亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

第一節課的重點是分析今天能夠進行并行計算的典型個人計算機中的算法行為,第二節課的重點是今天能夠進行分布式計算的典型公共云中的此類個人計算機集群中的算法行為。我們將從第1節中簡要介紹的基本原理開始,并努力理解過去幾十年來算法的重大突破。并行計算是指在一臺機器上使用多個處理器和共享內存進行計算。并行計算和分布式計算雖然密切相關,但它們都提出了獨特的挑戰——主要是并行計算情況下的共享內存管理和分布式計算情況下的網絡通信開銷最小化。理解并行計算的模型和挑戰是理解分布式計算的基礎。課程內容反映了這一點,首先在并行環境中涵蓋各種經典的、數值的和圖形的算法,然后在分布式環境中涵蓋相同的主題。目的是強調每個設置帶來的獨特挑戰。

//github.com/lamastex/scalable-data-science/blob/master/read/daosu.pdf

付費5元查看完整內容

相關內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容

由沃德(Brian Ward)著,姜南、袁志鵬譯的《精通Linux(第2版)》講解了Linux操作系統的工作機制以及運行Linux系統所需的常用工具和命令。根據系統啟動的大體順序,本書更深入地介紹從設備管理到網絡配置的各個部分,最后演示了系統各部分的運行方式,并介紹了一些基本技巧和開發人員常用的工具。

Linux不像其他操作,會對用戶隱藏很多重要的東西。相反,Linux會讓用戶掌控一切。而要掌控一切,就必須理解這個操作系統的工作機制,包括如何啟動、如何連網,以及Linux內核如何工作。本書是暢銷書的新版本,作者擁有多年的實踐經驗,內容通俗易懂。通過這本書,讀者可以迅速從Linux新手變成老鳥,把作者豐富的經驗裝進自己的知識庫。

<章節目錄>

第1章概述 第2章基礎命令和目錄結構 第3章設備管理 第4章硬盤和文件系統 第5章Linux內核的啟動 第6章用戶空間的啟動 第7章系統配置:日志、系統時間、批處理任務和用戶 第8章進程與資源利用詳解 第9章網絡與配置 第10章網絡應用與服務 第11章shell腳本 第12章在網絡上傳輸文件 第13章用戶環境 第14章Linux桌面概覽 第15章開發工具 第16章從C代碼編譯出軟件 第17章在基礎上搭建

付費5元查看完整內容

這本書將理論計算機科學和機器學習連接起來,探索雙方可以相互促進什么。它強調需要靈活、易于處理的模型,以便更好地捕捉機器學習的難點。理論計算機科學家將介紹機器學習的重要模型和該領域的主要問題。機器學習研究人員將以一種可訪問的格式介紹前沿研究,并熟悉現代算法工具包,包括矩的方法,張量分解和凸規劃松弛。最壞情況分析之外的處理是建立對實踐中使用的方法的嚴格理解,并促進發現令人興奮的、解決長期存在的重要問題的新方法。

//www.cambridge.org/hk/academic/subjects/computer-science/pattern-recognition-and-machine-learning/algorithmic-aspects-machine-learning?format=PB

付費5元查看完整內容

語言是一種固有的時間現象。當我們理解和產生口語時,我們處理不確定長度的連續輸入流。即使在處理書面文本時,我們通常也按順序處理。語言的時代性反映在我們使用的隱喻中;我們談論的是對話流、新聞源和twitter流,所有這些都喚起了這樣一種觀念:語言是一個隨時間展開的序列。這種時間性質反映在我們用來處理語言的算法中。例如,當應用于詞性標注問題時,維特比算法每次遞增地輸入一個單詞,并將沿途收集到的信息傳遞下去。另一方面,我們研究的用于情感分析和其他文本分類任務的機器學習方法沒有這種時間性質——它們假設同時訪問輸入的所有方面。前饋神經網絡尤其如此,包括它們在神經語言模型中的應用。這些完全連接的網絡使用固定大小的輸入,以及相關的權重,一次性捕獲示例的所有相關方面。這使得處理不同長度的序列變得困難,并且無法捕捉語言的重要時間方面。

本章涵蓋了兩個密切相關的深度學習架構,旨在解決這些挑戰:循環神經網絡和transformer網絡。這兩種方法都具有直接處理語言的順序性質的機制,允許它們處理可變長度的輸入,而不使用任意固定大小的窗口,并捕獲和利用語言的時間性質。

付費5元查看完整內容

這是我2004年,2006年和2009年在斯坦福大學教授的概率理論博士課程的講義。本課程的目標是為斯坦福大學數學和統計學系的博士生做概率論研究做準備。更廣泛地說,文本的目標是幫助讀者掌握概率論的數學基礎和在這一領域中證明定理最常用的技術。然后將此應用于隨機過程的最基本類的嚴格研究。

為此,我們在第一章中介紹了測度與積分理論中的相關元素,即事件的概率空間與格-代數、作為可測函數的隨機變量、它們的期望作為相應的勒貝格積分,以及獨立性的重要概念。

利用這些元素,我們在第二章中研究了隨機變量收斂的各種概念,并推導了大數的弱定律和強定律。

第三章討論了弱收斂的理論、分布函數和特征函數的相關概念以及中心極限定理和泊松近似的兩個重要特例。

基于第一章的框架,我們在第四章討論了條件期望的定義、存在性和性質,以及相關的規則條件概率分布。

第五章討論了過濾、信息在時間上的級數的數學概念以及相應的停止時間。關于后者的結果是作為一組稱為鞅的隨機過程研究的副產品得到的。討論了鞅表示、極大不等式、收斂定理及其各種應用。為了更清晰和更容易的表述,我們在這里集中討論離散時間的設置來推遲與第九章相對應的連續時間。

第六章簡要介紹了馬爾可夫鏈的理論,概率論的核心是一個龐大的主題,許多教科書都致力于此。我們通過研究一些有趣的特殊情況來說明這類過程的一些有趣的數學性質。

在第七章中,我們簡要介紹遍歷理論,將注意力限制在離散時間隨機過程的應用上。我們定義了平穩過程和遍歷過程的概念,推導了Birkhoff和Kingman的經典定理,并強調了該理論的許多有用應用中的少數幾個。

第八章建立了以連續時間參數為指標的右連續隨機過程的研究框架,引入了高斯過程族,并嚴格構造了布朗運動為連續樣本路徑和零均值平穩獨立增量的高斯過程。

第九章將我們先前對鞅和強馬爾可夫過程的處理擴展到連續時間的設定,強調了右連續濾波的作用。然后在布朗運動和馬爾可夫跳躍過程的背景下說明了這類過程的數學結構。

在此基礎上,在第十章中,我們利用不變性原理重新構造了布朗運動作為某些重新標定的隨機游動的極限。進一步研究了其樣本路徑的豐富性質以及布朗運動在clt和迭代對數定律(簡稱lil)中的許多應用。

//statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf

付費5元查看完整內容

這是一本關于理論計算機科學的本科入門課程的教科書。這本書的教育目的是傳達以下信息:

? 這種計算出現在各種自然和人為系統中,而不僅僅是現代的硅基計算機中。 ? 類似地,除了作為一個極其重要的工具,計算也作為一個有用的鏡頭來描述自然,物理,數學,甚至社會概念。 ? 許多不同計算模型的普遍性概念,以及代碼和數據之間的二元性相關概念。 ? 一個人可以精確地定義一個計算的數學模型,然后用它來證明(有時只是猜測)下界和不可能的結果。 ? 現代理論計算機科學的一些令人驚訝的結果和發現,包括np完備性的流行、交互作用的力量、一方面的隨機性的力量和另一方面的去隨機化的可能性、在密碼學中“為好的”使用硬度的能力,以及量子計算的迷人可能性。

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

計算機科學正在發展,以利用新的硬件,如GPU、TPUs、CPU和大型商品集群。許多子領域,如機器學習和優化,已經調整了它們的算法來處理這樣的集群。

課程主題包括分布式和并行算法: 優化、數值線性代數、機器學習、圖分析、流式算法,以及其他在商用集群中難以擴展的問題。該類將重點分析程序,并使用Apache Spark和TensorFlow實現一些程序。

本課程將分為兩部分: 首先,介紹并行算法的基礎知識和在單多核機器上的運行時分析。其次,我們將介紹在集群機器上運行的分布式算法。

地址: //stanford.edu/~rezab/dao/

主講:

Reza Zadeh是斯坦福大學計算與數學工程學院的客座教授,同時也是Matroid公司的CEO。他的主要工作集中于機器學習理論與應用,分布式計算,以及離散數學。

課程目錄:

付費5元查看完整內容
北京阿比特科技有限公司