如,準確度是一種可用于分類任務的性能度量。準確率是模型正確分類的示例的分數。“示例”被定義為特征的集合,通常表示為向量,其中n為特征個數,每個元素為一個特征[9]。數據集是一組例子的集合。

3.經驗是指模型在學習過程中所接受的訓練類型。在無監督學習中,模型所體驗的數據集僅包含特征,并且由模型來學習數據的特征。例如,學習描述數據的概率分布可能很有用。聚類也可以使用無監督學習算法來執行。在監督學習中,模型體驗的數據集不僅包含特征,還包含與每個示例相關聯的標簽。無監督學習模型觀察幾個例子,而監督學習模型觀察幾個例子及其標簽。但是,在某些情況下,有監督和無監督之間沒有明確的區別。例如,半監督學習涉及從包含標記和未標記數據的數據集中學習。在強化學習中,模型不是從固定的數據集中體驗,而是模型與環境交互并從交互中學習。

為了了解模型在處理現實世界中的新數據時的表現如何,通常會分離出一部分數據集,以便僅在完成所有訓練后才能使用。這被稱為測試集,由于模型之前沒有看到測試集中的數據,因此測試集上的性能可以作為模型真實性能的指標。文獻提供了機器學習算法和模型的許多不同分類(例如,[12]提出了機器學習的五種范式:連接主義(例如,神經網絡、象征主義、進化論、貝葉斯和類比)。本報告并不是對機器學習中在空中目標威脅評估領域有用的不同方法的詳盡回顧。本報告重點關注三類特定的方法:監督機器學習、無監督機器學習和強化學習。

2.3.2 監督學習

在監督機器學習中,可以使用一組標記的訓練示例(即訓練集)。該模型的目標是能夠為示例分配正確的標簽,其中正確的標簽是與特定示例對應的標簽。通過基于一組標記的訓練數據最小化某個損失函數來調整模型。具體來說,迭代調整模型的參數,以減少訓練誤差。

1.模型:模型是根據樣本特征輸出標簽的算法。

2.參數:模型的參數根據選擇的模型而有所不同。例如,在神經網絡中,參數包括神經元的權重和偏差。

3.誤差:也稱為損失,誤差用于衡量模型的執行情況。可以針對特定應用設計和修改損失函數。

4.迭代調整:在訓練過程中,采用一定的方案來改變每次迭代的參數。具體來說,迭代調整模型的參數,以減少訓練誤差。一個例子是普通梯度下降法[13]:

其中θ是模型的參數,α是學習率(決定每次迭代調整多少參數的超參數),J(θ) 是模型在整個訓練集上的損失函數, 是相對于θ的梯度。可以使用各種修改來改進普通梯度下降算法,例如動量[13]。這種改進產生的算法包括Adagrad[14]和Adam[15]。

2.3.3 無監督學習

由于機器學習,許多研究和應用領域都取得了許多成功。圖像理解(例如,檢測[16]、分類[17])和自動化物理系統(例如,自動駕駛汽車[18])只是成功的兩個例子。這些成功的很大一部分歸功于監督學習和強化學習的使用。然而,這兩種范式都僅限于人類輸入和經驗:監督學習的訓練信號是目標標簽,而在強化學習中,信號是期望行為的獎勵[19]。使用人類設計的標簽和獎勵的一個弱點是由于訓練信號的稀疏性而導致的信息丟失。例如,盡管用于訓練監督學習和強化學習模型的數據通常具有豐富的特征(例如,圖像),但目標和獎勵通常非常稀疏(例如,表示圖片標簽的單個向量)[19]。無監督學習的動機是更好地利用可用數據來更好地理解數據。因此,無監督學習范式“旨在通過獎勵智能體(即計算機程序)來創建自主智能,以學習他們在不考慮特定任務的情況下觀察到的數據。換句話說,智能體“為了學習而學習”[19]。無監督學習算法的強大之處在于它能夠發現標簽無法完全表達的數據的潛在模式和結構。

2.3.4 強化學習

強化學習(RL)的思想是學習采取什么行動來獲得最大的回報。這種范式背后的一個共同動機是智能體與環境之間的交互(圖2)。根據對環境的觀察,智能體執行影響環境的動作。作為響應,會生成新的觀察結果,并且智能體會收到獎勵或懲罰。

圖 2:智能體-環境交互

RL的兩個重要區別特征是試錯搜索和延遲獎勵。與程序員指定輸出應該是什么的監督學習不同,RL智能體必須進行實驗以發現導致最高獎勵的動作。此外,行動可能會產生長期影響。因此,較早采取的行動可能會導致稍后的獎勵或懲罰。

在監督學習中,該模型嘗試從訓練示例中學習以泛化并在新示例上表現良好。雖然功能強大,但在處理涉及交互的問題時,監督學習是不夠的。例如,在未知環境中學習時,獲得包含代表智能體在所有可能情況下應采取的行動方式的示例的訓練集可能是不切實際的。在這些情況下,智能體必須使用自己的經驗和與環境的交互來學習。

RL系統[20]有四個主要組成部分:

1.策略:策略根據智能體的感知狀態定義智能體的行為。換句話說,它決定了當智能體處于當前狀態時要采取什么行動(或行動的什么分布)。

2.獎勵信號:獎勵信號表明智能體在某個時刻的表現如何。獎勵的概念是RL問題的核心概念,因為從長遠來看最大化獎勵數量是智能體的最終目標。獎勵的類型是特定于問題的。例如,在訓練RL智能體玩游戲時,它可能會因獲勝而獲得正獎勵,而因失敗而獲得負獎勵。結果,通過監控獎勵信號來學習策略。例如,如果當前策略給出的某個動作導致了懲罰,那么該策略可能會以某種方式改變,以便在情況再次出現時避免該動作。

3.價值函數:價值函數表示如果遵循當前策略,智能體在未來的預期表現如何。雖然獎勵被視為即時指標,但價值函數是長期指標。例如,在當前狀態下投資獲得負回報可能會導致總回報為正。價值函數引入了延遲獎勵的方面:某個狀態的價值是預期在長期內獲得的總折扣獎勵,其中每個收到的獎勵都根據最近收到的時間進行折扣。

4.環境模型:環境模型存在于基于模型的RL問題中。它指示環境如何根據智能體在特定狀態下的行為做出反應。然而,環境模型并不總是可用的。無模型方法解決了這一挑戰。

正式表示完全可觀察的環境(即智能體的觀察完全描述當前環境狀態的環境)以進行強化學習的流行方法之一是使用馬爾可夫決策過程(MDPs)。馬爾可夫過程是服從馬爾可夫性質的一系列隨機狀態S:在給定當前狀態的情況下,未來狀態獨立于過去狀態。

其中是第時間步的狀態,t是當前時間步,發生的概率。MDPs是馬爾可夫過程的擴展:除了表征馬爾可夫過程的狀態集S和狀態轉換集P之外,還有可能的動作集A和獎勵集R。

3 空中威脅評估——人工智能工具

本節將把空中威脅評估的任務與人工智能工具的能力聯系起來。 AI 能力將映射到威脅評估的每個階段,并將展示如何將其集成到現有能力中或改進現有能力

3.1 AI 工具在威脅評估中的優勢

如第 1 節所述,ADOs等操作人員面臨認知和身體挑戰,這些挑戰不利于其做出可靠決策的能力。人工智能工具將通過提供以下兩個主要好處來應對這些挑戰:

1.減少認知和身體負荷量:人工智能工具為操作員提供的支持和顯示將緩解導致操作員總壓力的眾多因素。這種好處是通過使用決策支持系統(DSS)的設計原則來提供的。

2.利用最先進的方法:人工智能的機器學習方法是一個非常受歡迎的研究領域,因此在方法的開發和改進方面做了大量工作。通過使用AI支持空中目標決策,該系統可以使用和利用最先進的方法。

3.2 威脅評估中的 AI 工具組件

如2.2小節所述,通用AI工具中有多個組件可以專門用于評估。威脅評估AI工具中的組件及其專業化如下:

1.操作員(Operator)是評估過程中的ADO。操作員將負責確保提供給AI工具的信息盡可能準確。然后,ADO將與該工具交互,以充分了解威脅情況,并獲得AI生成的威脅評估。

2.咨詢能力(Advisory?Capability)負責與ADO以及各種傳感器和數據庫系統進行交互。這將涉及從雷達和其他傳感器收集數據,以及解釋從情報報告中獲得的數據。咨詢能力還負責確保ADO可以有效地與計算機界面一起工作。更新界面可能涉及一個可以結合機器學習的動態過程。

3.領域知識(Domain Knowledge)將包括ADO的經驗以及他們用來進行準確評估的任何規則。在空中威脅評估中,這可能包括常見的高度、異常的飛行模式或敵軍作戰節奏的變化。

4.算法組(Algorithms)負責目標數據的處理和威脅評估。這將包括處理軌跡數據以獲得提示數據,并使用提示數據和領域知識來評估目標的威脅。可能的評估算法包括基于規則的方法[3、4]、貝葉斯方法[3]和本報告[5]中提供的AI技術。

5.環境(Environment)為人工智能工具提供操作限制和目標數據。更具體地說,環境包括檢測和測量目標的傳感器系統以及來自更高軍事指揮鏈的任務概覽和命令。

3.3 機器學習在威脅評估中的應用

由于機器學習方法的種類和成功率眾多且不斷增加,機器學習在威脅評估中的應用數量僅限于研究人員的知識和經驗。本報告將概述如何將三種主要機器學習范式應用于人工智能工具進行威脅評估的示例

3.3.1 監督學習

通過一組標記的過去目標示例,其中每個示例包含有關歷史目標及其相應威脅值標簽的信息,監督機器學習可用于將威脅值分配給目標。在[21]中,監督學習被用于構建多標準決策(MCDM)方法(EMCDM)的集成,以根據當時的線索值推斷目標在某個時間點的威脅值。EMCDM技術由各種MCDM方法組成,它們的輸出組合成一個單一的威脅值。MCDM方法的輸出基于作為輸入的提示值。用于訓練EMCDM技術的監督學習技術取決于集成技術的類型。例如,在加權組合EMCDM技術中,MCDM方法是使用監督學習調整的組合權重。在所有的EMCDM訓練中,示例集由標記的目標實例組成,其中目標實例被定義為目標在某個時間點的提示數據。

3.3.2 無監督學習

可以從目標中提取各種信息。因此,對于某個目標,可以為系統提供關于目標的大量線索,作為威脅評估的基礎。無監督學習可用于分析提示數據,以深入了解底層結構和模式。例如,無監督學習的一種用法是降維。通過降低提示數據的維數,系統可以處理更緊湊和簡潔的目標描述。換句話說,目標是以數據可以提供關于目標的大致相同信息但使用較少資源的方式轉換數據(例如,使用10個提示而不是50個提示)。

實現降維的一種方法是主成分分析(PCA)[23]。PCA旨在通過學習最大化新子空間中數據方差的線性變換,來表達低維子空間中的數據。最大化數據方差背后的直覺是假設更高的方差意味著更多的信息量。數據原本會有一定量的方差/信息。PCA嘗試使用低維子空間來近似數據,同時盡可能多地保留原始方差。PCA的結果之一是檢測和去除數據中的冗余,從而在沒有不必要的線索的情況下描述目標。然后可以將這些PCA生成的線索視為要使用的新的各種線索。然而,在應用過程中需要考慮基于PCA的假設(例如,方差足以描述信息量,主成分是正交的)。

自動編碼器[9]是經過訓練以將輸入重新創建為其輸出的神經網絡。自動編碼器通常由兩部分組成:編碼器和解碼器。編碼器網絡生成低維潛在特征。然后將潛在特征輸入到解碼器網絡中,該解碼器網絡嘗試輸出最初輸入到編碼器中的內容。通常存在約束和限制,以防止自動編碼器能夠完美地重新創建輸出(即,它只能提供近似值)。結果,模型被訓練為優先使用最有用的數據特征。因此,與PCA類似,自動編碼器可用于使目標提示數據更加簡潔,并且僅包含足以描述目標的提示數據。自動編碼器的其他用法也存在。例如,自動編碼器可用于去噪[24]應用程序。這在威脅評估中特別有用,因為目標數據(例如,傳感器數據、提示)本質上是含噪的。

除了降維之外,無監督學習的另一個用途是聚類。文獻中有大量關于用于聚類的無監督學習算法的工作,所有這些算法都用于威脅評估。在不關注特定算法的情況下,聚類的一種用途是將感興趣的目標與歷史目標進行聚類。這樣做的目的是發現感興趣的目標是否與歷史目標相似。如果有關于如何處理過去目標的知識,操作員可以在決定對當前感興趣的目標采取何種行動時考慮這些信息。

3.3.3 強化學習

可以將威脅評估過程建模為強化學習問題。例如,咨詢能力可以在操作期間使用RL來了解操作員希望如何顯示信息。這類似于社交網站知道在首頁上顯示哪些項目的方式。例如,如果RL模型有一個獎勵處理速度的策略,它可以測量從ADO開始評估到ADO提交威脅評估所花費的時間。這將允許模型因導致更短的威脅評估過程的行動而獲得獎勵,從而鼓勵更有效的交互選擇。如果某個深度為兩級的菜單項(即,它需要兩次單擊才能訪問)被頻繁使用,則模型可以將該菜單項放置為第一級深度項。如果該項目被非常頻繁地使用,則該項目應該在主屏幕上被賦予一個突出的按鈕位置。在空中威脅評估應用程序界面上工作的強化學習算法將能夠進行這些和其他更改,以檢查威脅評估的時間是否正在減少,在這種情況下,它將獲得獎勵。

有大量研究和許多資源可用于解決MDPs,這使得使用MDPs解決RL問題成為一個不錯的選擇[25]。

3.4 結構與流程

人工智能工具的結構需要考慮多種因素。該工具將在流程管道中運行,從數據收集和準備開始,到模型訓練,然后到模型預測,最后為用戶顯示結果。在AI工作流程中,可以更容易地將結構視為流程工作流[26]。一旦AI工具經過訓練,它就會不斷返回到周期的第一階段,并使用新數據和新見解進行重新訓練。這個過程使人工智能工具非常強大,可以隨著時間的推移保持準確性和有效性。

人工智能工具開發的第一階段是收集高質量數據。這些數據將存放在一個或多個可供AI工具訪問的數據庫中。人工智能工具將首先在數據庫中的現有數據上進行訓練,然后在生產時,它將主動監控任何操作數據庫中的最新數據,以便提供威脅評估。

除了收集數據,還必須確定最有效的機器學習或人工智能模型。該決定需要考慮可用數據的類型、數據的數量及其質量。與最終用戶面談也很重要,以確保所選模型將以對他們有用的格式輸出信息。這可能是一個要求,例如最終威脅評估值必須呈現為分類問題(例如,高、中、低)或回歸問題(例如,1.4、2.9、9.0)。要求也可能更嚴格,例如人工智能工具的推理必須能夠被人類操作員解釋。像這樣的要求可能會使現代機器學習研究的整個分支沒有吸引力,而是需要不同的模型。由于所選AI模型對整個工具的影響很大,因此必須在模型開發之前的早期階段收集最終用戶的需求。

一旦選擇了一個或多個模型類型,就必須對其進行訓練。在這個階段,由于上一步的需求分析,一些AI模型可能已經被淘汰。在此步驟中,將淘汰更多模型。在對數據進行訓練之前,通常很難判斷哪個機器學習平臺最有效。這意味著應該對多個模型進行數據訓練,并使用某種準確度指標進行比較。一旦確定了最準確的模型,該模型將被完全訓練并準備好在生產中使用。

下一階段是將模型部署到生產應用中。ADO獲得了一個功能性AI工具,可以連接到操作數據庫并協助威脅評估過程。輸出到ADO的最終值都將被處理和清理,最終格式將被確定。然后,隨著所有ADO將其威脅評估以及可用的線索提交給訓練數據庫,該工具將得到持續訓練。這將使該工具能夠與新出現的威脅和新情況保持同步。ADO還可以就AI工具提供的評估進行反饋。例如,如果AI工具提供“高”威脅評估,而ADO認為它應該是“中”,則ADO可以提供反饋信號,表明該工具不正確并且威脅等級太高。這將存儲在數據中并用于在線訓練,使其能夠不斷地向經驗豐富的ADO學習,也可以自學成型。

AI工具流程的最后階段是將工具轉移到精度維護。在這個階段,需要對工具進行監控,以確保準確性不會下降。該工具也將在此階段接收反饋并從ADO評估中學習。最后,人工智能工具的開發并沒有停留在這個最后階段;相反,它必須隨著威脅的演變、環境和要求的變化以及新的和更相關的數據變得可用,而相應地更新和改進。

圖3: AI工具中的模塊及其交互

圖 3 提供了AI工具中以下模塊的可視化表示:

1.數據庫組件

  • 存儲傳感器數據、操作員情報和來自歷史數據的人為威脅評估。

2.數據訪問和存儲模塊

  • 與數據庫交互以不斷地保存和讀取來自傳感器或人工操作員的數據。
  • 查詢數據庫以提供關于1個目標的完整信息集,用于預測威脅評估。

3.數據預處理模塊

  • 清理數據,處理缺失值,并正確格式化數據以用于訓練或訓練模型的推理。

4.ML 模型組件

  • 實現機器學習模型的AI組件。這就是將整個工具定義為AI工具的原因。所有其他組件都用于支持該組件。
  • 在訓練管道中,模型仍在開發中,可能會同時測試多個模型。
  • 在推理管道中,已經選擇了一個模型,并由數據預處理模塊提供數據,以便它可以進行預測。

5.數據后處理模塊

  • 在將推理步驟的結果顯示給用戶之前對其進行清理。
  • 可以從零到一之間的預測值映射到更易讀的值或類別評級(例如,低、中、高)。

6.可視化/操作員交互模塊

  • 負責所有操作員交互。提供數據的可視化和讀數,并以最佳方式傳達模型對威脅價值的預測。
  • 獲取操作員對分配的威脅值的反饋(例如,太高、太低、非常準確)。
  • 與數據訪問和存儲模塊通信,將操作員反饋存儲為有用的數據,以供未來訓練使用

3.4.1 人工智能工具集成

將ML組件集成到更大的AI工具中需要兩條不同的管道。第一個管道將是訓練管道,這是進行模型選擇、測試和訓練的地方。一旦確定了合適的ML模型,并且該模型已經針對所有當前可用的數據進行了訓練,它將在稱為推理管道的第二個管道中使用。

圖4顯示了訓練管道的可視化。第一步需要收集歷史威脅評估數據以及ADO威脅標簽(如果所需的ML模型使用監督學習算法)。接下來,這些數據將通過數據預處理模塊合并為格式良好的數據集。然后,這個大型數據集將被分成三個不同的集合:

1.訓練數據集:該數據集將是ML模型在訓練時唯一看到的數據集。它也將是三個數據集中最大的一個。通常在本節中描述的三組之間決定百分比分配。這取決于系統設計者的判斷。常見的比率是80/20或90/10,具體取決于可用訓練點的數量。這些點將用于訓練模型,但重要的是保留一個保留數據集,以確保您的模型不會過度擬合訓練數據(即,無法泛化到新的未見數據點)。

2.驗證數據集:這將在訓練進行時用作測試集。這些數據不會用于訓練模型,而是在訓練的非常時期結束時,將在這個小集合上測試模型。這對于確定模型何時得到充分訓練很有用。即使模型在訓練數據集上的損失可能會繼續減少,但如果驗證集上的損失已經趨于穩定,那么模型可能會過度擬合訓練數據集,應該停止訓練。

3.測試數據集:該數據集將為所有候選 ML 模型提供最終評估指標。它不會用于訓練,并且模型設計者也必須不要檢查此數據集。這將確保模型超參數不會根據此測試數據集進行調整。測試數據集的價值在于發現ML模型是否可以泛化到來自類似于訓練示例分布的看不見的數據點。如果測試數據集的損失遠高于訓練集和驗證集,則模型很可能對其訓練數據進行過擬合。如果有多個候選ML模型,則可以使用測試數據集上的損失和準確率來確定選擇哪個模型。

在模型訓練期間將使用訓練和驗證數據集,在模型評估期間將使用測試數據集。

圖4 :ML 模型訓練管道

一旦最佳候選ML模型經過訓練和選擇,它將用于AI工具的生產版本。該模型將用于實時提供在線推理/預測。候選模型的訓練和測試可以繼續進行,也可以納入新模型或研究。這將確保AI工具始終使用性能最佳的ML模型。

一旦經過訓練的模型展示了所需水平的能力,就該使用推理管道了。推理管道是ML組件,將在操作中使用的實際AI工具中使用。該管道的示意圖如圖5所示。

圖5:ML 模型推理管道

人工智能工具將被要求不斷監控傳感器和操作員的情報,以獲得最準確的現實畫面。該數據將組合成與每個空中目標相關的提示數據集。一旦一組提示數據可用,它將被提供給ML模型,以便進行預測。然后,該預測將通過本工作前面討論的AI工具的其他組件提供給ADO。一旦投入生產,該模型還將通過運行來自新威脅評估情況的示例和迄今為止ADO對預測的反饋來保持最新狀態。這種訓練可以以在線方式(即連續)完成,也可以通過批量訓練(即以設定的時間間隔一次對所有示例進行訓練)完成。該模型還將對其性能進行監控,以確保準確性和損失不會隨著操作現實的變化而隨著時間的推移而降低。如果檢測到性能下降,則人工干預和糾正可以使系統恢復到以前的性能水平。

3.5 威脅評估和人工智能流程

本小節將解釋威脅評估過程的背景以及傳統上它是如何完成的。它還將標志著傳統流程中的挑戰和通過智能決策支持系統(DSS)改進的機會。還將介紹AI工具及其與傳統DSS威脅評估的關系。

3.5.1 用于威脅評估的因素和結構

有關因素信息和分類的描述,請參見[21]。出于 AI 目的,因素數據應構造為包含m個因素的向量,其中m是觀察中的因素數量,每個條目是一個因素值。每個完整的向量都是一個樣本,如果有足夠大的樣本訓練數據集,就可以進行機器學習。

對于空中威脅評估,已經確定了16個因素來構成關于目標的最有價值的信息[4]。這些見表 1。

表 1:用于目標威脅評估的因素。

3.5.2 挑戰和機遇

威脅評估過程絕非易事。這是一項壓力極大的任務,需要做出復雜的決策。該過程的認知和物理性質是由于各種原因造成的,當它們結合起來時,會對操作員的決策過程產生不利影響。

操作員不僅必須處理來自各種來源的大量和類型的信息,而且還要同時管理多個任務。例如,操作員管理可能來自眾多媒體、顯示器和人員的音頻、口頭和視覺信息[4]。除此之外,他們還必須執行其他任務,例如監控指定監視區域內的空中目標、了解可用資源以及準備情況報告[4]。這種高度的多任務處理和信息過載給威脅評估任務帶來了認知復雜性和身體壓力。

除了大量數據之外,運營商還面臨著信息中固有的不確定性。運營商必須考慮到數據源的不完善性以及人類行為的不可預測性[3]。不確定性量化和感知在威脅評估過程(和戰術軍事行動一般[3],因為運營商依賴決策過程中的數據來獲取環境(和對手)的感知。

在時間限制下操作人員的工作也造成了相當大的壓力。需要時間來收集信息、處理信息并最大限度地減少不確定性。但是,空中目標正在高速移動,因此必須根據可用的融合做出決策此外,用于信息收集/處理和不確定性最小化的時間越多,制定后續決策和行動的時間就越少,對手收集/處理信息和行動的時間就越多。最后,錯誤決定的后果是嚴重的,甚至可能是災難性的。飛機的錯誤分類1988年造成290名平民死亡的事件[27]就是決策失誤的一個例子。操作員工作的重要性和不正確執行的后果增加了任務的壓力。

運營商在威脅評估過程中面臨的挑戰促使人們研究如何在不影響威脅評估可靠性的情況下減輕認知和物理工作量。更具體地說,有機會開發用于空中目標威脅評估的決策支持系統(DSS)[4]。圍繞DSS的設計原則(即DSS 所包含的內容)有許多著作。

DSS的關鍵要求之一是它不能取代運營商;相反,DSS是對運營商的補充。[3]將此要求描述為DSS充當“決策支持而非決策自動化”。這方面允許在威脅評估過程中操作員和系統之間的協作。讓人參與決策過程是至關重要的:人在環方面確保每個決策都有責任。軍事行動的合法性要求問責是其行動的組成部分,問責包括明確的合法性和道德標準。如果在這個過程中沒有操作者,那么誰應該為錯誤決策的后果負責的模糊性就會帶來法律和道德上的分歧。

除了確保操作員始終參與決策之外,文獻中還介紹了其他設計原則。[2]根據文獻及其實地工作,詳細列出了設計威脅評估系統的規則。顯著的設計特點包括:

1.透明度:DSS應該能夠證明其計算和后續建議的合理性[3,4]。因此,DSS應向操作員提供導致最終值[2]的中間計算以及每個提示對最終威脅值[4]的影響。消除DSS的黑盒特性的重要性在于建立對系統的信心和信任[3]。如果不知道決策/建議是如何生成的,人類不太可能接受自動化系統的決策/建議[29]。理解上的不透明為誤用和錯誤創造了機會[12]。由于使用機器學習方法來構建AI工具,因此這是這項工作的一個重要考慮因素。機器學習方法不限于人類定義的決策規則,因此可以表現出黑盒性質。因此,與傳統DSS相比,AI工具的透明度更為重要。

2.處理不確定性:DSS決策所依據的數據中有許多不確定性來源(例如,傳感器數據、威脅值計算中的參數)[2]。處理不確定性也是DSS的一個重要設計特征,因為它允許運營商調整他們對系統的信任級別。在[2]中,這個設計方面是通過使用提示數據的區間表示來實現的。

3.信息的有效和交互式顯示:使用圖形格式顯示信息很重要,因為威脅是一個模糊的概念[4]。應傳達給操作員的重要信息是威脅等級、威脅歷史、線索列表[4],以及與建議相關的不確定性[3]。除了顯示信息之外,系統還必須能夠提供操作員可以與之交互的媒介。這可確保操作員留在威脅評估過程中[3]。

本報告中提出的人工智能工具可作為空中目標威脅評估的DSS。人工智能工具的人工智能方面在于系統的運行方式。更具體地說,人工智能工具將把人工智能概念(例如,機器學習、適應)納入其操作中。

3.6 AI 工具

AI工具將能夠集成到空中威脅評估的所有階段。本小節將描述威脅評估的每個階段與AI工具的能力之間的關系。

空中威脅評估的階段如下[4]:

1.掃描并選擇提示。

2.比較、調整適合和適應。

3.計算威脅等級。

4.繼續處理。

關于1(掃描并選擇提示),AI工具將能夠使用所有可用的提示。這與人類操作員不同,后者僅審查18個可用于評估飛機的線索中的6到13個[4]。這些信息將通過各種傳感器從環境中收集,然后通過通常的情報報告或傳感器讀數方式進行報告。這些數據將被編譯到一個數據庫中,供AI工具訪問以從中進行學習和預測。

關于2(比較、調整擬合和適應),AI工具將對數據庫中可用的線索進行計算。該數據可以與ADO專家提供的感知數據(例如預期海拔)進行比較,并檢查實際數據是否一致。如果數據與預期不一致,人工智能工具會將差異與歷史示例進行比較,以提供對差異的解釋或調整。如果數據無法協調,則可能需要調整模型的擬合度,人工智能工具可以選擇將飛機作為不同類型(即軍用、民用)進行處理。

關于3(計算威脅評級),人工智能工具將使用可用的線索,如果它增強預測,可能還會使用這些線索的子集,來預測目標的威脅評級。 Liebhaber、Kobus 和 Smith 在[30]中發現威脅等級獨立于檢查的線索數量。

關于4(繼續處理),如果所有提示數據都可以充分解釋,人工智能工具將完成分析,或者它將繼續搜索和處理新的提示。這個過程將一直持續到模型通過基于解釋的輸出獲得ADO的批準,或者直到所有可用的線索都被處理并且模型擬合得到盡可能好的調整。

3.7 AI 工具在威脅評估中的挑戰

第3.5.2節概述的關于操作員對DSS的信任的關鍵點之一是用于生成威脅評估結果的模型的透明度。操作員很難對沒有提供理由和解釋的機器輔助預測有信心[4]。出于這個原因,已經創建了許多在計算和標準加權方面具有透明度的DSS方法。例如,許多MCDM方法可以為每個單獨屬性的權重以及它們如何對最終威脅評估做出貢獻提供充分的理由。這是MCDM DSS工具的優勢之一。不幸的是,這種透明性可能會導致工具缺乏復雜性和表現力。相反,機器學習工具可以同時基于所有數據點之間的非常深的聯系做出假設,這可能是以人類不會的方式。這種增加的復雜性往往會降低工具的透明度和可解釋性。

某些機器學習方法的結果仍然是透明的,并且以與自學的MCDM方法相似的方式工作。例如,線性回歸模型可以提供每個線索如何影響最終威脅評估評估的完整理由。該模型既受益于透明度,也受益于無需人類專家參與的自學。

其他一些機器學習模型并沒有從透明度中受益。最先進的機器學習模型之一是神經網絡。這是一個擁有大量研究的大領域,也是深度學習分支的新爆炸。這些方法不那么透明。在[31]中發現的2020年文獻調查探索了許多現有的試圖使神經網絡和深度神經網絡推理對最終用戶可解釋的工作,但是,局限性仍然存在。

現實世界的威脅評估變量通常包括決策過程各個級別的不確定性。對威脅評估準確性的最大影響之一來自根本沒有獲取的數據。這種丟失的數據可能是由于無法收集、傳感器故障、傳感器誤報或許多其他原因造成的。當數據完全丟失時,就很難就目標所擁有的威脅做出明智的決定。幸運的是,機器擅長執行計算,可以估計、替換或忽略丟失的數據。

在[22]中,探索了為每個決策結構預先計算不同查找表的選項。這將涉及根據每種可能的信息缺乏狀態訓練許多不同的模型,并將它們與完整狀態相關聯。這假設對于訓練有大量完整的示例可供借鑒。不幸的是,“為所有可能的輸入組合訓練網絡的天真的策略在復雜性上呈爆炸式增長,并且需要為所有相關案例提供足夠的數據”[32]。相反,[32]建議定義一個可以被認為是真實的基礎模型,然后將所有數據與該模型相關聯。

在許多可能的情況下,在訓練時沒有或只有很少的完整示例可用。在這種情況下,必須確定是僅使用完整數據進行訓練,還是以某種方式合并不完整的示例。在[32]中,發現用均值代替缺失輸入會導致比僅基于完整示例訓練網絡更差的性能。因此,尋求改變神經網絡架構或訓練方法的方法,以有效地合并(可能大量)不完整的數據示例。

使用不完整數據進行訓練的最有效方法之一來自[33]。本文證實,在訓練神經網絡中使用原始不完整數據可能是比在學習開始之前填充缺失屬性更好的方法。所采用的方法涉及對神經網絡架構的輕微改變,但應該與大多數現有架構兼容。該方法通過將第一個隱藏層中典型神經元的響應替換為其期望值來工作。高斯混合模型在每個神經元的輸出上進行訓練,以學習概率密度函數和期望值。這消除了通過單個值對任何缺失屬性進行直接插補的需要。 “隱藏層不是計算單個數據點的激活函數(對于完整的數據點),而是計算神經元的預期激活”[33]。該方法還取得了與其他現有方法可比的結果,這些方法可以從不完整的數據中進行預測,但需要完整的數據進行訓練。

另一種方法可以通過提高缺失數據插補的準確性來采取。[34]研究了文獻中許多可能的數據插補解決方案。它還指出,一些無監督學習聚類算法,如分類和回歸樹(CART)和K-means,已適用于缺失數據的問題。缺失數據插補的優點是不需要對實際的機器學習模型或平臺進行任何更改。當前存在或將來構建的任何基于完整數據提供準確預測的方法都將有效地處理通過插補生成的數據。數據插補的目標是以盡可能接近現有真實數據分布的方式填充缺失值。如果成功完成,則可以對新完成的數據使用現有的統計分析和機器學習工具。

4 AI工具的架構

在本節中,將討論AI工具的潛在架構。將涵蓋從面向操作員的界面到AI組件組合的設計。所提出的AI工具的整體架構可以在參考文獻[35]中看到,它需要三個主要組件,如圖6所示。

圖6:AI 工具的概念框架

未來的人工智能工具可能會將舊的基于模型或自上而下的方法與新的數據驅動的自下而上的方法結合起來。這種類型的系統允許人工智能工具擁有一個由數百或數千個專家派生規則以及數百萬條特定領域知識(如歷史傳感器數據)組成的知識庫[36]。一種可以結合領域專業知識和數據驅動學習的人工智能系統是回歸樹。圍繞回歸或分類樹構建用于空中威脅評估的AI工具將是一個不錯的選擇。回歸樹的另一個好處是它們的輸出可以被人類操作員解釋,并且可以解釋它的選擇。整個模型基于一系列決策或規則,這些決策或規則可以在操作員界面中作為理由提供。這使ADOs可以對AI工具提供的評估充滿信心,或者質疑為什么某個值的解釋與他們的解釋不同。

AI工具的前端組件將是所有ADO交互發生的地方。它將顯示可用信息和AI工具獲得的見解。它還將允許ADO與信息交互并形成自己的結論。此前端將需要分析ADO工作流程。在[4]中已經對美國海軍ADOs進行了采訪,并提出了許多不同的圖形顯示建議。前端應顯示計算出的軌道威脅等級,并為該評估提供證據和解釋。還應提供原始數據,以便ADOs可以確認AI工具的假設。盡可能以圖形方式呈現給用戶的概率,因為這會減少冒險行為[37]。前端還將通過使用強化學習來利用AI功能。應制定一項獎勵快速完成ADO活動的政策,例如將資源分配到目標軌道以保護資產。此RL算法將能夠決定用戶界面(UI)元素的放置位置以及UI上顯示的內容。如果將常見動作從菜單移動到主顯示屏增加了RL功能獲得的獎勵,那么ADO完成任務所用的時間將會減少。這確保了前端最終變得最優,并適合實際ADOs的工作流程。

人工智能工具后端的兩個不同元素之間存在區別。在AI中,該工具可以是正在學習的,也可以是經過全面訓練并準備好執行的。首先將檢查學習后端。無論是第一次訓練AI工具還是處于持續學習狀態,它都會利用學習后端。學習后端連接到包含歷史數據的知識數據庫,可用于提供數百萬對自下而上的人工智能技術有用的數據點。這是機器學習和決策樹將特別有效的地方。如果實施決策樹學習算法,它將能夠創建有助于根據歷史數據和決策對新目標進行分類的規則。這些規則還允許AI工具向ADOs解釋其輸出。

當工具準備好用于生產并與前端交互時,將使用正在執行的后端。這種執行就緒狀態將存儲自上而下或基于模型的人工智能的人類專家規則。該組件將是一個由學習后端輔助的專家系統。通過對ADOs的專業知識和對目標線索重要性的看法的采訪中獲得的數千條規則將使其成為AI組件。同時,通過將這些人工規則與通過機器學習在學習后端找到的規則相結合,可以優化值和預測。

一些功能性和非功能性需求可以從目前已知的用于威脅評估的AI工具中指定。更高級的要求應通過與未來ADO 客戶的面談來制定。

4.1 功能需求

1.當傳感器或智能數據更新時,人工智能工具應攝取數據并進行訓練或預測。

2.AI 工具應為 ADO 定義的感興趣區域內的所有目標提供評估預測。

3.界面應提供評估說明并允許 ADO 交互。

4.AI 工具應提供自動模型訓練或新數據的重新訓練。

5.AI 工具應與 ADO 請求時可用的任何數據子集一起使用,并在新數據可用時合并它。

4.2 非功能性要求

1.AI 工具應在數據可用后 100 毫秒內提取數據。

2.AI 工具必須處理每個實例和感興趣區域的數百個目標。

3.AI 工具應在 2 秒內提供 ADO 要求的特定威脅評估。

4.界面必須符合 ADO 偏好,并允許在 3 次點擊內訪問所有常用命令。

5.人工智能工具必須對缺失的數據做出強有力的反應,并繼續進行評估和學習。

4.3 未來步驟

本報告之后的下一步將是開發供ADOs用于空中威脅評估的AI工具。為完成此目標應采取的一系列步驟如下:

1.需求分析:人工智能工具開發人員應在威脅評估過程的每個階段與關鍵決策者坐下來。應采訪ADOs,以確保該工具滿足其工作模式和預期結果的所有要求。還應與流程早期的關鍵人員進行面談,以確保系統兼容性。這將包括傳感器和其他資產經理,他們可以確認系統輸出將如何格式化并提供給AI工具。人工智能工具完成分析后,需要以有用的格式輸出和存儲,因此依賴人工智能工具輸出的系統中的決策者應該分析他們的需求。

2.確定AI工具所需的組件:完成需求分析后,開發人員應決定哪些通用AI工具組件將需要,哪些可以省略(如果有的話)。可能還需要開發某些專門的組件來支持威脅評估和軍事環境所面臨的獨特挑戰。應該開發工具的架構,并為每個組件分配明確的職責。該架構還將受益于每個組件之間的嚴格輸入和輸出合同,以便數據可用于現有系統。

3.AI和ML組件的選擇和評估:架構和需求確定后,應該明確哪些類型的AI和ML適合該問題。每個可能涉及AI或ML的組件都需要提出和訓練多個候選人。然后將比較這些候選者,以確定哪個最有效地解決了獨特的要求。一旦選擇了最佳模型并選擇了正確的AI類型,所有模型將被移入生產環境并準備連接到AI工具中的其他組件。

4.文檔和培訓:一旦開發了最終的AI工具并通過代碼注釋和其他文檔工具正確記錄了文檔,就該開發外部文檔了。該文檔應傳達AI工具的實用性以及如何有效使用它及其功能。審查ADO要求將有助于為受眾塑造文檔。一旦開發了該工具,培訓會和從ADOs收集反饋將很有用。

5.集成到生產系統:人工智能工具將投入生產,以協助ADOs進行空中威脅評估。需要檢查智能管道中較早的系統和管道中較晚的系統之間的所有連接以確認兼容性。

6.監控和維護:隨著時間的推移,隨著新威脅或新情況的發現,人工智能工具將能夠得到更新和改進。無論是通過人工還是自動系統,持續監控AI工具以確保預測質量不會隨著時間的推移而降低,這一點很重要。通過使用新版本更新舊模型,也可以納入AI和ML研究的新改進。

5 結論

人工智能工具是執行通常由人類處理的復雜任務的最先進方法。這為提高人類操作員的效率和有效性提供了許多可能性,例如執行高腦力任務的ADOs。威脅評估就是這樣一項非常適合人工智能協助的任務。重要的是要承認,人工智能工具不會取代操作員做出關鍵決策:相反,它們將為決策者提供更準確的數據,以有效地做出關鍵和及時的決策。

將ML集成到AI工具中可以帶來許多過去只能通過人類設計才能實現的新可能性。ML可以讓AI工具在沒有人類教授或者面對不斷變化的情境要求或敵人能力的情況下,從數據中學習。它可以重新設計AI工具交互,使其對 ADOs盡可能有用。它可以幫助將新目標與歷史示例進行聚類,從而為ADOs提供更好的威脅心理模型。可以自動檢測異常數據或空中目標并向操作員報告。

熟練和經驗豐富的ADOs與AI工具的結合將實現更快、更準確和更強大的空中威脅評估。通過讓人工操作員參與進來,該工具將保持ADO的責任和專業知識,同時提高生產力和效率。結合處理不完整數據狀態的現代方法也將使該工具對數據不準確或不可用具有魯棒性。

因此,該工具應該有助于國防和威脅評估過程。

付費5元查看完整內容

本出版物是歐盟委員會科學和知識服務機構聯合研究中心 (JRC) 的一份報告。它旨在為歐洲決策過程提供基于證據的科學支持。所表達的科學成果并不意味著歐盟委員會的政策立場。歐盟委員會或代表委員會行事的任何人均不對本出版物的可能使用負責。

前言

本報告是在 AI Watch 的背景下發布的,這是歐盟委員會于 2018 年 12 月推出的用于監測歐洲人工智能 (AI) 的發展、采用和影響的知識服務。

人工智能已成為具有戰略意義的領域,有可能成為經濟發展的關鍵驅動力。人工智能還具有廣泛的潛在社會影響。作為其數字單一市場戰略的一部分,歐盟委員會于 2018 年 4 月在其“歐洲人工智能”中提出了一項歐洲人工智能戰略。宣布的歐洲人工智能戰略的目標是:

● 提高歐盟的技術和工業能力以及人工智能在整個經濟中的應用,包括私營和公共部門;

● 為人工智能帶來的社會經濟變化做好準備;

● 確保適當的道德和法律框架。

2018 年 12 月,歐盟委員會和成員國就歐盟人工智能的發展發布了“人工智能協調計劃”。協調計劃提到了 AI Watch 監控其實施的作用。

隨后,在 2020 年 2 月,委員會公布了其對所有人都適用的數字化轉型的愿景。委員會提交了一份白皮書,提出了一個基于卓越和信任的可信賴人工智能框架。

此外,2021 年 4 月,歐盟委員會提出了一系列促進人工智能卓越發展的行動,以及確保該技術值得信賴的規則。擬議的《歐洲人工智能方法條例》和《人工智能協調計劃》的更新旨在保障人民和企業的安全和基本權利,同時加強歐盟國家的投資和創新。 2021 年對 AI 協調計劃的審查參考了 AI Watch 的報告,并確認了 AI Watch 在支持協調計劃的實施和監測方面的作用。

AI Watch 監測歐盟在人工智能方面的工業、技術和研究能力;成員國與人工智能相關的政策舉措;人工智能的采用和技術發展;和人工智能的影響。 AI Watch 在全球范圍內以歐洲為重點。在 AI Watch 的背景下,委員會與成員國協調工作。 AI Watch 結果和分析發布在 AI Watch Portal (//ec.europa.eu/knowledge4policy/ai-watch_en) 上。

通過AI Watch的深入分析,我們將能夠更好地了解歐盟的優勢領域和需要投資的領域。 AI Watch 將對人工智能對增長、就業、教育和社會的影響和益處進行獨立評估。

AI Watch 由歐盟委員會聯合研究中心 (JRC) 與通信網絡、內容和技術總局 (DG CONNECT) 合作開發。

本報告涉及 AI Watch 的以下目標:開發一個 AI 指數,包括與政策制定相關的維度。它通過以指標的形式提供統計證據來總結 AI Watch 提供的主要結果

摘要

經過多年非常活躍的技術發展,無論是在硬件還是軟件方面,人工智能領域已經蔓延開來,其影響在經濟和社會中無處不在,越來越多的人工智能支持的工具和應用程序被用于工作環境和個人領域。與所有創新技術一樣,必須對新興人工智能領域及其趨勢進行全面監測,以了解其影響的范圍。這個動作可以讓您了解可能需要注意或干預的問題和情況。在這方面,本出版物從多個角度分析了與人工智能發展相關的多個指標。盡管地理重點是歐盟 27 國,但在可能的情況下,我們會提供與全球主要人工智能強國(即美國和中國等)的比較。此外,如果可用,還為 27 個歐盟成員國提供指標

該分析分為五個維度:(i) 人工智能領域的全球視野,(ii) 行業,(iii) 研發 (R&D),(iv) 技術,以及 (v) 社會方面。結果表明,正如預期的那樣,人工智能正處于技術演進和改進的階段。美國在經濟方面處于世界領先地位。中國緊隨其后,特別是由于該領域的專利活動非常突出。歐盟位居第三,但有幾個因素支持這樣一個論點,即與這兩個領先國家的距離并不像人們經常提到的那樣。分析表明,歐盟在研發方面的表現非常出色——超出了歐共體資助項目的考慮范圍。此外,歐盟展示了人工智能服務和自主機器人技術的專業化。此外,歐盟在工業機器人和新機器人初創企業的貿易中表現出非常積極的動態。關于人工智能的投資,我們觀察到歐盟領域潛在發展的積極信號,因為去年所有 27 個歐盟成員國的私人和公共投資水平都有所增加。

執行總結

本報告介紹了人工智能觀察指數,這是一組指標,可以更好地了解歐洲的優勢領域以及人工智能 (AI) 領域值得關注的領域。 AI Watch Index 提供了一套結構化的量化指標,用于衡量 EU1 在與決策相關的 AI 的各個維度上的表現和定位。該指數的地理重點是歐盟,在有數據的情況下,覆蓋各成員國。由于部分指標覆蓋全球,歐盟與美國、中國等人工智能領域主要參與者的比較分析也成為可能。該指數圍繞五個維度進行組織:(i) 人工智能領域的全球視野,(ii) 行業,(iii) 研發 (R&D),(iv) 技術,以及 (v) 社會方面。表 1 列出了圍繞 5 個維度和 10 個子維度組織的 22 個指標列表。

表1:AI 觀察指數各維度指標匯總

分析顯示,在全球人工智能格局、人工智能產業和人工智能研發維度上,美國在人工智能領域處于全球領先地位,其次是中國和歐盟。

歐盟最重要的因素一方面在于其在人工智能服務和機器人技術(包括自主機器人和工業機器人)中的重要作用,另一方面在于其在人工智能研發活動方面的強勢地位。關于人工智能服務——與提供人工智能服務和應用程序相關的活動,包括基礎設施、軟件和平臺服務——歐盟在全球范圍內具有優勢,因為其在人工智能領域的經濟活動份額高于全球平均水平。事實上,雖然美國在人工智能服務的全球份額中占有較高的份額,但相對歐盟人工智能服務在歐盟人工智能活動總數中的份額高于美國。同樣,歐盟在自主機器人技術方面也具有比較優勢——機器人系統旨在在涉及與其他機器或人類交互的相對復雜的環境中運行。歐洲在工業機器人貿易(考慮出口和進口)方面的比較優勢,以及新機器人初創企業數量的穩步增長趨勢,都補充了這一點。鑒于人工智能有望在機器人領域發揮重要作用,作為其技術發展下一步的關鍵推動力,這一點尤其重要。事實上,人工智能支持的未來幾代機器人有望更好地與物理現實交互,尤其是與人類交互(例如,用于照顧人類的機器人)。歐盟在機器人相關領域的主導地位表明其在該領域的未來競爭力。同時,這里考慮的技術領域極具活力,需要對工業和技術發展進行投資以保持競爭優勢。

其次,歐盟在人工智能研發活動方面非常活躍,以人工智能相關專利和頂級人工智能會議上的前沿研究出版物為代表。盡管英國脫歐對整個歐盟 AI 格局產生了明顯影響,但歐盟成員國形成的研究合作和伙伴關系使他們能夠在全球范圍內擁有影響力。換句話說,歐盟成員國建立了研發合作網絡,支持他們交換信息的能力,進而建立知識。這些是創新能力的關鍵要素。單獨考慮專利和研究出版物,可以觀察到一些相關差異:雖然歐盟在前沿研究出版物方面發揮著非常重要的作用,僅次于美國,但歐盟的專利活動仍然較為平和。還有第三種類型的研發活動,即歐盟資助的項目,為了進行國際比較,我們的分析并不總是考慮這些活動。然而,它們對整個研發生態系統的貢獻是根本性的。此外,正如之前的 AI Watch 工作(Righi 等人,2021 年)所討論的,框架計劃的項目(例如 FP7 和 H2020)使眾多經濟參與者能夠參與 AI 領域。由于此,歐盟在這一技術領域的經濟參與者數量幾乎翻了一番(與不考慮歐盟資助項目的參與者數量相比)。然而,這些參與者在沒有公眾支持的情況下在人工智能領域保持活躍的能力值得進一步探索。

如上所述,美國是全球人工智能領導者:它擁有大量活躍的人工智能參與者;它在多個人工智能領域(人工智能服務、音頻和自然語言處理、自主機器人以及聯網和自動駕駛汽車)具有比較優勢;它擁有大量以人工智能為核心業務并同時開發人工智能專利的公司;并從事大量研發活動(專利和前沿研究)。因此,美國的領先地位顯得穩固,沒有明顯的弱點。

我們對中國人工智能格局的了解主要得益于其非常激烈的專利活動。然而,專利質量標準的降低和中國政府最近實施的政策導致申請量激增,這支持了這樣一種論點,即中國在人工智能領域的規模可能沒有乍看之下那么突出。盡管如此,中國仍應被視為該領域的主要參與者,主要有兩個原因。首先,它在 ICT 制造領域的大量參與保證了任何數字技術(包括人工智能)蓬勃發展的基本硬件需求。例如,近年來,中國的 ICT 行業增加值每年增長 13.1 個百分點(Mas 等人,2021 年),同時已經從主導地位發展(增加值第二,僅次于美國)。其次,即使考慮到上述觀點,在中國提交的大量人工智能相關專利申請也不容忽視,特別是考慮到大量經濟參與者參與人工智能領域(超過 9,000 個)。關于中國值得考慮的另一個方面是對數據的大量訪問,這是人工智能系統的燃料。除其他外,這是由于使用數字服務和應用程序的人口眾多,以及對訪問和使用個人數據的法律限制較少(Arenal 等人,2020 年)。

這項工作的其他見解涉及人工智能領域的技術發展。我們觀察到 AI 技術在多項任務(例如圖像分類、人臉識別、語音識別、文本摘要)中的性能不斷提高。基準每年都在改進這一事實,清楚地證實了人工智能目前正在經歷技術擴展階段。觀察到的大量 AI 標準化活動強化了這一結論,這是歐盟成員國積極參與的一個方面,特別是考慮到制定支持歐洲 AI 法規提案(AI 法案)的標準。

AI Watch Index 的另外兩個指標涵蓋社會方面:AI 研究的多樣性,以及大學級別的高級 AI 技能教育產品。重要的是,初步結果顯示,最近人工智能研究界在性別、隸屬位置和研究人員所屬機構類型方面的異質性有所增加,這可能反映了研究界中包容性和多樣性政策的影響。這與值得信賴的人工智能的發展和社會包容都有關。事實上,研究人員的出身、性別和隸屬關系的異質性有望減少算法開發中的偏見,促進為訓練集選擇具有代表性的數據源,并減輕研究界有限視角可能導致的其他類型的風險。該維度還分析了與人工智能相關的大學學術課程,因為這勢必會影響未來工人的就業能力以及經濟中先進數字能力的整體存在。在這方面,發現成員國之間存在顯著差異,這可能導致未來歐盟人口之間的不平等。結果表明,人工智能內容在碩士學位課程中的出現頻率高于在學士學位課程中的出現頻率。這似乎表明,在已經向學生傳授基本知識之后,人工智能被認為是一門專業學科,主要涵蓋在教育路徑的后期階段。建議在各個層面提供更廣泛的人工智能相關內容,而不僅僅是高級課程,以促進人口的數字包容并增加歐洲數字轉型帶來的經濟利益。

付費5元查看完整內容

工業人工智能 (AI) 是人工智能在工業中的應用,是第四次工業革命中價值創造的主要貢獻者。人工智能正被嵌入到廣泛的應用程序中,幫助組織獲得顯著的利益,并使他們能夠改變向市場提供價值的方式。

? 本文檔為支持人工智能的工業物聯網系統的開發、培訓、文檔編制、通信、集成、部署和操作提供指導和幫助。它面向來自 IT 和運營技術 (OT)、來自多個學科的業務和技術的決策者,包括業務決策者、產品經理、系統工程師、用例設計師、系統架構師、組件架構師、開發人員、集成商和系統操作員。

該文檔圍繞 IIC 工業互聯網參考架構中的架構觀點構建,即業務、使用、功能和實施觀點。該文件討論了推動人工智能采用的商業和價值創造考慮因素。它還詳細闡述了人工智能的使用、工業用例以及與之相關的道德、隱私、偏見、安全、勞工影響和社會問題。在技術方面,該文檔描述了與 AI 相關的架構、功能和數據注意事項,并討論了各種實施注意事項,例如性能、可靠性、數據屬性和安全性?。

人工智能的采用將在行業中加速。鑒于計算能力的快速增長、可用于訓練的數據的更廣泛可用性以及算法的日益復雜,人工智能技術將繼續發展。當前的 IT 標準和最佳實踐必須不斷發展,以解決 AI 本身的獨特特征以及與 IIoT 系統的安全性、可靠性和彈性相關的具體考慮因素。此外,人工智能技術的日益成熟將幫助人們認識到它的好處遠遠超過它的風險。 AI 標準生態系統也將繼續發展,例如 ISO/IEC JTC 1/SC42 正在進行的標準工作,為 JTC 1、IEC 和 ISO 委員會制定 AI 標準提供指導。

基于這些趨勢,毫無疑問,人工智能將繼續推動技術和功能上的可能性,因此預期合理的事情將同樣發展。對技術的態度和對其使用的商業期望也將繼續發展。

未來,我們可以期待使用人工智能技術成為常態,而不是例外,考慮到這項技術的社會效益,“不使用人工智能”最終可能會成為不負責任的做法。

付費5元查看完整內容

本白皮書介紹了研究項目解鎖人工智能對英國法律的潛力(“人工智能與英國法律”)的一些重要發現,該項目由牛津大學的一個跨學科研究團隊與一系列合作伙伴組織合作開展2019 年和 2021 年。AI for English law 項目涉及來自大學法律、經濟、管理、教育和計算機科學系的學者,涉及六個主題研究流。該研究由 UKRI 在下一代服務產業戰略挑戰基金下資助。

在第一章中,我們解釋了人工智能輔助法律技術的含義,并概述了在英格蘭和威爾士執業的律師對其使用的普遍性。我們的調查驅動的見解表明,大約一半的英國和威爾士律師現在經常使用至少一種類型的人工智能輔助法律技術解決方案——重要的附帶條件是,解決方案類型的使用差異很大。

在第二章中,我們解釋了支持人工智能的法律技術如何影響律師的工作。在這里,我們最重要的發現是,人工智能法律技術解決方案的部署通常涉及新任務的創建、新的工作安排、新的交付基礎設施,以及涉及律師和非律師的多學科團隊合作。我們還建議,人工智能法律技術的部署正在促進幫助生產和改進技術的律師與主要將其用作消費者的律師之間的分工。我們認為,這些發展可能與傳統的律師事務所治理和職業發展模式不協調。

在第三章中,我們探討了人工智能輔助法律技術對律師事務所組織和商業模式的影響。我們記錄了律師事務所與第三方合作開發支持人工智能的法律技術解決方案的新興文化,而不是在內部構建解決方案。我們確定了律師事務所和法律科技公司之間常見的合作類型,以及管理這些關系的常見合同機制。我們還考慮人工智能法律技術解決方案的部署是否會促使律師事務所超越其傳統的“法律咨詢”業務模式,專注于定制法律咨詢。一些律師事務所開始采用基于“法律運營”的商業模式,轉而關注內部流程效率和項目管理。

在第四章中,我們探討了需要相關數據來訓練支持人工智能的法律技術解決方案所帶來的挑戰。對于公開來源的數據,我們觀察到一些機構不愿與商業實體共享數據。我們還為希望使用客戶數據訓練 AI 模型的律師事務所和法律科技公司確定了一些不確定性。其中包括數據所有權、客戶同意以及利益相關者之間共享與相關數據相關的 AI 性能培訓收益。

在第五章中,我們探討了人工智能等先進技術對律師事務所招聘模式、培訓需求和內部治理的可能影響。與第四章一致,報告律師事務所與第三方組織合作提供法律技術解決方案,我們發現目前只有極少數招聘的律師事務所工作需要人工智能相關技能。此外,法律技術所需的技術技能更有可能在為非律師招聘的職位中尋找,而不是為律師招聘。此外,我們幾乎沒有發現任何證據表明律師事務所正在修改其內部治理以明確非律師高級別的職業道路。也就是說,我們還發現有證據表明律師越來越愿意發展與人工智能相關的技能。反過來,這些技能可以促進更有效的多學科團隊合作,以及進入非律師事務所組織的職業軌跡。

付費5元查看完整內容

本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。

付費5元查看完整內容

引言

人工智能(AI)近年來獲得了相當大的關注和興奮。人工智能被廣義地定義為通過編程讓計算機承擔類似人類的認知過程的努力,它最近的突出與機器學習(ML)的成功密切相關,這是一種開發方法AI系統使用真實世界的例子。ML方法適用于各種各樣的用例;因此,基于人工智能的工具在經濟和生活的各個領域都有大量出現。

人力資源領域也不例外。事實上,據統計,目前有超過250種基于人工智能的商業人力資源工具,提供了許多承諾和令人興奮的東西。除了快速處理信息的能力,這些工具還具有改進人力資源流程的潛力,從而實現更好的決策和結果。它們的多樣性反映了人工智能最近的進步所激發的創造力和創新,因為它們的創造者尋求解決長期存在的挑戰人力資源和擴展能力到新的領域。

與此同時,這種工具的泛濫和多樣性造成了一個令人困惑的局面,特別是因為大多數人力資源專業人員認為他們不具備評估這些工具所需的技術專長。因此,本Toolkit的第一個目標是為人力資源專業人員提供基本的人工智能知識,以幫助他們評估基于人工智能的工具該工具包的第二個目標是為人力資源中負責任和合乎道德的使用人工智能提供指導。近年來,人工智能系統所帶來的道德挑戰影響越來越大,尤其是在人力資源領域。關于人工智能道德使用的廣泛原則,包括隱私、公平、透明和可解釋性,全球越來越達成共識,但關于如何實施這些原則的指導有限。該工具包是該中心更廣泛努力的一部分第四次工業革命,幫助組織將負責任的人工智能原則付諸實踐。

該工具包的最終目標是幫助組織有效地使用基于人工智能的人力資源工具。許多組織發現他們投資艾達不到他們的期望,因為工具是采用了錯誤的原因,他們并不預期工作必要的集成工具,或者因為他們沒有獲得足夠的支持的人應該使用它還是受到它的影響。因此,該工具箱,特別是附帶的檢查清單,將重點放在評估基于人工智能的產品以及支持其使用所需的組織實踐上。

人力資源中人工智能的平衡觀點

這個工具箱是一個協作的成果人力資源專業人士、專業協會、初創公司、大公司、就業律師、人工智能倫理學家,數據科學家,以及各種學科的學者。他們有著共同的愿望,希望促進人工智能在人力資源領域的負責任使用,但他們的觀點和關注點各不相同。在這個范圍的一端,有些人非常擔心在人力資源中使用人工智能的潛在缺點。另一方面,有些人認識到有必要負責任地實施人工智能,但他們堅信基于人工智能的工具有改進的潛力人力資源的結果。在人力資源中使用人工智能的一個張力是必須承認人力資源管理實踐目前存在的缺陷,無論是由人類還是由關鍵字過濾和評估測試等非人工智能系統執行。與其他方法相比,人工智能系統往往面臨更大的審查。雖然一些社區成員認為這種審查是必要的,但其他人認為它忽略了當前實踐中類似或可能更大的問題。該工具包旨在展示這些不同的視角,消除人工智能算法本質上是客觀和公平的誤解,同時強調需要認識到當前實踐中的缺陷。

Toolkit結構

該工具箱由三個組件組成。該指南概述了人力資源中的人工智能,人工智能如何工作,以及負責任地采用和監控人工智能系統的關鍵考慮因素。該指南的每個部分都有兩份問卷。工具評估清單的重點是決定采用特定的基于人工智能的人力資源工具。它包括兩個要問的問題:供應商(或工具的內部創建者)以及組織為了成功使用工具而需要考慮的問題。計劃檢查表側重于組織的優先級、政策和程序。它的目的是幫助組織戰略性地思考他們想要如何使用人力資源中的人工智能,并建立系統以支持其負責任和有效的使用。

付費5元查看完整內容

這個更新的第二版提供了機器學習算法和架構設計的指導。它提供了醫療保健領域智能系統的真實應用,并涵蓋了管理大數據的挑戰。

這本書已經更新了在海量數據,機器學習和人工智能倫理的最新研究。它涵蓋了管理海量數據復雜性的新主題,并提供了復雜機器學習模型的例子。來自全球醫療服務提供商的實證研究展示了大數據和人工智能在對抗慢性和新疾病(包括COVID-19)方面的應用。探討了數字醫療、分析和人工智能在人口健康管理中的未來。您將學習如何創建機器學習模型,評估其性能,并在您的組織內運作其結果。來自主要醫療服務提供商的研究覆蓋了全球數字服務的規模。通過案例研究和最佳實踐,包括物聯網,提出了評估人工智能機器學習應用的有效性、適用性和效率的技術。

您將了解機器學習如何用于開發健康智能,其目的是改善患者健康、人口健康,并促進顯著的護理支付方成本節約。

//link.springer.com/book/10.1007/978-1-4842-6537-6#about

你會: 了解關鍵機器學習算法及其在醫療保健中的使用和實現 實現機器學習系統,如語音識別和增強深度學習/人工智能 管理海量數據的復雜性 熟悉人工智能和醫療保健最佳實踐、反饋循環和智能代理

付費5元查看完整內容

機器學習模型和數據驅動系統正越來越多地用于幫助在金融服務、醫療保健、教育和人力資源等領域做出決策。機器學習應用程序提供了諸如提高準確性、提高生產率和節約成本等好處。這一趨勢是多種因素共同作用的結果,最顯著的是無處不在的連通性、使用云計算收集、聚合和處理大量細粒度數據的能力,以及對能夠分析這些數據的日益復雜的機器學習模型的更好訪問。

開發負責任的人工智能解決方案是一個過程,涉及在人工智能生命周期的所有階段與關鍵利益相關者(包括產品、政策、法律、工程和人工智能/ML團隊,以及最終用戶和社區)進行輸入和討論。在本文中,我們主要關注ML生命周期中用于偏見和可解釋性的技術工具。我們還提供了一個簡短的章節,介紹了AI公平性和可解釋性的限制和最佳實踐。

//pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf

付費5元查看完整內容
北京阿比特科技有限公司