本文是卡內基 "俄烏戰爭中的網絡沖突 "系列論文的一部分,該項目旨在更好地理解俄烏戰爭中的網絡元素。卡內基的專家們各自研究了網絡沖突的一個獨特層面:論述了對烏克蘭網絡防御的國際援助;論述了俄羅斯未達到的期望;論述了俄羅斯網絡行動的總體軍事影響。
本文研究了俄羅斯戰時在烏克蘭的網絡行動的軍事有效性,這些行動沒有產生更大戰略影響的原因,以及適用于其他國家的軍事網絡的經驗教訓。本文在以往分析的基礎上,采取了更加系統和詳細的方法,納入了更廣泛的公開可用數據。
本文的一個主要目的是幫助彌合俄烏戰爭的具體網絡分析和一般軍事分析之間的鴻溝。大多數對俄羅斯在烏克蘭的網絡行動的分析都是由網絡專家為自己的領域撰寫的,對非網絡軍事來源和概念的整合有限。相反,對整個戰爭的主要描述幾乎沒有提到網絡行動。為了開始填補這一空白,本文將俄羅斯在烏克蘭的網絡行動置于莫斯科的軍事目標、運動和動能活動的大框架中。它的關鍵點是:
俄羅斯的網絡"火力"(破壞性或毀滅性的攻擊)可能對莫斯科最初的入侵貢獻不大,他們對烏克蘭目標造成的損害微乎其微。傳統的干擾使俄羅斯軍隊在爭奪基輔的戰斗中獲得了戰術上的優勢,而對Viasat調制解調器的網絡破壞進一步降低了烏克蘭前線的通信能力,這一點是可信的--盡管未經證實。同時,俄羅斯開場的大規模數據刪除攻擊可能擴大了烏克蘭的總體混亂氣氛,盡管據報道受害者組織只遭受了有限破壞。但在戰爭的前幾周,俄羅斯的網絡攻擊在數量、影響和新穎性方面都急劇下降了。盡管相對于戰前的基線來說,網絡火力仍然很高,但在莫斯科的軍事野心和在烏克蘭的高強度作戰行動的宏大規模上,幾乎沒有登記。
網絡火力既沒有對俄羅斯的動能火力進行有意義的補充,也沒有發揮不同于動能武器的特殊功能。許多俄羅斯網絡火力的目標與動能武器所攻擊的烏克蘭系統類別相同,如通信、電力和交通基礎設施,而不是發揮特殊作用。對于幾乎所有這些目標類別,動能火力似乎都造成了多個數量級的損害。雖然網絡火力在某些情況下有可能提供獨特的好處,但這些好處在俄羅斯對烏克蘭的戰爭中并沒有實現。莫斯科的軍事戰略家們很快就放棄了在烏克蘭減少物質或附帶損害或創造可逆轉效果的任何目標,俄羅斯從網絡行動中幾乎沒有獲得可否認性或地理范圍。同樣,俄羅斯的網絡火力也沒有取得任何系統性的效果,可以說它們的成本效益較低,或者至少在能力上受到更大的限制,而不是動能火力。
情報收集--而不是開火--可能是俄羅斯在烏克蘭戰時網絡行動的主要重點,但這也沒有產生什么軍事利益。盡管外界對情報過程的評估比火力更難,但俄羅斯炮兵似乎依賴非網絡來源的目標情報(特別是無機組人員的飛行器或無人機),盡管早些時候聲稱莫斯科已經使用惡意軟件對烏克蘭陣地進行地理定位。俄羅斯導彈部隊可能收到了一些網絡衍生的情報,但在少數已知的可信案例中,這種情報似乎對目標決策沒有價值。即使是影響行動,長期以來一直是莫斯科網絡理論的核心,也只從俄羅斯黑客那里得到了最小的已知支持。更為普遍的是,俄羅斯對戰爭的整體態度--從戰役計劃到占領被占領的領土--表明關鍵的軍事決策并沒有受到嚴格的全來源情報程序的指導。
雖然許多因素制約了莫斯科的網絡效率,但最重要的也許是俄羅斯網絡能力不足,俄羅斯非網絡機構的弱點,以及烏克蘭及其合作伙伴的特殊防御工作。為了有意義地影響一場如此規模的戰爭,網絡行動必須以俄羅斯顯然最多只能維持數周的節奏進行。莫斯科選擇維持甚至增加其針對非烏克蘭目標的全球網絡活動,并且沒有充分利用網絡犯罪分子作為反對烏克蘭的輔助力量,從而使其能力問題更加惡化。同時,俄羅斯總統弗拉基米爾-普京和他的軍隊似乎不愿意或無法以精確的、以情報為導向的方式來計劃和發動戰爭,而這正是網絡行動的最佳方式。烏克蘭則受益于一個有彈性的數字生態系統、多年來的網絡安全投資,以及世界上最有能力的公司前所未有的網絡支持。
隨著戰爭的繼續,俄羅斯的情報收集可能是烏克蘭最大的持續網絡風險。可以想象,如果俄羅斯黑客能夠收集到莫斯科有效利用的高價值情報,他們仍可能產生更大的影響。例如,黑客可能會獲得實時地理位置數據,從而能夠暗殺沃洛季米爾-澤倫斯基總統或及時準確地瞄準烏克蘭軍隊,特別是那些擁有高價值西方武器系統的軍隊;進行黑客和泄密行動,向烏克蘭和西方公眾披露敏感的戰爭信息,如烏克蘭的戰斗損失、內部分裂或軍事疑慮;或收集關于基輔的看法和意圖的寶貴信息,以幫助莫斯科在未來的談判,以及其他情況。俄羅斯的網絡火力構成了不太嚴重的威脅,盡管如果莫斯科將更多的整體網絡能力導向烏克蘭(以其他目標為代價)或更好地利用網絡犯罪分子,這種攻擊可能會成倍增加。
俄羅斯在烏克蘭的戰爭為其他軍事網絡指揮部提供了教訓,但這些教訓必須適用于國家情況,并與一系列相關案例研究一起考慮。俄羅斯的經驗表明,網絡火力可以有效地集中在一次突襲或其他主要的炮擊中,但在更大規模、更長時間的戰爭中,它們的意義可能會逐漸消失。在支持各種戰時軍事任務方面,網絡情報收集似乎比網絡火力更有潛力,但這可能取決于是否有合格的分析和決策過程以及相當精確的 "戰爭方式"。在網絡和動能學科方面具有高能力、專業性和準備性的軍隊--如美國和以色列--以前曾利用網絡行動來實現對高價值目標的打擊。然而,即使是一流的軍隊似乎也是在嚴格限定的范圍內取得了最大的網絡成功。因此,將網絡空間視為與陸地、海洋、空中和太空同等地位的 "第五領域 "戰爭,可能是一種誤導。
計劃進行大規模戰爭的軍隊應該詢問他們是否能夠真正達到產生和維持有意義的網絡火力高標準。要達到這個標準,可能需要龐大的常備網絡部隊--也許比和平時期或 "灰色地帶 "條件下所需的部隊大很多倍。或者,軍隊可以發展激增的能力機制(例如后備部隊),這在實施上具有挑戰性,并有可能吞噬國內網絡安全。網絡能力的快速再生是另一個關鍵障礙。鑒于戰時網絡能力有限,軍隊可能需要嘗試波浪戰術:短時間內密集的網絡火力,然后是休整期和再生期。波段的頻率越低,與動能火力的密切協調就越重要。如果一個網絡指揮部不太可能迅速擴大規模和再生,那么它也許不應該渴望在重大沖突中進行持續的戰時射擊。相反,它可能會優先考慮在和平時期、灰色地帶或戰前條件下更有選擇性的開火,或像網絡防御和情報收集這樣的非開火活動。
各國在網絡情報收集方面的投資應與磨練情報分析、軍事規劃和戰略決策的同等努力相匹配。隨著網絡能力的擴散,各國可能會發現自己能夠收集到的信息比他們在戰時能夠準確解釋和有效使用的信息要多。在這種情況下,廣泛的體制改革--提升分析技術、灌輸專業精神或打擊腐敗--往往比進一步提高網絡收集的技術水平更有價值。無法實施這些改革的國家可能會了解到,精致的軍事網絡情報能力不值得努力去建立。網絡單位也需要被充分整合到所有來源的情報流程中,引導他們去滿足那些無法通過其他方式輕易滿足的信息需求。網絡情報的戰時用例可能包括實時追蹤高價值目標,在關鍵任務情況下驗證人類情報,以及獲取具有持久、多用途價值的非常大的數據儲存庫。
網絡防御者應將烏克蘭戰爭作為一個參考點,重新審視和完善他們可能需要打的特定戰爭的先前假設。他們的首要任務是重新考慮潛在的敵人在沖突中利用網絡行動的可能能力,因為俄羅斯的經驗是微乎其微的。然后,他們應該對自己的軍事狀況進行具體的比較和對比。
本文的試探性見解代表了對零散的、相互沖突的和不斷變化的數據的一種合理解釋。分析師仍然依賴烏克蘭政府、盟國政府、網絡安全公司和記者的報告來了解俄羅斯的網絡行動、其影響以及更大的烏克蘭戰爭。然而,這些消息來源只有部分知識,而且狹隘的關注不可避免地影響了信息的分享內容、時間和方式。例如,一些消息來源在最近幾個月產生的公開報告比以前少。由此產生的 "網絡戰爭迷霧 "甚至繼續籠罩著最密切關注的網絡事件。整個戰爭彌漫著更大的迷霧,在短短九個月內已經經歷了幾個不同的階段--其發展方式往往令西方分析家(和其他人)感到驚訝。盡管有這種不確定性,世界各國政府將不會等待將感知到的經驗教訓納入軍事網絡戰略、預算、理論和計劃的持續更新。分析師應提供目前可能的最佳評估,同時承認信息差距和隨著時間推移重新評估的需要。
表5. 阻礙俄羅斯在烏克蘭取得網絡成功的因素
如今,部署在戰場上的部隊不僅由人組成,還由人工智能(AI)系統組成,將沖突提升到了新的技術水平。機器人,尤其是無人機,在烏克蘭抵御俄羅斯的持續進攻中發揮了核心作用。
烏克蘭正在使用土耳其的Bayraktar TB2無人機,配備有火箭或導彈,可以在沒有人類干預的情況下起飛、降落和導航(Walker-Munro, 2022)。然而,在這種情況下,武器系統并不是完全自主的:人類操作員必須跟蹤操作,并決定何時釋放無人機攜帶的激光制導火箭彈。
盡管土耳其也是STM Kargu-2的生產國,這是2020年在利比亞殺死士兵的第一架無人機,但烏克蘭部隊仍然沒有。俄羅斯總統弗拉基米爾-普京在2017年說,誰成為人工智能發展的領導者,誰就會成為世界的統治者"(Fierro, 2022)。事實上,在這場沖突之前,關于俄羅斯發展無人駕駛航空、地面和海上系統,有很多有用的分析和評論可供查閱。就在它入侵烏克蘭之后,俄羅斯的軍事自主和無人駕駛性能很弱或完全沒有。
今天,俄羅斯士兵使用Orlan-10飛機直接打擊或識別烏克蘭軍隊,或者只是使用商業的DJI模型。這表明這種技術的持續存在,在這場戰爭中已經成為任何軍事編隊的普通技術(Bendett, 2022)。這些無人駕駛儀器應該是可消耗的和可負擔的,因為它們對識別目標和充當炮兵偵察員等重要任務至關重要。雖然,我們從戰場上的灰燼中得知,俄羅斯已經實施了Lantset無人機,旨在自主地攻擊軍車或部隊集結地。這種武器可以識別地理區域(geofence)內預選的目標類型,產生導彈爆炸(Fierro, 2022)。另一種無人機類型是卡拉什尼科夫公司的子公司ZALA Aero開發的KUB-BLA,在撞擊目標時引爆。KUB-BLA上有一個人工智能系統,用于識別物體,不需要在基地發送和處理圖像,能夠識別1000種物體。
這些系統之所以在機上實施,是因為它們可以更直接地識別某些東西,以利于當場作出決定(估計是由人工智能作出的),而不必依賴可能隨時被敵人打斷的不穩定的無線電信號。然而,現在沒有任何跡象表明KUB-BLA有一個決策系統,可以獨立選擇俯沖目標并爆炸的選項。不過,在未來,這種可能性還是可以輕易實現的(Sambucci,2022)。
俄羅斯軍方可能低估了烏克蘭的防空力量,并訓練其空中無人機部隊來對付他們認為像在敘利亞面臨的部隊。早期俄羅斯在烏克蘭上空的多次損失可能造成了這樣的印象:俄羅斯軍方高估了其無人機部隊和技術的成功。
無疑可以說,無人機在這場沖突中一直存在,而遙控操作的機器人(無人駕駛地面車輛-UGVs)卻沒有出現。
俄羅斯也有軍用機器人,但到目前為止,在烏克蘭看到的唯一單位是Uran-6排雷機器人,而Uran-9機器人坦克似乎沒有在這場戰爭中使用。烏克蘭部隊現在有一個新的幫手。GNOM("Gnome"),一種機器人戰場偵察兵。它是由位于扎波羅熱的 "Temerland "公司制造的,這種小型機器將識別俄羅斯的陣地,并用機槍提供火力支援。GNOM有四個大輪子,采用4x4驅動和一個安靜的5馬力電動馬達,重量為50公斤,配備7.62毫米機槍,具有很強的機動性。雖然大多數UGV是由無線電控制的,但GNOM在它身后卷出一卷光纖電纜。"特梅爾蘭公司負責人特羅岑科說:"在敵人的電子戰設備運行期間,在最惡劣的環境下也能控制GNOM。另外,由于操作者沒有使用無線電,他們不能被大炮探測和瞄準,而且電纜不會產生熱成像儀可以看到的熱輻射。
GNOM的電纜使其射程達到2000米(1.25英里),如果斷裂,車輛會自動返回到預定的位置(Hambling,2022)。這種機器人可以在伸縮桿上配備一個360度的攝像頭,以便詳細了解周圍的情況,而且它幾乎是無聲的,外形很低。由于機槍的存在,GNOM可以在對士兵來說可能太危險的情況下進行自衛并提供火力支援。同時,GNOM已被用于偵察任務。
另一個自動機將在首都投入行動:機器狗Spot。它是由美國波士頓動力公司創造的最先進的模型之一。它有四條腿可以移動,還有一個機械臂,通過利用人工智能,教它獨立行動而不需要人類的命令,它可以舉起和清除地雷和未爆裝置。它能看到地雷,在不觸動扳機的情況下抓住它,并把它帶到將被解除的地方。戰術機器人長期以來一直被推廣,以減少傷亡,并使士兵在與敵人保持接觸的同時遠離火線。
所有現代軍事力量都涉及到對下屬服從命令的信任和對指揮官發出合法命令的信任。當代替人操作一臺機器時,上級應該像信任人一樣信任這臺機器。
這就產生了重大問題。研究人員總是談論 "機器偏見",因為我們相信機器會做出決定,僅僅是因為它們是機器(Walker-Munro,2022)。然而,對機器決策的錯誤信任可能會產生災難性的結果,尤其是當它們做出生死攸關的決定時。新的現代軍隊系統 "無人機神風 "就是這種情況,它結合了無人機的機動性和毀滅性的導彈能力。能夠自動駕駛飛行到交戰區,如果有必要,在沒有人類操作員輸入的情況下識別并擊中目標(Valesini, 2022)。限制軍用無人機的一種方法是讓它們做一些簡單的角色,比如充當空中攝像機。而無人機掃描視頻錄像來識別目標,則更有可能犯致命的錯誤。2007年,海軍水面作戰中心的研究員約翰-坎寧建議,未來的自主武器可能會攻擊步槍或彈藥,而不是攻擊持有它們的人類(Walker-Munro, 2022)。
另一個問題是,沒有關于這些武器的立法,所以當一輛汽車決定殺人時,誰的責任呢?這似乎是一個非常理論性的問題,但事實并非如此:正如人權專家詹姆斯-道斯在《對話》雜志上發表的一篇文章中回顧的那樣,自《日內瓦公約》以來,戰爭法的基礎是,即使在戰爭中也要為自己的行為負責。犯有戰爭罪的士兵可以被國際法庭審判和判刑(Dawes, 2021)。
2016年,生命的未來研究所--一個為防止新技術的生存風險而奮斗的組織--推動了一封公開信,呼吁暫停進攻性自主武器。在超過31000名簽名者中,還有霍金、伊隆-馬斯克和杰克-多爾西,以及許多最重要的人工智能研究人員(Sambucci,2022)。最后,去年12月在《聯合國特定常規武器公約》期間討論了這個問題,遺憾的是沒有達成最終決定。
聯合國秘書長安東尼奧-古特雷斯曾呼吁各國為新規則制定一個 "雄心勃勃的計劃"。
美國、俄羅斯、以色列、印度和其他許多國家都反對禁止自主武器,將談判推遲到以后。美國提議用一個約束力較小的自愿行為準則來規范這一事項。這種解決方案很難對這些技術的發展形成具體的威懾,而且不可能確定無人機和智能導彈何時以自主方式使用。
因此,烏克蘭的沖突有可能成為新一代武器的正式洗禮,這將使對此類問題的回答越來越緊迫,并對其使用采取國際立場。
俄羅斯國防部在2022年3月18日報告說,俄羅斯軍隊使用了Kinzhal高超音速導彈[1],并摧毀了位于烏克蘭西部Delyatina村的一個導彈和航空彈藥地下倉庫。美國官員也證實使用了高超音速導彈[2]。根據美國官員的說法,這次發射旨在測試武器,并向西方發出有關俄羅斯軍事能力的信息。
本文討論了現有的俄羅斯高超音速導彈,并回顧了在烏克蘭軍事行動中使用的可能使用新興破壞性技術的其他俄羅斯軍事能力。
首先,應該提到的是,高超音速武器被認為是用于戰爭的顛覆性技術之一,同時還有人工智能、自主系統、大數據、量子技術、生物技術和新型材料等技術[3]。
高超音速導彈的飛行速度至少為5馬赫或5倍音速。高超音速武器有兩類:第一類是火箭載體攜帶高超音速滑翔機,在飛行過程中與載體分離;第二類是火箭本身是高超音速的,在整個飛行過程中由高速發動機驅動。與彈道導彈不同,高超音速武器不遵循拋物線彈道軌跡,以高超音速飛行。它們在飛往目標的途中可以自由機動,這使得它們在飛行中更難被探測和摧毀[4]。
俄羅斯目前有兩種類型的高超音速導彈在使用,并正在開發第三種類型的高超音速武器,以攜帶核彈頭:阿凡格、金沙爾和3M22鋯石。阿凡格 "是一種從彈道導彈發射的高超音速滑翔機,如SS-19 "斯蒂爾托"、SS-9 "斯卡普 "和SS-X-29 "薩爾馬特"。根據俄羅斯新聞來源,Avangard在2019年12月開始執行戰斗任務。2017年12月,空中發射的高超音速火箭Kinzhal補充了俄羅斯軍隊的武器庫。Kinzhal可以從圖-22轟炸機或米格-31戰斗機上發射。同時,Zircon是一種高超音速巡航導彈,目前正在進行測試,應該在2023年投入使用[5]。
Kinzhal導彈還可以用來摧毀低地球軌道上的衛星。據估計,Kinzhal導彈的飛行距離可達2000公里,飛行高度可達1500公里。在2017年進行了密集測試并接受金沙爾導彈進入俄羅斯軍隊的武庫后,它被使用了兩次:2019年在北極地區和2021年在敘利亞。在這兩種情況下,導彈都是從米格-31戰斗機上發射的。Kinzhal導彈的總產量不詳。
(2018 年 5 月 9 日,在 2018 年莫斯科勝利日閱兵期間,一架帶有 Kinzhal 高超音速導彈有效載荷的 MiG-31 飛越莫斯科)
應該注意的是,不是每架俄羅斯MIG-31戰斗機都能攜帶Kinzhal導彈。為此已經開發了MIG-31K的專門版本[7]。俄羅斯空軍估計有多達10架現代化的戰斗機專門用于這一任務[8]。圖-22M3轟炸機可以攜帶四枚金沙爾導彈。然而,據說還沒有從這個平臺上進行過測試[9]。
俄羅斯軍隊有一個龐大的非人防空對地導彈庫,因此在烏克蘭戰爭中使用金沙爾導彈的象征意義大于實際意義。俄羅斯很可能同時使用 "阿凡格 "高超音速導彈和艦載高超音速巡航導彈Cirkon,以提高其高超音速武器的有效性的說法。
俄羅斯在人工智能和自主武器系統方面取得了重大進展,一些俄羅斯研究所和軍工企業專門從事這方面的研究[10]。然而,對俄羅斯軍隊在烏克蘭使用的軍事裝備的詳細分析顯示,公開提出的創建和測試的概念中只有一小部分在實踐中使用。即使是之前在敘利亞廣泛使用的系統,在烏克蘭也沒有被密集使用。 這些顛覆性的技術并不多,也沒有達到必要的成熟度。
俄羅斯目前在烏克蘭使用了少量的無人機,這是由于幾個因素。首先,俄羅斯計劃的軍事行動將持續三天,而且沒有預期的高度抵抗,因此,由于行動的節奏非常快,無人機的部署計劃是最小的。其次,烏克蘭防空和電子戰(EW)對無人機的成功演示影響了俄軍指揮官的選擇。另外,俄羅斯攻擊的目標位于整個烏克蘭境內,所以現有的無人機的技術特點不允許它們支持如此深度和頻率的行動。在不久的將來,俄羅斯對無人機的使用可能會加強,因為戰爭正在慢慢變得靜態。這些系統在打擊陣地戰方面的重要性已經被反復證明。
俄羅斯制造的神風無人機KUB-BLA在烏克蘭基輔附近的敵對行動中被使用[11]。KUB-BLA的操作是基于人工智能算法的,所以它可以自主地識別目標并摧毀它。KUB-BLA還在敘利亞進行了測試,它在那里進行了許多成功的行動。KUB-BLA是一種難以探測的無人機,可以飛行40公里,飛行速度高達130公里/小時,可以攜帶重量達1公斤的炸藥[12]。無人機可用于摧毀非武裝或輕度裝甲目標,并產生突襲效果。
有多份報告和證據表明,在烏克蘭的俄羅斯軍隊密集使用無人機Orlan-10和Inokhodets(Orian),它們也有破壞性的技術。
Orlan-10于2010年開始在俄羅斯軍隊中服役。該無人機是模塊化的,配備了多個攝像頭和其他傳感器。2020年,Orlan-10被升級為激光指定器。奧蘭-10經常與俄羅斯遠程火炮一起使用,也適合執行ISR任務;它是一種小型無人機,翼展為1.8米,它可以在70-150公里/小時的速度下飛行18小時。到目前為止,共有14架奧蘭-10在沖突中被摧毀[13] 。此外,這些模塊可以由一個日光攝像機、一個熱成像攝像機、一個視頻攝像機和一個無線電發射器組成,裝在機身下的陀螺穩定的攝像機吊艙中。這些相機提供實時情報、3D地圖、監視和對地面目標的空中偵察。有效載荷收集的圖像、視頻和其他傳感器數據通過使用3G/4G蜂窩網絡的數據鏈接實時傳輸到地面控制站。可選擇的是,Orlan-10配備了EW能力,可以區分友方和敵方的信息傳輸方式。它可以安裝干擾發射器并設置蜂窩干擾區[14]。
(2022 年 3 月 30 日,一名俄羅斯士兵準備在俄羅斯入侵烏克蘭期間發射 Orlan-10)
同時,"伊諾霍杰茨 "是一種中等高度和長距離(MALE)的戰術無人機。到目前為止,俄羅斯軍隊在烏克蘭只損失了一架。Inokhodets的最大有效載荷重量為200公斤,它可以在7.5公里的高度飛行,最多可飛行24小時,速度可達200公里/小時。它還有一個電子光學、激光目標探測儀和紅外攝像機。該無人機被用于ISR和戰斗任務。Inokhodets可以安裝9M133 Kornet(AT-14 Spriggan),第二代便攜式反坦克導彈,用于摧毀裝甲車輛和坦克。該無人機能夠在最大96公里的范圍內探測目標,并能在距離目標4公里的范圍內發射導彈[16]。
(2020 年 8 月 29 日展出的俄羅斯獵戶座無人機(也稱為 Inokhodets))
隨著戰爭進入第二階段,意味著俄羅斯軍隊開始只關注頓涅茨克和盧甘斯克地區,無人機的使用將加強。最有可能的是,我們將看到Altius、Forpost和Volk-18無人機,它們利用人工智能執行ISR任務,探測和識別目標并進行自主操作。
到目前為止,沒有跡象表明俄羅斯海軍正在使用其無人海軍艦艇Kadet-M、洲際核動力自主魚雷Poseidon或無人水下航行器Galtel。同樣,陸軍也沒有跡象表明現有的無人駕駛地面車輛Udar[18]正在戰爭中使用。Udar是在BMP-3步兵戰車和Marker的基礎上開發的,Marker最近剛剛升級,具有與一組地面機器人自主通信的能力[19]。
很可能,無人駕駛的地面和水下系統根本沒有被使用,因為它們還沒有被完全開發,而且互動能力有限。此外,事實證明,在目前的戰爭節奏下,傳統的系統是有效的。
俄羅斯聯邦旨在為海軍提供大型巡邏艦,能夠在公海和封閉海域進行巡邏、監測和保護。到目前為止,在22160項目下建造了六艘船,該項目于2014年啟動,旨在通過自動化和人工智能減少船員。瓦西里-別科夫號是黑海現有的三艘艦艇之一,在俄羅斯入侵烏克蘭的第一天,參與了2022年2月24日對蛇島的攻擊[20]。
T-14 Armata坦克是另一個能夠自主作戰的平臺,可作為無人駕駛坦克技術的試驗臺。該坦克具有完全數字化的設備,一個無人駕駛的炮塔,以及一個供乘員使用的隔離式裝甲艙。到目前為止,沒有證據表明T-14 Armata在烏克蘭被使用。此外,已經有明確的跡象表明,制裁將阻礙T-14 Armata的生產[21]。
有人試圖用人工智能增強蘇-35S和米格-35飛機的機載信息管理和目標識別。只有蘇-35S參與了戰爭。到目前為止,一架蘇-35S在烏克蘭東部的Izium附近被烏克蘭防空部隊擊中。蘇-35S飛機的特點是推力矢量、雷達吸波涂料、Irbis-E無源電子掃描陣列雷達、IRST(紅外搜索和跟蹤)、Khibiny雷達干擾系統、超遠程R-37M空對空導彈,以及Kh-31反輻射導彈[22]。
此外,俄軍正在將人工智能用于瞄準自動化火炮系統。由Rostex公司生產的MSTA-SM有一個新的數字火控系統,可以將射速提高到8-9rpm。它有一個改進的陸地導航計算機,最大限度地減少了輸入射擊坐標的時間,因此可以在30秒內從待機狀態下開炮。MSTA-SM已經在戰爭中被大量使用[23]。
人工智能也被用于殺傷人員地雷POM-3 Medallion,它有利于自主識別和啟動目標。POM-3使用地震接近引信來探測人類的腳步聲,根據地雷附近的振動,并將該數據與彈藥的機載目錄中的地震特征進行比較。如果振動與地雷記憶中的正確地震特征足夠相似,并有足夠的和不斷增加的振幅(表明向地雷移動),則觸發彈藥。俄羅斯軍隊在烏克蘭戰爭中使用殺傷人員地雷POM-3的情況已在多個地點得到證實[24]。
(2020 年 8 月 23 日在陸軍展覽會上展出的俄羅斯 POM-3地雷)
與美國的全域聯合指揮與控制(JADC2)概念類似,俄羅斯有自己的國防管理中心(NDMC)系統。NDMC的目標是在空中、陸地、海上、太空和網絡部隊之間實時無縫移動數據。國防管理中心被設計為接收來自最低軍事單位的信息,并在分析和評估之后,將數據直接反饋給戰略層面的單位。烏克蘭戰爭第一階段的結果表明,來自最低軍事單位的數據沒有在NDMC內處理,其產出也沒有被帶到戰略層面[26]。
此外,沒有跡象表明,以下利用人工智能的系統在戰爭中被使用。福爾摩沙系統公司開發的Aquahranitel,能夠對海洋領域進行監督;俄羅斯軍隊的ACS,由國防部開發,用作管理戰場信息的系統;RadarMMS公司開發的飛機管理系統Kasatka,用于提高飛機、直升機和無人機的自主性[27]。
在EW方面,除了傳統的和更新的系統,俄羅斯軍隊正在使用由Ruselektronics公司建造的Bylina EW系統,該系統應用AI來進行ISR、信息操作和自主EW操作。Bylina還能夠降低和干擾通信衛星的傳輸[28]。
Pantsir-S防空系統,是部署在烏克蘭的少數系統之一。Pantsir-S用于擊落攻擊型無人機、GRAD和Tochka-U導彈,并通過人工智能實現防空作戰的更大自主權[29]。
在烏克蘭的戰場上只觀察到少數擁有新興破壞性技術的武器平臺。最流行的類型仍然是無人機,然而,帶有人工智能的增強型傳統系統也仍然被廣泛使用。當然,人工智能帶來的適度改進并不是為了增加武器或系統本身的殺傷力,而是為了提供增強功能,以便縮小決策周期,更快地尋找和指示目標,或提供更多的自動化解決方案來處理數據。
在與烏克蘭的戰爭中,俄羅斯軍隊使用的由新興顛覆性技術增強的系統相對較少。相反,俄軍在使用傳統系統的同時,還使用了一些新穎的元素,如高超音速導彈、無人機、雷達或火炮自動化系統,能夠對目標和目標的消除進行精確的監視。其原因主要是這些系統的可用性和成熟度。從長期角度來看,制裁很可能會影響到俄羅斯軍隊使用的新興破壞性技術增強的武器的發展速度。
盡管俄羅斯擁有多種電子戰能力,但由于烏克蘭軍隊有能力指揮和控制部隊,所以它的表現并不理想。分散C2要素、使用普通移動電話和利用固定電話是成功實施反擊的幾個例子。很明顯,俄羅斯人沒有對電磁波譜進行適當的管理,因為他們的一些干擾正在干擾友好的通信。
高超音速武器是目前最大的挑戰,因為它們可以容納核裝藥,并能在有限的時間內通過不可預測的軌跡到達目標。因此,監視、跟蹤和反導彈系統應得到加強或重新發明,以減少新型武器帶來的風險。諸如定向能武器、粒子束和其他非動能武器等技術為有效防御提供了最大的潛力。網絡和電子攻擊可以大大降低武器的有效性。在探測方面,將需要一個由天基衛星和分散的傳感器組成的網絡,這也將與JADC2相連。
看來,俄羅斯利用中央防御管理中心的意圖已經失敗,因此,熱衷于多領域行動的美國和北約國家在實施其JADC2概念時,必須考慮一些經驗教訓。重點應該放在首先連接所有必要的傳感器和師級甚至更低級別的效應器上。此外,該系統在和平時期的操作功能將不同于戰時所需的功能。
現代軍隊依靠電磁頻譜來運作。因此,通過干擾和定向能量攻擊電子和信息系統會降低現代對手的作戰系統。冷戰結束后,美國的對手在電子攻擊能力方面進行了投資,而美國陸軍則基本上放棄了自己的能力。意識到這一點,陸軍現在正投資于新舊電子武器以縮小差距,在陸軍試驗多域作戰概念時重新獲得電子攻擊能力。本專著的目的是回答這樣一個問題:"美國陸軍如何在MDO空間中利用電子攻擊?" 本專著提出,陸軍作戰部隊應將新興的干擾和定向能武器整合到一個作戰系統中,將物理、控制論和道德效應融合到對敵人的深度攻擊中。這一建議對條令、組織和領導者的發展有重大影響。作者的意圖是鼓勵陸軍領導人將環衛系統中的進攻行動視為當前和未來戰場上聯合武器作戰的關鍵。
無人機系統和傳統的干擾技術已經融合在一起,形成一種新的能力。正如前面的案例研究中提到的,俄羅斯已經在無人機上安裝了干擾器,作為其Leer3 EW系統的一部分。在美國,陸軍和空軍希望更深入地測試空中發射的多功能無人機群,這些無人機可以快速穿越戰場進入對手的支持區,以識別、破壞甚至摧毀高回報目標。陸軍作戰能力發展司令部的合同提案要求這些無人機配備ES傳感器和EA武器,能夠同時探測敵人的作戰秩序,進行干擾,并觀察火力任務。陸軍的建議表明,網絡化的EW無人機在近距離、縱深和支援領域都有作用。除了在更大的收集-火力架構中的整合,EW無人機群可以通過欺騙性的信號和特征支持作戰機動。雖然這一系統尚未投入實戰,但該提案表明,陸軍正在考慮將EA能力與不斷擴大的無人機群整合到一個更廣泛的作戰系統中。
反無人機干擾系統有效地發揮了機動短程防空(SHORAD)武器的作用,保護單位和關鍵節點免受觀察和攻擊。許多反無人機武器干擾或欺騙測向和通信系統,導致無人機墜毀或返航。理想情況下,反無人機EA系統可以與戰區的IADS相連接,能夠迅速解除空域的沖突,辨別敵我雙方。然而,在有爭議的EMS環境中與低空飛行的無人機交戰的被動性質將使蓄意的空域和EMS解沖突變得不可能,特別是對于裝備有便攜式變體的部隊。
定向能源武器的破壞潛力來自于隨著時間推移轉移到目標的能量。高能(HE)激光器的能量通常在千瓦到兆瓦之間。在低端,這些武器可以使傳感器失明。隨著能量的增加,它們可以降低敏感的電子元件,加熱設備和人員,使其不能再發揮其功能,并導致燃料或彈藥爆炸。 美國海軍在實施高能激光器方面處于領先地位,2014年在一艘水面艦艇上安裝了第一臺。它現在在許多艦艇上都有一系列的激光器,從光學 "炫目 "到150千瓦的光束。光學、發電和傳播方法的進步使得在海上、空中和太空以及陸地移動系統中使用高能激光成為現實。
陸基高爆激光系統可以發揮許多功能。在戰術層面上,高爆激光器可以抵御來襲的彈藥,使無人機失效,并壓制敵人的主動防護系統,作為動能射擊的補充。空軍安裝在卡車上的 "恢復基地拒絕的彈藥"(RADBO)系統使用高爆激光器在舒適的距離內引爆地雷。陸軍目前正在開發一種300千瓦的車載激光器,以防止火箭彈、火炮和迫擊炮的攻擊。在戰區和戰略層面,高爆激光器可能是對抗高超音速導彈的唯一有效手段。根據大氣條件和可用功率,地面高爆激光器可以瞄準敵方軌道上的衛星。
高爆激光器可以有效地作為動能武器的彈藥替代物。這也是有代價的:功率要求、交戰時在EMS中的信號增加,以及由于遠距離和跨域的影響而可能造成自相殘殺。高爆激光器還可能受到大氣條件的限制,盡管該領域的進展正在努力克服這一挑戰。
激光與物理環境中的元素的相互作用使DE有了非致命的用途。美國軍方在伊拉克和阿富汗的反叛亂行動的高峰期試驗了 "疼痛射線",作為其主動拒絕系統(ADS)的一部分。該系統是為控制人群而設計的,它將電轉化為毫米級的無線電波,加熱皮膚中的水,在幾秒鐘內產生難以忍受的熱感。對ADS的1.1萬次測試只導致了兩次受傷。另一種應用是用激光在人員附近產生等離子體球,然后用其他激光誘發物理效應,如幽靈般的聲音或周圍空氣中難以忍受的噪音。聯合非致命武器局正處于將激光誘導的等離子體效應武器用于加熱目標的皮膚,產生極其響亮或混亂的聲音,以及投射口頭命令的邊緣。
非致命的DE武器可用于固定地點的安全,可在安全和鞏固行動中使用,并可通過使人群遠離道路來提高流動性。然而,這些武器的新穎性可能會在信息環境中產生負面效應。斯坦利-麥克里斯特爾將軍在ADS部署后的幾周內就下令將其從阿富汗撤走,因為塔利班讓人們相信美國在對平民進行 "微波",使其患上癌癥和不孕癥。
高功率微波(HPM)武器旨在通過用電磁能量壓倒目標的電子裝置來拒絕、干擾、損害或摧毀它們。HPM是可擴展的,根據HPM投射的能量的多少來呈現所需的效果。在較低的范圍內,HPM激增的能量足以 "鎖定 "一個系統,拒絕其使用。在較高的功率范圍內,HPM會破壞集成電路。與干擾器不同,HPM可以在目標系統不工作的情況下實現其效果。反擊HPM需要對整個電子系統進行加固,因為激增的能量會通過暴露的電線、端口、天線和光學器件滲透進去。與高爆激光器不同,HPM是區域性武器。破壞性效果通常是在較近的范圍內產生的,而破壞性效果可以在較遠的距離上實現更大的面積。作為區域性武器,HPM在對付無人機群時特別有用,空軍已經部署了至少一種HPM武器來保護其地面設施免受無人機攻擊。2017年,波音公司和空軍成功測試了 "反電子高功率微波高級導彈項目"(CHAMP),這是一種巡航導彈,旨在用機載HPM摧毀計算機和電子設備。將這種技術應用于無人機系統或基于直升機的運載系統,為遠程HPM攻擊提供了另一個載體。
具有最大戰略潛力的HPM武器是非核電磁脈沖(EMP)。一旦美國研究人員認識到核爆炸伴隨著電磁能量的大規模激增,美國和蘇聯就開始研究用非核彈藥復制這種效果。雖然CHAMP使用機載電池來發射其HPM以達到局部效果,但EMP炸彈將爆炸能量轉移到磁場中,在整個作戰區域產生HPM效果。組件技術已經成熟到EMP炸彈或導彈是可行的地步。雖然國防部沒有公開其EMP研究,但在2017年,國防部向工業界征集一種 "彈藥投送的非動能效應",該效應能夠 "在不破壞與這些系統相關的硬件的情況下使對手的基本工業、民用和通信基礎設施失效"。該提案要求用標準的陸軍155毫米射彈來實現這一效果。96F 97 該提案所要求的能力指向某種火炮發射的EMP武器。由于C2系統和光電傳感器依賴于敏感和脆弱的電子器件,成功的EMP攻擊對對手的影響可能是決定性的。
博伊德斷言,戰斗人員必須有道德-心理-身體的和諧才能進行抵抗。要破壞這種和諧,需要將致命的、機動的和道德的努力結合起來。施耐德斷言,戰斗有三個領域:道德、控制論[心理]和身體。各個領域都會受到能力的影響,包括EA。結合這些觀點,我們得出了一種方法來理解新的電子攻擊能力如何在多領域作戰中被利用(見圖3)。考慮到案例研究,現在的任務是考慮我們如何將新興的EA系統與現有的能力相結合,在物理、控制論和道德領域產生影響,以支持致命的、機動的和道德的努力。
圖 3.“在作戰中應用電子攻擊的模型”。
電子武器特性的最重大變化是開發了能夠直接摧毀敵人系統和平臺的電子武器。HPM和HE激光系統有能力摧毀無人機和飛機。陸軍的高爆激光器目前集中在防空和反無人機任務上,但這些激光器瞄準地面上的敵方平臺只是時間問題。戰斗車輛上的主動保護系統,如以色列的 "戰利品 "系統的擴散,可能需要在用直接或間接火力攻擊這些平臺之前,通過干擾或DE武器對其進行抑制。為工兵部隊配備RADBO或類似的高爆激光系統,將使他們能夠迅速減少雷區,在行動中能夠更快地進行地面機動。
無人機群ES/EA干擾器,與間接或精確火炮協同作戰,形成了一種觀察-壓制-打擊的能力,有可能遠遠超出前線部隊的作戰范圍,支持偵察和反偵察任務。裝有高爆激光器的航空平臺將為陸軍提供其最遠距離的直接火力武器系統,能夠在距離目標數英里的地方升空進行瞄準射擊,然后落回地面。作為常規致命打擊的一部分,EMP炮彈將摧毀主動防護系統和反火力雷達的電路。
陸軍EA系統也將在物理領域支持MDO的其他服務。DE武器的效果上限可以延伸到太空,使其能夠與飛機交戰以支持空軍。消耗性的無人機干擾器可以激活敵方的EA系統,顯示其位置以便聯合瞄準。裝備有小型EMP裝置的特種作戰部隊可以使岸基雷達和導彈系統在沿海和海上行動中無法使用。陸軍高能激光器有可能通過從地面瞄準敵方衛星來支持太空部隊。
雖然美軍傳統上將EA集中在網絡領域,但現代EA武器為陸軍提供了沿著作戰區域的長度和寬度攻擊網絡決定性點的潛力。蜂群無人機可以將陸軍各師的干擾范圍擴大到遠遠超過空地作戰的30公里。ES系統可以提示高爆激光器來干擾(或炸毀)指揮節點的天線。HPM和EMP彈藥將使整個網絡無法使用,嚴重降低了指揮官在分布式部隊之間提供目的和方向的能力。成群的EA無人機和固定的誘餌可以模擬平臺和指揮節點的電子特征,欺騙敵人并模糊其電子監視工作。同樣的能力也可以用噪音淹沒EMS,在關鍵時刻隱藏關鍵系統的使用或機動。
無人機干擾器和高爆激光器可以壓制防空系統以支持空軍行動。電磁炮是在MDO中產生機動窗口的完美武器,因為它可以使不發光的防空雷達失效,而不會使載人的空中干擾機處于危險之中。地面干擾器可以破壞衛星和地面站之間的聯系,使太空部隊的資產騰出來用于其他行動。EA系統可以刺激敵方網絡,或創造可能有利于敵方網絡內部的網絡行動的缺口。針對網絡決定性點的EA的累積效應將使敵人無法對加速的致命打擊作出反應,也無法對進入脆弱地區的滲透性機動作出反擊。
陸軍可以在戰術、作戰和戰略層面上將現代EA技術用于對抗敵人的意志。在戰略層面上,EMP彈藥可以作為一種有效的威懾手段來對抗對手的行動。從多個載體--空中、太空、海上和陸地--發射的EMP提供了核交換之外的升級選擇。在作戰層面,一個模擬蜂窩網絡同時干擾真實網絡的系統,如俄羅斯的Leer 3,將幫助指揮官更有效地管理信息環境。對分散的部隊使用戰術電磁脈沖,從電子上切斷他們的總部和相鄰的編隊,將在紀律性不強的部隊中產生恐懼和威脅。激光誘導的等離子體效應可以在塑造行動中使用,作為致命的動能打擊或快速穿透機動的前奏,制造恐懼和焦慮。
正如俄羅斯人在烏克蘭所展示的那樣,操縱性電子攻擊是利用聯合網絡行動中獲得的情報的一種機制。我們的網絡戰士必須與EA和心理行動相結合,以收集情報,制作欺騙或信息,然后以無線方式投射到對手的網絡。
在過去的二十年里,無人駕駛飛機系統(UASs)在戰爭中發揮了重要作用,包括用于反恐行動。但是,關于它們在競爭和國家間戰爭中的效用,包括美國和中國這樣的大國之間的辯論越來越多。對一些人來說,無人機系統正在創造一場 "軍事事務的革命",它將從根本上重塑軍事理論、組織、部隊結構、行動和戰術。然而,對其他人來說,無人機系統的有效性被夸大了,而且無人機系統在高度競爭的環境中可能效用有限。
為了更好地了解無人機系統的效用,本報告提出了兩個問題。首先,無人機系統在現代戰爭中,特別是在國家間戰爭中是如何被利用的?第二,無人機系統在戰爭和競爭中的未來影響是什么?為了回答這些問題,本分析采用了一種比較案例研究的方法。它研究了兩個案例--2020年的納戈爾諾-卡拉巴赫戰爭和2022年的烏克蘭戰爭,以更好地了解無人機系統在戰爭中的使用情況。它還研究了2021年的 "北緣-21 "演習,該演習對無人機系統在印太地區的競爭和戰爭中的應用進行了有益的研究。
基于分析,本報告得出了幾個結論。
首先,無人機系統已經越來越多地被納入到聯合軍備戰中,這與過去20年來在追蹤和瞄準恐怖主義網絡方面的使用有明顯的轉變。例如,阿塞拜疆有效地利用無人機系統作為聯合武器的一部分--包括固定翼飛機、直升機、游蕩彈藥、制導導彈和火炮--來扭轉亞美尼亞三十年來對納戈爾諾-卡拉巴赫大片地區的控制。在烏克蘭,俄羅斯和烏克蘭都將無人機系統作為聯合軍備戰的一部分,在俄羅斯2022年2月的入侵后開展攻防行動。前線經常被UASs所飽和,事實證明,在烏克蘭有爭議的環境中,UASs對提高戰場意識特別有價值,而不會有生命損失的風險。在《北方邊緣21》中,無人機系統--包括MQ-9 "幽靈死神"--被整合到印太地區的聯合武器行動中,包括遠程火力、F-35A "閃電II"、衛星、F-15C "雄鷹"、F-15E "攻擊鷹 "以及其他平臺和系統來收集情報和進行打擊。
如圖S.1所示,無人機系統將可能被整合到一個更廣泛的戰場網絡中,包括第五代戰斗機,如F-35s和F-22s;空中加油機,如KC-135s;遠程轟炸機,如B-21s;巡洋艦和驅逐艦;衛星;航母打擊群;陸基遠征推進基地;指揮和控制中心;遠程火力;以及其他平臺和系統。
第二,無人機系統在未來可能對廣泛的競爭和戰爭都有重大用途。涉及美國、中國、俄羅斯和其他國家的安全競爭將可能是全球性的,并涵蓋亞洲、歐洲、非洲、拉丁美洲和大型水體的陸地、空中、海洋、網絡和空間領域的巨大范圍。在這種情況下,擁有能夠在廣闊的地理區域收集情報、必要時打擊目標并在有爭議的環境中運作的平臺和系統將非常重要。在未來,無人機系統可能會在執行幾種類型的任務中發揮關鍵作用,作為聯合武器戰爭的一部分,包括
總之,無人機系統可能會在與中國和俄羅斯等國家的競爭和戰爭中發揮重要作用--這與它們早期用于反恐行動有明顯的變化。無人機系統可能特別有用,因為它們能夠進行遠征作戰,具有更遠的距離和持久性。此外,政府通常認為無人機系統比駕駛飛機的升級性要低。執行一系列廣泛的任務將需要一套在射程、有效載荷、成本和能力方面各不相同的無人機系統和徘徊彈藥。為了應對國家和非國家行為者對無人機系統越來越多的使用,也將越來越需要采用反無人機系統的戰術、技術、程序和能力。
雖然無人機系統的技術已經發展,但最重要的變化是無人機系統如何被用作聯合武器戰爭的一部分,以及這對未來的啟示。威廉-莎士比亞在《暴風雨》中寫道:"過去的事情就是序幕"。最近在烏克蘭納戈爾諾-卡拉巴赫的事件以及在印度-太平洋地區的演習為未來在聯合武器行動中越來越多地使用無人機系統提供了一個有預見性的序幕。
圖S.1: 無人機系統和作戰網絡
本報告的其余部分分為以下幾章。第2章對無人機系統在競爭中的作用進行了評估。第3章研究了納戈爾諾-卡拉巴赫戰爭中的無人機系統。第4章分析了俄羅斯和烏克蘭在2022年的烏克蘭戰爭中對UAS的使用。第5章探討了NE21的教訓。第6章對無人機系統在戰爭和競爭中的未來作用提出了政策含義。最后,附錄1、2和3提供了案例研究中強調的阿塞拜疆、烏克蘭和俄羅斯分別使用的無人機系統的概述--包括諸如類型、描述、范圍、續航時間、原產國和制造商等信息。
防御高超音速導彈在戰略上是必要的,在技術上是可行的,在財政上也是負擔得起的,但這并不容易。它的實現將需要不同于傳統彈道和巡航導彈防御任務所采用的方法和新的思維方式。高超聲速武器將彈道導彈的速度和射程與巡航導彈的低空和機動飛行輪廓相結合。雖然傳統防御可以單獨應對這些挑戰,但它們的組合將需要新的能力、作戰概念和防御設計。高超聲速導彈具有吸引力的相同特征也可能是擊敗它們的關鍵。與其將高超聲速防御視為傳統彈道導彈防御問題的附屬品,不如將其理解為一種復雜的防空形式。
幾十年前,美國向世界表明了其部署彈道導彈防御系統的意圖,特別注重攔截大氣層外可預測的目標。從那時起,導彈的威脅范圍已經擴大,變得更加大氣內和更靈活。在21世紀初,俄羅斯和中國開發了各種無人機系統、先進的巡航導彈、高超音速滑翔武器和日益復雜的彈道導彈。這些武器的特點減少了防御系統的覆蓋范圍,迫使防御者一次看多個方向,并需要更靈活的攔截器。
自2018年以來,俄羅斯已經測試了至少四種新的高超音速或高速武器,將其遠程Avangard高超音速滑翔飛行器和Kinzhal空射彈道導彈投入使用。與此同時,中國已經測試或部署了幾種類型的高超音速武器,并在培養高超聲速專業工程師、發表公開科學論文和建造高超聲速風洞方面超過了美國。俄羅斯等大國對先進導彈能力的投資是2021年3月發布的《臨時國家安全戰略指南》所稱的“旨在遏制美國實力并阻止我們捍衛我們在世界各地的利益和盟友的努力”的一部分。
高超聲速防御對于破壞這些努力、保衛美國領土、保護前方部署的部隊及其支持的防御態勢是必要的。有效的威懾既要利用懲罰的威脅,又要利用阻止攻擊的可靠能力。主動和被動防御措施的混合將提高攻擊的門檻,增加對手決策計算的不確定性,并增加對手的發展成本。有效的防御能力為采取其他軍事、外交和經濟應對措施贏得時間,以承受和減輕與危機中攻擊導彈發射裝置有關的政策和行動挑戰。高超音速防御系統的發展不需要也不應該在真空中進行,也不應該作為一個新的獨立的煙囪。高超聲速防御可以利用正在進行的彈道和巡航導彈防御和高超聲速打擊投資,所有這些都利用了類似的工業基礎,并利用了類似的傳感器和網絡。
拜登政府高級官員肯定了高超音速防御的重要性。在他成為國防部長的確認過程中,勞埃德·奧斯汀表示,他將“鼓勵努力解決各種導彈威脅,包括……高超音速導彈防御攔截能力的加速發展。”副國務卿凱瑟琳·希克斯同樣承諾將重點關注必要的傳感器能力:“如果得到證實,我將評估正在進行的改善國家導彈防御的努力,特別關注提高識別能力和探測彈道導彈和高超音速導彈的傳感器。”
高超聲速導彈的特性可能看起來很新穎,但它們實際上是導彈戰新時代的先兆。新型彈道導彈的飛行軌跡更低、形狀更重。新型巡航導彈保持更高的速度,而且越來越難以被發現。未來的威脅將包括導彈-無人機組合、航天飛機、飛行導彈和其他難以簡單分類的混合導彈。因此,高超音速導彈并不代表一個精品問題。它們是導彈威脅的更廣泛演變的例證——這需要對更廣泛的導彈防御模式進行變革。
2019年《導彈防御評估報告》指出,“不應低估恢復常規和導彈防御優勢所需變化的規模和緊迫性。”這里所要求的規模和緊迫性幾乎涉及導彈防御的每一個方面:傳感器、攔截器、防御設計、理論和政策。復雜的空中和導彈防御系統的問題與某些仍在出現的未來威脅無關。目前,與已經部署并準備使用的高超音速武器以及其他即將問世的武器進行競爭是當務之急。美國國防官員長期以來一直表示,有必要將名為彈道導彈防御系統(Ballistic Missile defense System)的主要國防采建項目轉變為導彈防御系統(Missile defense System),以應對不再由彈道導彈定義的威脅范圍。現在是這樣做的時候了。
部署高超聲速防御將需要綜合的、分層的、系統的方法、新的傳感和攔截能力、不同的作戰概念、教義和組織變化,以及修改的政策預期。
高超音速飛行的定義是大氣飛行。因此,高超聲速防御可能被更好地理解為一種復雜的防空形式,而不是彈道導彈防御的附屬品。
高超音速導彈威脅應該是重新考慮導彈防御和擊敗的方法,以及從彈道導彈防御系統中出現導彈防御系統的關鍵驅動因素。這樣做將有利于防御其他非彈道威脅的發展,包括亞音速和超音速巡航導彈、游蕩彈藥和其他新型投送系統。
高超聲速防御最重要的項目元素是彈性和持久的空間傳感器層,能夠觀察、分類和跟蹤所有類型、方位角和彈道的導彈威脅。
第二重要的項目元素是滑翔相位攔截器。到目前為止,高超聲速國防投資一直不多,只有一小部分用于高超聲速打擊。按照目前的速度,滑翔相攔截彈可能要到21世紀30年代才能部署,但這一時間表可能會加快。
即使沒有空間傳感器層和滑翔相位攔截器,防御設計也可以使用現有的傳感器和替代效應器,以限制高超聲速導彈的機動預算,引導威脅,并以有利于防御方的方式施加其他成本。
高超聲速武器具有吸引力的相同特征為防御者提供了新的失敗模式。一種綜合的方法可能受益于用區域范圍效應器補充命中殺傷攔截,包括高功率微波系統、21世紀版本的高射炮和其他針對高超聲速飛行體制漏洞的手段。
美國不會與無限的資源競爭。積極防御高超聲速導彈可能瞄準的每一個關鍵資產甚至廣闊區域是不可能的。這一簡單的現實要求政策和戰略預期與優先防御和更有限的防御資產清單相一致。應優先考慮區域和部隊保護任務,以及在本土的少量關鍵資產。
目前的教義和組織結構妨礙信息共享、交流和決策。這些需要適應,以支持跨多個領域、命令和責任領域的反高超聲速行動。
高超聲速防御工作要求美國通過維持可預測的預算、深化與盟友的合作、投資消除工業瓶頸領域、改進測試和建模基礎設施以及持續持續的努力,重新獲得相關的科學和工業領先地位。
防御高超聲速導彈全方位威脅的挑戰不可能由單一的銀彈解決方案解決。針對高超聲速飛行關鍵弱點的大量努力可以使高超聲速防御成為一個更容易處理的問題。
本專著的目的是從防空歷史和空中力量穿透這些防御的工作中提煉出教訓。它從第一次世界大戰、第二次世界大戰、越南、"沙漠風暴 "以及俄羅斯和中國的現代發展中確定了六條經驗。這六條經驗為空軍和地面部隊在未來進行壓制敵方防空(SEAD)和滲透行動的努力提供參考。本專著探討了聯合部隊應如何對待SEAD任務的問題,以及來自陸地領域的部隊是否應在穿透地基防空系統方面發揮更重要的作用。
T.R. Fehrenbach提醒我們注意戰爭的一個持久特征。無論我們的技術變得多么復雜和先進,武裝沖突仍然需要士兵參與。空中力量理論家認為,在未來的戰爭中,人類可能不再需要近距離的暴力對抗,僅靠空中手段就能達到目的。雖然純粹的空戰仍然是一個遙遠的想象,但地面部隊將繼續奮勇向前,與泥濘中的人們一起奪取目標。本專論并不是說空中力量是不必要的;相反,它是至關重要的。空軍的覆蓋面和影響力已經與地面機動密不可分,在最近的戰爭中,空軍已經成為軍隊進攻的必要先導。然而,空中優勢作為地面進展的先決條件的模式可能不再成立了。移動式和便攜式防空系統的擴散,加上危害地面部隊的遠程打擊能力,無論其位置如何,都可能迫使地面作戰先于其空中補充。
本專著討論了聯合部隊在未來應如何進行壓制敵方防空(SEAD)。它考慮了攻擊性空軍和地面防御者之間的斗爭。具體來說,它討論了防空系統的進步已經發展到了美國空軍無法繼續承擔壓制和穿透它們的主要份額的程度。在未來,美國陸軍可能不得不對綜合防空系統(IADS)進行第一輪打擊,為美國空軍開始空中優勢的戰斗打開大門。
海上防空對于地面部隊的機動自由至關重要。在減少對手的防空資產之前,敵人的空軍可以隨意攻擊機動編隊。自從20世紀初早期的飛行者從飛機上投下第一件武器以來,空中力量對現代機動作戰一直是至關重要的。空中和地面防御系統已經發展到這樣的程度,即一支軍隊如果不首先擊敗其競爭對手的空軍就進行攻擊是不可想象的。迅速而徹底地擊敗伊拉克的防空系統并隨后摧毀其空軍,對于聯軍在 "沙漠風暴 "行動中的快速機動和壓倒性勝利至關重要。 以美國空軍為先導,然后是地面機動的SEAD模式是如此強大,以至于美國和北約的競爭對手注意到并進行了調整。今天的綜合防空系統(IADS)是高度網絡化的,相互支持的,并且是分層深入的。 這些防御網絡,再加上遠程彈藥的出現,造成了一個多層面的問題。國際防空系統迷惑了敵方空軍為其地面部隊建立機動空間的能力,同時遠程火力也使這些攻擊部隊受到威脅。先進的IADS與遠程彈藥的雙重困境,要求我們考慮我們目前的SEAD方法是否足夠。
所提出的假設是,聯合部隊應該作為一個密切協調的地面和空中團隊進行未來的SEAD。美國陸軍應該為反應靈敏、強大和機動的防空和導彈防御系統、遠程精確火力、地面發射的反輻射制導導彈(ARGM)和游動彈藥提供資源。
所采用的方法是對SEAD的歷史、理論和學說的研究。它考慮了SEAD從第一次世界大戰到現在的歷史。反擊空中和導彈威脅(聯合出版物3-01)將SEAD歸類為主要的進攻性反空(OCA)任務。其目的是 "通過破壞性或擾亂性的手段使敵方的地表防空系統失效、摧毀或暫時退化。" 美國部隊發展SEAD是為了應對日益復雜和有效的地基防空系統,它與防空的進步有效地共同發展。本專著中的防空歷史有五個主要部分。第一部分討論了第一次世界大戰中的空中力量發展,以及早期空軍能力的提高如何為地面機動提供了機會。一戰中對空襲的反應導致了二戰期間為防止滲透而對空中武裝進行牽制的武器的產生。二戰的戰斗人員完善了一戰中創造的技術,為進攻的空軍和地面的防御者開發了更致命的瞄準系統和改進的彈藥。在越南戰爭期間,越南人民軍(PAVN)采用了密集的防空武器組合,這需要美國裝備和訓練專門的飛機來壓制北越的防御;這是SEAD能力的第一個例子。接下來,該專著回顧了美國在 "沙漠風暴 "行動中對空地戰的運用,以顯示SEAD的有效性,以及它如何為其他世界大國進一步調整以對抗FM100-5中的理論提供了基礎。 第五章考慮了俄羅斯新一代戰爭(RNGW)、中國遠程導彈以及防空武器的擴散以防止滲透。作者將SEAD理論和學說的演變與歷史實例結合起來,說明空軍與IADS之間的競爭是如何發展到今天的高精尖系統的。最后,該專著提出了一個地面部分未來在對抗現代IADS的戰斗中的貢獻模式。
聯合部隊如何進行未來的海空防務行動,對于各軍種在面對未來的國際防空系統時如何整合和合作至關重要。現代國際防空系統對未來的空中行動,以及暗示的地面行動構成了一個重大障礙。國家和非國家行為者對地對空武器的使用加劇了國際防空系統的瓦解問題。它極大地提高了進行海空導彈和滲透敵占區所需的戰斗力水平。阿富汗圣戰者組織在蘇聯-阿富汗戰爭中使用 "毒刺 "導彈,以及最近在烏克蘭上空擊落馬來西亞航空公司MH17航班,都是這些系統的擴散已經超出既定軍隊嚴格使用的例子。在未來的戰爭中,雙方都可能面臨一個連續的國際防空系統和非正規部隊采用的未聯網的防空。聯合部隊必須開發多種方案來擊敗這些系統,并擴大他們的方法,以最大限度地提高靈活性,使空中和地面部隊能夠對由國際防空系統和獨立的地對空武器防御的對手構成眾多威脅。
空軍將在一個多極世界中作戰,其特點是持續的、低于閾值的交戰,其中多層和多速的戰斗空間延伸到很遠距離。空軍將需要變得高度適應,并能夠通過在高速作戰環境中實時超越威脅,快速從協調過渡到同步,不僅在移動資產和人員方面具有敏捷性,而且在至關重要的信息方面也具有敏捷性。新作戰優勢的釋放將取決于空軍加強部隊之間的連通性和整合的能力,以便信息共享能夠比以往更快、更廣泛地進行。
空軍已經嚴重依賴跨五個作戰域的作戰能力——但這些域都將變得非常混亂和具有競爭性。空軍將需要改變他們使用的網絡、系統和流程,以及他們廣泛和基本的工作方式,以便能夠在現代戰場的長度、寬度和高度上思考、戰斗和取勝。多域作戰 (MDO) 為空軍引入新的作戰指揮、控制和作戰管理 (C2BM) 提供了先導,這有望以多種方式從根本上提高在跨多域戰斗空間同步部隊要素和協調效果方面的聯合效率,這在以前不可能實現。
本報告通過將關鍵的作戰范式、挑戰和戰略轉型的推動因素相互關聯,以向新的作戰方式演進,綜合了空軍向多域作戰 (MDO) 過渡的最新觀點。
隨著國家競爭再次成為常態,全球競爭正處于新的十字路口。未來的戰略環境將引發新形式的競爭,將包括恐怖組織、叛亂分子、雇傭軍和網絡犯罪分子等非國家行為者在內的敵人聯系起來。對手將在物理和虛擬領域從事合法和非法活動,一方面模糊了和平與戰爭之間的區別,另一方面模糊了本土和遠距離之間的區別。傳統的防御方法將受到可能不承認國界或不遵守國際規范和做法威脅的根本挑戰。
因此,空軍將在一個多極世界中作戰,其特點是持續的低閾值交戰,戰場空間延伸到很遠距離。空軍作為一個在行動中持續活躍的軍種——進行訓練和演習、保障任務或在運輸途中——以保持全天候的任務準備狀態,未來面臨的挑戰尤其明顯。引入多層次和多速度的戰場從根本上破壞了經濟和戰爭的性質,因此空軍將需要加速變革并建立新戰爭方式的能力,使他們能夠在高度復雜和緊張的競爭連續體中贏得未來沖突場景的全部內容,否則就有成為多余的風險。
面對在密集的反介入/區域拒止 (A2AD) 環境中使用先進網絡和武器系統能力的對手,競爭連續體將變得競爭激烈、混亂且受限。隨著空中作戰中心 (AOC)、指揮與控制 (C2) 節點和傳統機載平臺遠離戰斗,空軍執行的全方位保障和戰斗任務將變得更加復雜。因此,空軍將需要新的方法來提高生存能力,并在密集威脅環境中以相關的速度提供效果。空軍將需要變得具有高度適應性,并能夠迅速從協調過渡到同步,以在高速作戰環境中實時超越威脅,不僅在移動資產和人員方面具有敏捷性,而且在至關重要的信息方面也具有敏捷性。
當代威脅發展太快,通過電子手段的連接來應對威脅至關重要,因為無法再在聯絡層面有效協調行動。例如,考慮聯合空中作戰中心 (COAC) 和防空作戰中心(ADOC)并不總是明確定義為總部,可以將作戰 C2 要素在防御性防空和區域防空方面分開。常規和新出現的空中和導彈以不同的方式威脅,因此防御它們通常屬于不同的指揮機構。由于一個威脅概況對于地面指揮官來說可能太大,而對于空戰指揮官來說又太小,因此需要一個無縫集成的多層全域作戰架構來生成共享態勢感知 (SA) 并確保將正確的射手分配給在正確權限下的相應傳入威脅目標。
未來沖突的結果將有利于那些在競爭中獲得信息優勢的空軍,在競爭中各作戰領域被融合在一起,而不是基于優越的武器系統和獨立的能力。新的作戰優勢的釋放將取決于空軍是否有能力加強部隊成員之間的連接和整合,從而使信息共享比以往更快、更廣泛地發生。在這樣做的過程中,為了實現更有力的協調,指揮關系和結構將需要進行調整,甚至為新的戰爭方式重新定義。多域作戰(MDO)為空軍提供了未來新的作戰指揮、控制和戰斗管理(C2BM)的先導,它有望從根本上提高部隊成員的同步性和協調多域作戰空間的效果,這是以前不可能的。
多域作戰(MDO)的概念與聯合和集合作戰的概念不同,因為它提出了在各作戰領域執行基于效果的、同步的和戰術整合的任務,從而使空軍能夠在現代戰斗空間的長度、寬度和高度上思考、戰斗和獲勝。在過渡到MDO的過程中,空軍將需要對他們使用的網絡、系統和流程以及他們的工作方式進行廣泛和根本性的轉變。為了以相關速度運作,各級指揮官將需要獲得通過聯合共同作戰圖景(COP)提供的強大的、不斷更新的SA,以便比對手更好地了解作戰環境。此外,從機密和公開來源的數據和情報流中收集、存儲、分析、融合、分發和可視化信息的能力,以便在盡可能低的層次上更快地做出決策,這對作戰成功至關重要。
但是,如果沒有適當地過濾和管理,同樣可以創造作戰優勢的大量信息也可能使決策過程不堪重負。除了簡單地將每個傳感器集成到網絡中并集成跟蹤數據之外 從多個來源實時共享,必須對持續流向指揮官的數據和信息流進行智能融合和共享,以便只提供與給定任務或作戰要求相關的數據和信息。在一個信息就是力量、信息可以比以往更快、更遠、但也有太多數據和信息需要處理和吸收的時代,防止指揮官和作戰人員面臨信息負擔和認知超載的危險將是至關重要的。因此,需要新的數字解決方案和工具包,利用自動化和人工智能 (AI) 來支持信息可視化,以便更好地理解和改進決策。
信息優勢對于空軍將戰略意圖轉化為及時的作戰和戰術效果,并在現代戰斗空間的流動作戰領域進行協調,將是決定性的。管理、分析、融合、可視化的工具包,以及關鍵的是,更好地理解來自多源情報流的大量信息,將在未來幾年重新定義作戰規劃和執行。空軍將需要利用新興技術來塑造現代戰爭環境的數字層面,因為新的作戰C2可以支持未來戰斗空間所要求的性能水平。
在目前的配置中,作戰C2 仍然過于人工手動,并且與隨著傳感器和射擊者被合并到一個單一的主網格網絡中而變得可用數據大量混亂、信息不兼容。
傳統的 C2 指令、結構和流程可以基于 24 小時周期的決策循環,不足以應對未來的破壞性威脅和預期的行動速度。任何水平的技術進步都不會使傳統 C2 對未來作戰的預期步伐更加有效。人工智能、自動化、增強現實和量子技術為過濾、可視化和幫助理解大量信息提供了新的可能性,而利用大數據處理的數據分析和融合引擎將為個人平臺、能力和決策者帶來新的機會從聯合甚至泛政府的角度將其整合到一個共同的數字環境中。
一個共同的數字環境和作戰云的實現將使任何地點的部隊和用戶都可以訪問相同的數據和信息流,無論是實時規劃還是執行,并且以與執行任務相同的速率。高度適應不斷變化的任務要求的數字工具包將需要在作戰云上隨時可用,并使用軍事證書按需訪問幫助各級做出更好更快的決策。指揮官和作戰人員之間共享通用數字環境的發展將使作戰指揮控制的分散化和空中作戰中心傳統職能的地理點對點分布成為可能。
分布式 AOC 可以理解為同時在不同的地方,而不是在一個或另一個地方,它代表了空軍未來作戰方式的游戲規則改變者。空中作戰中心傳統上由空軍從一個擁有重要基礎設施的固定位置操作,以允許接收大量通信和大量多專業人員。這種集中式 C2 模型在過去為空軍提供了很好的服務,但是隨著威脅形勢的演變,從執行作戰 C2 的單個固定位置的概念使得空中作戰容易受到能力越來越強的對手的攻擊,這些對手可以通過動能和非-動力學手段。在任何接收關鍵通信和提供可操作 C2 的集中位置發生自然災害、火災或停電成為潛在單點故障的情況下,同樣存在風險。
點對點分布的AOC將與位于不同地點的高級指揮部更好地保持一致,而在聯盟的情況下,則與世界不同地區保持一致。分布式AOC還將使空軍有可能與更多不同的專業人員聯系起來--在任何特定時間,在一個以上的地方經常需要這些專業人員--以解決復雜的作戰挑戰。空軍將獲得決定性的優勢,最大限度地減少非周期性工作的需要,以便在需要的地方和時間獲得信息,關鍵是要建立冗余,以提高行動的適應性。隨著AOC功能的分布,空軍將有能力迅速適應動態作戰場景中不斷變化的需求,包括C2網絡中任何關鍵節點的潛在損失,使邊緣作戰人員能夠以更加安全和靈活的方式行動。
然而,分布式空中作戰中心架構所承諾的最顯著的力量倍增效應是使空軍能夠無縫地連接到位于不同位置的伙伴要素和能力。將位于不同地點的盟軍和伙伴空中作戰中心虛擬地聚集在一起,將使空軍能夠整合可用的聯軍能力,以便在任何給定時間和地點利用最有效和最致命的空中力量組合。通過以增強力量和提供綜合威懾的方式整合聯軍能力,可以減輕空軍單獨面臨資源或人員壓力的現實和日常挑戰。因此,空軍將更少地依賴單個平臺能力,而更多地依賴于具有集成作戰 C2 的共享能力架構的力量,該架構從根本上優化了傳感器/射擊者的任務和分配。
作為指導任務和加快行動步伐的過程的一部分,通過替換會減慢行動周期(從而降低反應時間)的傳統方法,必須明確授權給每個級別的指揮部,以便確定決策的優先級可能的最低水平。因此,連接到接收數據和中繼命令的敏捷、適應性強和有保障的網絡的單個指揮官應該能夠專門指揮下屬單位的活動。對交付作戰能力的命令進行適當的優先排序仍然至關重要,但未來的挑戰將與誰指揮指揮官有關——尤其是在對多個任務有明顯壓力的情況下 政府部門將被納入 C2 決策過程。即使授權保持不變,集中控制/分布式執行和任務指揮的模式也可能受到挑戰,因此空軍必須更新正式關系和開展業務的方式。
開放式架構、系統體系(SoS) 網絡,專為高速、大容量而設計,在廣泛而分散的用戶群中進行數據交換對于在需要的時間和地點向合適的人提供相關信息至關重要。Link 16 為互連性和互操作性提供了一個通用標準,對聯軍行動仍然至關重要,但即使有一個在其用戶之間全面設計和實施的現代化計劃,其本身也不夠。更強大的作戰 C2 的基本原理推動了聯合全域指揮與控制 (JADC2) 結構和先進戰斗管理系統 (ABMS) 在美國的發展。JADC2 設想將整個部隊的傳感器、射手和支持平臺連接到主網格網絡,以便作戰指揮控制從以服務為中心的架構有效地推進到高度靈活的聯合全域架構。美國空軍打算利用 JADC2 實時融合來自無數不同來源的數據,而 ABMS 打算通過將正確的傳感器連接到正確的射手來感知、理解并允許指揮官比對手更快地采取行動。
在一個沒有任何單一平臺或武器系統本身能夠確保作戰成功的未來,JADC2和ABMS的目的是用其他系統的優勢來系統地減輕單個組件系統的局限性。沒有與ABMS或同等的作戰管理(BM)系統連接的平臺將具有較低的生存能力,并最終成為多余的。JADC2和ABMS是美國在每個戰爭場景中取得戰斗成功的基礎,它們為未來的作戰C2提供了將正確的傳感器連接到正確的射擊者的基礎。開發一個高度可擴展的、完全集成的、具有明確授權的多分類網絡架構,將是實現信息優勢的關鍵,它使指揮官和作戰人員能夠更有效和高效地執行。目前的網絡和系統需要進行現代化改造和調整,以實現更大程度的戰斗空間信息,然而,全面的網絡整合帶來了相當大的技術挑戰,因為各個系統并不總是使用一種共同的語言或順利地相互連接,特別是在涉及盟國和伙伴空軍的多國背景下。
互操作性是未來戰爭的關鍵,而協同作戰的步驟設想跨所有平臺進行信息交換,而不僅僅是戰斗人員。除了由新的具有指揮能力的戰斗機領導的傳統戰斗機之外,隨著第五代平臺的出現,互操作性將需要擴展到所有平臺,包括遙控飛行器 (RPV) 和自主系統。在強大的聯合任務指揮下,互操作性與綜合規劃和作戰指揮控制將允許加速作戰,以克服具有先進網絡能力和武器系統的對手。將遺留系統調整為單一網格、多域網絡是空軍面臨的最關鍵挑戰,必須進行戰略轉變,優先考慮全面的網絡集成和互操作性以及必要的財務資源、時間和人員。
整合帶來了復雜的挑戰,有時需要比預期更長的時間才能實現結果,正如之前在 Link 16 上采用、適應和實施變化的國家經驗所表明的那樣。空軍必須迫使行業合作伙伴更廣泛地采用數據協議和工程系統的標準化,以便能夠有效和高效地實現未來所需級別的互操作性。同時,空軍必須 打破狹隘的思維方式、過時的數據和信息共享政策以及阻礙他們作為組織利用信息真正力量的文化障礙。軍事背景下與美國前總統羅納德·里根(Ronald Reagan)的話有了新的關聯,他將信息稱為現代的氧氣,因為信息力量是未來戰場上有效作戰的基礎。
將盟軍和合作伙伴的資產、資源和專業知識進一步互連,超出單個固定地點的定位,這將成為空軍在未來沖突中保持競爭力的必要條件。三十年前,可能有二三十人,包括指揮官及其參謀參與作戰計劃、執行和 C2。今天,視頻電話會議和數字應用程序使分布在不同地點和時區的數百名員工的點對點協作和信息共享成為可能。與盟國和合作伙伴互操作性的障礙在邏輯上需要考慮并更緊密地結合在一起 - 旨在確保數字環境得到主動保護和防御的國家網絡安全方法及其警告。依賴網絡空間和在網絡空間中作戰的固有脆弱性將使信息戰在傳統作戰之外占有一席之地。同時,空間領域和量子加密技術的進步將開始通過徹底改變軍事行動中的通信方式來減輕復雜網絡空間威脅的影響。
互操作性是衡量聯盟有效性的關鍵,并將決定在未來的同行競爭環境中的戰斗成功。在沒有盟友和合作伙伴的幫助下,單獨過渡到全域作戰戰略是不可行的,但從聯盟的角度來看,要實現真正的互操作性,必須對空軍設計和規劃未來能力進行戰略反思。互操作性通常可以通過調整現有的系統而得到改善,但如果要以未來沖突所要求的方式在戰略上推進互操作性,以達到戰斗和勝利所必需的聯盟效力的程度,則需要成為一種采購考慮。
互操作性存在著重要的政策層面障礙,例如,與采購項目的過度分類和軍事系統的轉讓有關。這種對聯盟有效性的障礙在近年來的聯盟作戰活動中已變得很明顯,并促使美國引入新的方法,如國防出口特性計劃,該計劃旨在為優先考慮和追求互操作性的方式帶來范式的轉變。將互操作性考慮納入主要采購項目的初始能力文件的作戰概念(CONOPS),將確保它在未來系統的設計階段得到適當的規劃,并戰略性地納入采購過程本身,而不是作為事后的想法被編入。
美國還將更加強調與盟友和合作伙伴共同開發系統,并以系統的早期出口為目標,這一方面有助于改善整體系統設計和安全性,另一方面也能壓縮開發時間和降低成本。任何空軍都不能假設自己總是擁有最好的技術解決方案和概念,因此,當國際市場上有更優越的替代品時,進口能力將需要更高的優先權。軍事系統的本土開發提供了次要的優勢,如經濟效益的本地化和通過國內創造就業機會來培養高技能的勞動力,但也有一些權衡,如較低的性價比或系統不能與替代品提供的相同水平的性能。
在系統層面上,設備之間的互操作性是至關重要的,但是作戰平臺本身和確保它們的互連性本身并不足以實現互操作性,也不會自動轉化為改善聯盟的有效性。空軍必須通過制定共同的作戰方案和戰術、技術和程序(TTPs)來加強聯盟層面互操作性的概念基礎。空軍共同訓練、合作和培養工作關系的方式是打開未來作戰優勢的關鍵。建立信任需要時間,而作戰層面的互操作性--相對于系統層面的互操作性--是建立在多年的訓練和并肩工作上的,以了解和推進可以共同實現的目標。不可能在危機時期尋找信任,也不可能期望能夠以未來所需的行動水平和速度來運作。
空軍有必要作出新的努力,以改善與關聯部門以及盟國和伙伴空軍的同步和協調。建立一個更強大的傳感器網絡和發展收集、存儲、處理、分析、融合和分享適當安全級別的信息的能力的途徑始于雙邊討論,隨著聯合演習的推進,并隨著從持續努力和互動中獲得的經驗教訓被廣泛實施到培訓、教育和最終的積極行動本身而得以實現。歸根結底,在擴大力量和試圖實現聯盟伙伴之間的綜合威懾方面,信任的概念將比技術因素更重要。盟友和合作伙伴可以成為非常有價值的見解的來源,空軍必須變得更加開放,不斷地與同行分享威脅情況,并保持思想的持續互動,以支持持續改進。
在這個時代,信息被視為力量,但只有當它被分享時才會變得真正強大,在評估盟友和合作伙伴之間的信任時,信息共享的方式是衡量有效性的關鍵。人工智能和神經網絡將能夠實時處理和分析目前需要數周時間的大量信息,然而,空軍的思考和反應速度將取決于他們在正確的時間向正確的人提供正確和相關的分類信息的能力。考慮到信息共享的三個基本要素(需求方面的理由;使之成為可能的技術和基礎設施;以及受其支配的政策和規則),理由越來越被認為是合法的,使之成為可能的手段在大多數情況下也是現成的。然而,以父權為框架的政策和信息發布規則與文化障礙相結合,阻礙了盟友和合作伙伴之間及時有效的信息共享,甚至經常是根本沒有。
古老的信息可釋放性政策和僵化的數據所有權文化,限制了實時甚至是歷史信息流向需要的地方。盡管空軍擁有與盟友和合作伙伴更緊密合作的動力,但他們總體上仍然落后于更有效作戰所需的信息共享水平。有效的信息共享的障礙和阻礙可歸因于傳統的模式,然而過去有效的東西不一定在未來有效。并非所有的信息都需要與所有級別和所有項目的人共享,但確保正確的人能夠獲得正確的信息是可能的,一方面,重新設計適用的信息共享政策、規則和分類以消除瓶頸,另一方面,通過硬件和軟件解決方案,降低工業規模的信息共享的操作安全(OPSEC)風險。
從商業部門的成功經驗中可以學到寶貴的經驗,即如何安全地改善企業層面的連接和信息共享,關鍵是與外部合作伙伴的連接和信息共享,從而提高生產力,為股東創造更高的價值。建立新的授權、政策和信息保護程序是必要的,以便讓信息在行動領域之間以及在共享的任務伙伴網絡中的不同安全分類之間安全和無縫移動。空軍將需要促進和實施更強大的信息和數據安全,同時通過與聯合和盟國或聯盟伙伴更好地協調技術和程序來建立一個共同的數據結構。跨作戰領域的信息和數據網絡的可訪問性和安全性將成為重中之重,而信息的完整性、可信度和可靠性則是剩余的問題。
隨著數字技術和創新的加速作用和采用,空軍的運作方式正變得越來越復雜。然而,機遇也伴隨著風險,因為支持空軍的信息技術和系統本身就成為一種威脅。網絡空間對于彌合現代戰斗空間所跨越的巨大距離至關重要,因此將繼續成為軍事行動中一個永久的、日益突出的要素。然而,大量信息的快速收集、控制和傳播產生了一種新的戰爭類型,即產生了傳統軍事系統必須能夠對抗和防御的具有普遍性的持續威脅。網絡空間和電磁頻譜為信息系統、武器和平臺的運作提供了重要的地形,指揮官的首要考慮之一是需要支配流動的作戰領域,使其盡可能受到抑制和保護,以防止可能帶來區域拒絕問題的攻擊。
網絡保護和通過一切必要手段捍衛網絡空間對軍隊來說是勢在必行的,但未來更重視的是數據和信息資源本身,而不是為它們提供地形的網絡。密碼學的現代化對于實現有保障的安全通信至關重要,但對部隊進行數據保護和信息安全教育是空軍需要解決的一個挑戰。軍隊需要重新培訓組織心態,并制定源自零信任文化的標準操作程序(SOP),以便作戰人員嚴重依賴的信息在所有層面上不斷得到認證和驗證。更廣泛地說,軍隊在網絡空間的主要重點仍將是通過網絡安全軟件和計算機網絡操作來保護C2的物理和電子。
盡管在網絡空間建立交戰規則(RoE)的挑戰仍然存在,但在未來幾年,信息作戰將不可避免地成為與傳統作戰一樣的核心能力。軍隊已經觀察到戰斗之王從火炮過渡到空中力量,空中力量穩步發展,可以在任何時候和任何地方使用。盡管在過去的30年里,空中力量是火力的 "首選",但不確定的是,在未來的30年里,空中力量是否會成為戰斗之王,或者動能能力是否會像其他傳統能力一樣,被更有效、更精確和更經濟的替代品所取代。預測未來總是很困難的,但目前的軌跡表明,非動能能力將最終成為戰斗之王,火力將從硬件過渡到軟件,因為不再需要飛行的效果,因為計算機代碼和遙遠的點擊將變得比動能武器的震蕩效果更具破壞力。
衛星能夠以最快和最安全的方式將信息傳遞到最底層的指揮部,其數據鏈接對于在高度競爭的環境中同步部隊成員,加速觀察、定位、決定和行動(OODA)的循環,以及在行動前和行動中加強部隊的安全和保障至關重要。
空間領域為全球通信、高空情報、監視和偵察(ISR)以及為保持對空域的控制和執行未來預測的高節奏行動所必需的定位、導航和定時(PNT)解決方案提供無與倫比的覆蓋范圍和持久性。將空間領域納入MDO將釋放出一種力量倍增效應,因為它允許創建跨作戰領域的新網絡,并為分布式聯合規劃和執行建立新機制。隨著傳統的地面和空中指揮要素被推到離戰斗更遠的地方,向空間領域的邁進對于在地面要素和遠程載體之間更廣泛地傳播連接是至關重要的,從而使部隊要素能夠彼此和總部要素之間更理想地運作。
擴大的地球同步衛星群將通過為所有類型的載人平臺、遙控飛行器和自主系統提供連接,使它們能夠一起遠程操作,從而實現一種新形式的作戰C2。隨著目前的限制因素--即計算能力、通信帶寬和太陽能電池板產生的電力--被克服,空軍將通過多種類型的新情報產品和服務呈現革命性的新前景。在未來幾年,利用大數據處理、人工智能和機器學習(ML)來生成、處理、分析和過濾衛星上的大量信息,并自主地向指揮官和作戰人員提供實時的關鍵信息服務將成為可能。空中和太空力量交織在一起,如果沒有所需的最低水平的天基能力,任何向MDO的過渡--設想進入所有作戰領域,但可以說以太空領域為核心--將仍然無法實現。
進入空間領域的初步步驟側重于發展空間態勢感知(SSA),在推進到天基傳感器和其他能力之前,從地面的雷達和強大的望遠鏡開始。在最基本的層面上,SSA必須允許空軍評估發射,監測衛星和運載火箭重返大氣層,跟蹤軌道上的衛星并提供潛在碰撞的預警。從這一初步步驟開始,需要由地面站、空間飛行器和通信鏈路組成的空間基礎設施,而作戰效果的提供則取決于專門的空間工作人員、操作人員及其工具包,這些因素綜合起來考慮,有可能消耗大量的財政資源。
空軍需要發展主權控制的空間能力的方法,這些方法既要有成本效益,又要有靈活性,例如插入硬件和軟件更新。提供即插即用解決方案的商業現成(COTS)技術和納米衛星--其開發成本相對較低,并能以低成本迅速復制--降低了進入空間領域的門檻,并將在允許空軍以必要的速度前進方面發揮重要作用,同時,越來越多的商業衛星運營商能夠有競爭力地為軍事行動提供帶寬和其他關鍵產品。
然而,空間領域的物理復雜性使得任何空軍或任何國家發展空間力量的相關技術復雜性和成本負擔本身完全不現實。空間領域構成了空間中較大和較小的軍事行為者的需要--無論大小--密切協作,甚至共同發展空間軍事力量。對空軍的要求是與盟友和伙伴協調步驟,無論他們是已經有了既定的程序和方案,還是處于啟動階段,對于利用空間領域為軍事行動提供的真正潛力將是至關重要的。
政府間、商業和研究伙伴關系將需要構成軍事空間戰略的基石,以便有可能從大量的現有知識中獲益,并應用從既定的空間行為者和遺留計劃的經驗中獲得的教訓。應用實驗對于空軍培養專業知識和能夠更迅速地確定能力差距和優先事項非常重要,當與盟友和伙伴合作推進時,可以大大簡化空間能力的開發周期,并為擴大長期的共享利益提供基礎。
通過戰略協調,資源單獨緊張的盟國和伙伴國空軍將能夠把他們的重點限制在建立具有利基能力、機制和軌道的小型衛星星座上,以便以后匯集起來,合并成更大或超大的星座。盟友和合作伙伴之間形成的超大型衛星星座有望提供一個更加多樣化和強大的共享能力架構,否則是無法實現的,關鍵是要建立冗余,以防止突然失敗或失去服務。建立冗余是必要的,因為在未來十年,新的空間行為者和空間威脅的引入使空間領域不僅更加擁擠,這本身就帶來了重大的新風險,而且還首次出現了軍事競爭。
作為通常負責領導軍隊進入空間領域的軍種,當空軍開始考慮發展空間足跡和作戰能力時,眼前的挑戰是制定能夠在預算限制內和以相關速度提供需求的方案。
"盟國和伙伴之間形成的超大型衛星星座有望提供一個更加多樣化和強大的共享能力架構,否則是無法實現的,關鍵是要建立冗余,以防止突發故障或服務損失。"
通過將天基能力分布在一個與盟國和伙伴共享的更廣泛的空間架構中,空軍將能夠從更多樣化的能力套件、更高的可用性和全球安全通信的延伸中獲益。隨著天基能力向盟國和伙伴之間共享的架構發展,控制目前被隔開的衛星的地面站將需要互聯并更接近AOC,以改善C2的決策。由于空間資產為民用和軍用用戶提供產品和服務,然而空間領域的使用使作戰C2變得復雜,可能需要其他政府部門參與傳統上由軍事指揮官負責的決策。
軍事指揮官很可能在特定情況下優先考慮或在空間領域的正確時間作出反應的能力減少或受到限制。在某種程度上,在可能的情況下插入的常設協議,可能會澄清如果向另一用戶提供的服務受到軍事行動的影響而需要遵循的具體程序。傳統的C2周期、程序和結構是為了對實體單位行使權力,而空間領域則側重于獲取和傳輸數據和通信以實現效果,需要不同的考慮。因此,一個專門的軍事空間指揮部是必要的,以滿足居住在各兄弟部門、其他政府部門以及外部盟友和合作伙伴的空間工作人員之間所需的巨大的整合和協調程度。
空軍在提供解決方案以有效利用空間進行多域作戰方面發揮著至關重要的作用,并且通常將負責從國防角度領導、管理和培育空間--例如在英國、澳大利亞和荷蘭,其空軍最近已經建立了初步的空間指揮部。一旦空軍建立了初步的操作能力,空間領域的C2結構和程序將隨著新框架的建立而發展,以產生綜合的空間領域意識,捍衛主權、盟國和伙伴的空間能力,并全面推進軍事空間行動、計劃和能力。一個專門的空間指揮部除了使可能沒有共同愿景的姐妹部門在空間領域的使用上保持戰略一致,甚至沒有充分認識到它的潛力外,還對培養空軍多領域行動所需的新的專業空間工作人員和專業知識的骨干隊伍至關重要。
為了使空軍有能力在各作戰領域進行思考、戰斗和取勝,幾乎所有的遺留系統都需要升級,而且空軍需要提高他們在面對快速技術進步時吸收有任務能力的技術的能力。隨著在采購周期的關鍵決策點上做出判斷的挑戰加劇,空軍采購規劃人員必須走一條鋼絲。在追求提供革命性能力的新解決方案、購買成本較低的商業現成技術(COTS)以彌補能力差距或試圖升級遺留系統之間做出選擇將變得更加微妙。在投入使用的新系統和升級遺留系統之間取得適當的平衡將被新系統的挑戰所加劇,這些新系統往往無法迅速投入使用。
為了滿足未來的作戰要求并保持機動自由,遙控飛行器和自主系統在多領域的戰斗空間中發揮著重要作用。人們普遍承認,無人駕駛和自主系統反映了未來的空中力量,但是空軍仍然傾向于主要從載人平臺和系統的角度考慮問題。對載人威脅和平臺的傳統關注導致了訓練和模擬的發展,TTPs甚至C2流程都是圍繞著提高載人系統對抗載人威脅的能力而設計的。空軍必須在載人、遙控和自主系統方面進行更全面的思考,其中人工智能具有巨大的作用,以確保它們得到適當的考慮,并適當推動對未來威脅、能力發展、培訓、實戰飛行和C2本身的思考。
下一代空域和戰斗管理將需要大數據處理和人工智能來擴展人類的決策空間,同時也有一個潛在的需求,即空軍能夠依靠快速軟件開發來提供基于云的服務解決方案,通過認證的軍事證書安全地訪問。人工智能的最大挑戰是與它的使用相關的控制水平。出于道德、法律和安全的原因,完全不對人工智能施加任何控制是不可行的--然而,施加人類控制超過一定程度,就會有效地減慢其旨在加速的決策過程。目前,無論是在駕駛艙還是在C2中心,人工智能都需要面向為決策者生成和提供選擇,但隨著作戰周期的加快和戰爭的自動化,它的作用將越來越大。
建立快速能力辦公室可能有助于解決采購挑戰,為關鍵任務的前線需求提供更快的周轉,然而,盡管有可能實現快速采購,空軍必須確保他們能夠在沒有特定系統的情況下通過產生開箱即用的解決方案,將現有技術與人類的洞察力和創新相結合。世界上最具創新精神的組織都能有效地利用集體天才的力量,而空軍必須更好地通過培養有利的程序、伙伴關系和心態來培養創新文化,直至最低層。思想沒有等級之分,當空軍領導人創造出創新蓬勃發展的組織環境時,基層人員或非入伍軍官可以成為解決行動挑戰的重要媒介和催化劑。通過扁平化組織,減少等級之間的縱向距離和部門之間的橫向距離,空軍可以實現一個更深入參與的員工隊伍,以更好地收獲創新的好處。
為了提高技術適應性,空軍必須使用通用的開放式架構開發未來的系統和數字解決方案,并更好地將操作人員和最終用戶與開發系統和工具的工程師和技術團隊以及負責采購和維持決策的辦公室聯系起來。通過迭代開發系統和工具來實現更深層次的合作,與操作人員建立共同的所有權,并使修訂工作能夠即時進行。用戶的直接、持續的參與將提高標準化程度--如圖形用戶界面--支持操作人員的培訓,并能確保服務成員為成功做好準備。與工業伙伴和學術界的伙伴關系將對壓縮系統從構思到原型的開發周期起到關鍵作用,確保更快的失敗途徑,并使空軍在技術上的適應性更強。
促進創新文化
空中力量仍然是今天動能效應和空運的最具決定性的能力,但空軍領導人必須確保空中力量在2030年及以后仍然具有相關性。空軍已經嚴重依賴在五個作戰領域的行動能力--然而這些領域都將變得非常混亂和有爭議。一系列的安全挑戰已經加大,變化的速度也在增加,因為潛在的威脅在破壞性技術武器化的推動下加速。空軍將面臨的挑戰是為潛在的安全損失找到解決方案,并保持他們在未來受限和退化的作戰空間繼續作戰的能力。為了變得更有生存能力、更靈活和更有彈性,以威脅為中心的聯合反應將是至關重要的,空軍必須重新定義他們如何與兄弟部門、盟友和合作伙伴進行合作、共存和競爭。空軍將需要在內部變得更加互聯互通,并與姐妹軍種、盟友和合作伙伴一起,在多領域的整合中取得成功,并在未來延伸的戰斗空間中提供協調的效果。
雖然世界各地的空軍確實無法在單一領域充分發揮優勢,更不用說在多領域背景下,但從過去的經驗中可以學到豐富的教訓。歷史上充滿了破壞性的挑戰,空軍必須制定戰略來推動執行MDO所需的轉型變化。這種轉變必須從擴大演示開始加速,以連接整個作戰領域的傳感器、射手和部隊要素。MDO范式廣泛要求平臺和專業人員同時支持各種各樣的作戰要求和聯合指揮官的連接。因此,在向MDO過渡的過程中,人的因素將比技術更具有決定性,如果要實現全面的網絡整合和戰斗云在軍事行動中的實際應用,必須更新培訓、發展和領導人員的方法以反映新的現實和戰爭方式。
空軍需要變得能夠利用流動領域,有效地結合航空、空間和網絡空間,在全球舞臺上采取戰略行動(或發出信號)--在范圍和速度上有更多的選擇和最小的政治風險。
"為了變得更有生存能力、更靈活和更有彈性,以威脅為中心的聯合反應將是至關重要的,空軍必須重新定義他們如何共同運作、共同存在并與兄弟部門、盟友和合作伙伴競爭。
報告概述了反無人機技術及方法,介紹了美國國防部面臨的無人機威脅及反無人機投資計劃,以及美海軍、陸軍、空軍、海軍陸戰隊及國防部其它機構的反無人機武器研究進展情況,并指出了國會在監管方面可能面臨的問題。
無人機系統技術迅速擴散,易被國家、非國家行為者和個人使用,這些系統可為美國對手提供一種低成本的手段,執行針對或攻擊美軍的情報、監視和偵察任務。大多數小型無人機尺寸小、使用特殊結構材料且飛行高度較低,無法被傳統的防空系統探測到。在2023財年,美國國防部計劃至少花費6.68億美元用于反無人機(C-UAS)技術研發,至少花費7800萬美元用于反無人機武器采購。隨著國防部繼續開發、采購和部署這些系統,美國會對其使用的監督可能會增加,也必須就未來的授權、撥款和其他立法行動做出決定。
反無人機技術可以采用多種方法探測敵對或未經授權的無人機目標。一是使用光電、紅外或聲學傳感器分別通過目標的視覺、熱量或聲音特征探測目標;二是使用雷達系統探測,但由于小型無人機信號特征不明顯,該方法探測效果不佳;三是識別用于控制無人機的無線信號,通常使用射頻傳感器探測。這些方法通常被組合使用,以提供更有效的分層探測能力。
各類系統探測到無人機后,電子戰“干擾”裝置即可干擾無人機與其操作人員的通信鏈路。干擾裝置通常可分為便攜式、固定式或可移動式,根據其類型的不同,重量可從幾公斤至數百公斤。除電子戰干擾裝置外,也可以使用槍支、網絡、定向能、傳統防空系統,甚至訓練有素的動物(如鷹)擊敗或摧毀無人機系統。目前,美國防部正在研發多種反無人機技術,以確保其具備強大的反無人機防御能力。
美空軍正在進行高功率微波和高能激光武器反無人機測試工作。2019年10月,空軍接收了一套車載高能激光反無人機武器系統 (HELWS)樣機。HELWS旨在在幾秒鐘內識別并壓制敵對或未經授權的無人機,幾乎可無限次射擊。此外,空軍還在尋求機載反無人機武器,目前工作狀態尚不明確。
圖1 便攜式反UAS技術
2014年,美海軍在“龐塞”號(LPD-15)上部署了第一款可作戰的激光武器系統(LaWS),LaWS是30千瓦激光武器樣機,能夠執行反無人機任務。自那時起,美海軍就一直在開發和安裝更多的低、慢、小(LSS)無人機激光武器原型,以提高對抗水面艦艇和無人機的能力。
海軍正在研發部署的干擾無人機傳感器的光學致盲器“奧丁”(ODIN)及60千瓦“太陽神”(HELIOS)激光器,均旨在保護美海軍裝備和系統免受無人機襲擊。此外,在2019年3月28日的一份備忘錄中,海軍部宣布將與國防數字服務局合作,快速開發新的網絡賦能反無人機武器,以應對不斷演變的無人機威脅。
海軍陸戰隊通過其地基防空(GBAD)計劃辦公室資助了多個反無人機系統。2019年,海軍陸戰隊完成了海上防空綜合系統(MADIS)的海外測試,該系統采用電子干擾與炮彈相結合技術,可安裝在MRZR全地形車輛、聯合輕型戰術車輛和其他平臺上。2019年7月,拳師號USS BOXER LHD-4兩棲攻擊艦上的海軍陸戰隊員使用海上防空綜合系統壓制了一艘被認為在該艦“威脅范圍”內的伊朗無人機。作為地基防空計劃的一部分,海軍陸戰隊也在采購緊湊型激光武器系統(CLaWS),該是美國防部批準的首個陸基激光武器,具有2千瓦、5千瓦和10千瓦三種型號,目前陸軍也在使用。盡管海軍陸戰隊已試驗了單兵攜帶反無人機技術,但海軍陸戰隊司令大衛·伯杰(DavidBerger)在2019年向國會作證時認為,由于重量和功率的要求,單兵攜帶反無人機技術沒有取得成功。
圖2 海上防空綜合系統
2016年7月,陸軍發布了反無人機戰略,以指導其反無人機能力的發展。2017年4月,陸軍技術出版物3-01.81《反無人駕駛飛機系統技術》概述了作戰期間防御低、慢、小無人機威脅的規劃考慮,以及如何規劃并將反無人機士兵任務納入陸軍訓練活動。
反無人機是美陸軍作戰能力發展司令部的六層防空和導彈防御概念的一部分,六層概念包括:彈道導、低空無人機交戰(BLADE)、多任務高能激光(MMHEL)、下一代火控雷達、機動防空技術(MADT)、高能激光戰術車輛驗證機(HEL-TVD)、低成本增程防空(LOWER AD)。目前,上述系統仍在開發中,美陸軍已部署了一些便攜式、車載和機載反無人機系統。此外,美陸軍與國防數字服務局還在合作開發計算機支持的反無人機產品。
美國防部正在研究和開發多種反無人機技術。聯合參謀部和其他國防部機構參與了反無人機研究工作,如“黑鏢”(Black Dart)演習,該演習旨在“評估和驗證現有和新興的防空和導彈防御能力及反無人機任務集特有的概念”和“倡導士兵所需的反無人機能力”。國防高級研究計劃局積極開展“反蜂群人工智能”等研究,為反無人機技術研發提供資金。2019年12月,國防部精簡了各種反小型無人機項目,指定陸軍為執行機構,負責監督美國防部所有反小型無人機的開發工作。
2019年12月,美國防部成立由陸軍領導的聯合反小型無人機系統辦公室(JCO),負責監督美軍所有反無人機研發工作。通過與作戰司令部和負責采辦和保障的國防部副部長辦公室協商,該辦公室已評估了超過40種反小型無人機系統,并確定未來美軍反無人機項目的研發方向和標準,該辦公室還選擇了10種小型無人機防御系統和一個標準化的指揮控制系統,以進行后續研發工作。聯合反小型無人機系統辦公室還制定了一份聯合能力發展文件,概述了未來系統的作戰需求,并于2021年1月發布了《國防部反小型無人機系統戰略》。該辦公室還將制定另外一份國防部關于反小型無人機指揮和反小型無人機能力評估的文件。
根據計劃,美國防部將于2024財年在俄克拉荷馬州的福特希爾建立一個聯合反小型無人機學院,以在各軍種同步開展反無人機戰術訓練。
此外,美國會《2021財年國防授權法案》第1074節要求國防部向國會提交一系列報告,包括聯合反小型無人機系統辦公室開展的反小型無人機活動報告和獨立評估情況,以及無人機帶來威脅的報告等。
伴隨美國防部開發、使用及部署反無人機系統武器,美國會需對其進行更多監管,并可能面臨如下潛在問題:
世界各地專注于對等或接近對等軍事競爭的空軍,越來越意識到采用分布式任務指揮和控制 (C2) 架構的必要性。然而,要實現這一目標,需要克服文化和政治阻力。分布式C2將需要重新引入傳統的任務指揮概念,將決策權力和許可逐步下放給戰術層面上相對較低層的戰斗領導人。盡管如此,大多數正在開發中的C2架構在一定程度上是去中心化的,以便使敵方更難發現、攻擊和削弱關鍵的機載和地基指揮節點。目前空軍強國正在探索分布式軌道衛星和無人機 (UAV) 的組合,以取代傳統的處理、開發和傳播 (PED) 平臺和 C2 平臺。
軌道域資產設施作為分布式 C2 和情報、監視、目標捕獲和偵察 (ISTAR)架構一部分,其未來形態仍然不確定,因為天基傳感器能力、通信帶寬和通信魯棒性的快速發展表明它的作用急劇增加,然而,未來對這些資產設施的使用也可能備受爭議,甚至被否認。無人機具有長續航的潛力,而而不像在軌衛星那樣具有可預測和潛在易受攻擊的軌跡。第五代平臺,如F-35和極低可觀測無人機,作為下一代分布式C2和ISTAR架構的構建模塊,不僅需要安全和難于探測的數據鏈和傳感器,而且要求動態邊緣處理能力以降低帶寬,并自動識別發送相關數據給其他設施資產。因此,在可預見的未來,空軍很可能仍然依賴集中式 C2(基于即將過時的寬體舊系統)。
未來空戰環境的特點是遠程地空導彈(SAM)系統(Bronk, 2020a)、遠程空對空導彈(VLRAAMs)和超低可觀測戰斗機和攔截機(Bronk, 2020b)的日益普遍發展。這種新一代威脅系統正在穩步提高傳統空戰的風險水平,傳統作戰嚴重依賴于 E-3 預警機等集中指揮和控制設施。遠程 SAM 系統、VLRAAM 和 VLO 戰斗機威脅將越來越多地迫使傳統指揮和控制 (C2) 以及情報、監視、目標捕獲和偵察 (ISTAR) 飛機在遠離敵方領土的地方運行,以至于其機載傳感器和通信中心能力將大大降低作戰效用。與此同時,遠程精確打擊系統和進攻性網絡工具的可用性繼續增加了現代國家對彼此的集中式地面指揮和控制設施產生威脅效應,如聯合空中作戰中心(CAOCs)(Kaushal, Macy和Stickings, 2019年)。因此,21世紀初西方空軍的兩大核心力量面臨著潛在的生存挑戰。
自1980年代后期以來,西方空軍嚴重依賴空中力量,為使聯合部隊的行動能夠用較少的陸軍與海軍進行。這種模式在 1990 年代和 2000 年代的多次沖突中取得了驚人的成功,導致陸軍和海軍的部隊設計都假設了空中支援和空中 C2 和 ISTAR 的可用性。因此,從空中提供按需 ISTAR 和火力支援的能力,是許多西方國家使用軍事力量的必要先決條件。
聯合作戰對空中力量的依賴,已經創造了一個以聯合空戰中心(CAOC)為焦點的極度集中式的C2模式。
在聯合空戰中心 CAOC 內,72 小時空中任務指令 (ATO) 是根據各種聯合部隊任務、ISTAR設施、多國特遣隊許可流程和加油機等因素生成的。這一過程需要數百名專業人士、大型固定設施和出色的通信鏈路——這使得 CAOCs 在任何重大戰爭中都成為敵對國家重點關注和明顯??的目標。 CAOC 離作戰區域越近,它就越容易受到敵對遠程精確打擊能力的攻擊。然而,距離越遠,對潛在易受攻擊的隱蔽、視距、超視距和軌道通信鏈路的作戰依賴就越大。
未來作戰概念將以較小的規模、較分散的空戰中心(AOCs)為特征,以避免聯合部隊對其C2的斬首式攻擊。然而,依賴較分散的 AOCs 而不是大型 COACs 可能會造成任務重復,從而增加已經不堪重負的情報和指揮人員負荷。 C2 分配還可能增加對可靠通信鏈路的依賴,因為即使必要流程的高度自動化,每個 AOC 也只能執行全規模 COAC 的某些功能。因此,如果動能或非動能武器切斷或嚴重影響這些聯系,那么集中式COACs 或較小的分布式 AOCs 都可能失去戰區內在戰術上協調 ISTAR、打擊和使能設施的能力。
此外,在幾十年基本上沒有競爭的空中行動中,高級指揮官對戰術行動施加直接控制和監督的習慣已被允許出現。這是由于實時全動態視頻傳輸技術成熟,使得 CAOC 指揮官能夠感知戰術態勢。面對經常被視為任意和不得人心的沖突,政治層面對風險的容忍度顯著降低,這也助長了這一趨勢。這將更加阻礙將控制權委托給戰術層面。這種現有的指揮形式進一步提高了集中化程度,降低了作戰節奏,并為空中作戰引入了一系列潛在的帶寬瓶頸和電磁漏洞。許多國家的高級政治家和軍事領導人可能會將同級沖突中涉及的更高地緣政治風險視為繼續集中管理戰術決策的理由。然而,這種方法在實踐中幾乎必失敗,因為它需要緩慢的作戰節奏,以及它需要超視距連接和帶寬。為了適應未來國與國沖突,戰術空中指揮官文化氛圍必須改變以避免行動癱瘓,因為對 CAOC 結構及其支持通信鏈路的動能、電磁和網絡攻擊會切斷了指揮官與前線設施的聯系。
許多空軍很清楚,源自 E-3預警機和 E-8 J-STARS 等寬體客機的傳統機載 C2 和 ISTAR 節點不再是未來沖突場景的最佳選擇。這些資產設施的自衛能力非常有限,必須發射大量易于檢測的電磁信號才能有效發揮作用,這使得它們容易被定位和跟蹤。此類平臺也是潛在傷亡的重要來源,因為它們攜帶大量訓練有素的任務系統工作人員來執行處理、開發和傳播 (PED) 的關鍵任務,以及空戰管理功能。今天,寬體 ISTAR 和 C2 飛機必須遠離敵方的地空導彈系統和遠程空對空導彈系統,使得在與技術先進的競爭對手發生沖突的早期階段,它們的主要傳感器圖像在很大程度上是無效的。
第五代 F-35 對此類 C2 和 ISTAR 使能器的依賴顯著減少,因為它自身有能力為其飛行員提供多光譜廣域態勢感知。這種在敵對空域內有機地建立態勢感知的能力,使得許多人計劃將 F-35 作為下一代分布式 C2 和 ISTAR 網絡的主要組成部分(Bronk,2020c)。然而,由于帶寬、軟件架構和排放控制限制,F-35 目前的形式無法把為飛行員創建的完整傳感器圖像傳輸到其他軍事設施。此外,作為戰術打擊戰斗機,與傳統的 ISTAR 和 C2 節點相比,F-35 的續航能力有限,而且數量有限的 F-35 也已經致力于打擊、SEAD/DEAD 和攔截任務。因此,諸如 F35 之類的平臺只能為傳統 C2 和 ISTAR 使能資產和網絡日益過時提供部分解決方案。
正在開發的分布式機載 C2 和 ISTAR 架構需要對設備進行更改,以使空軍能夠部署更多的小型平臺。除了 F-35 等支持網絡的戰斗資產設施外,一系列較小的載人 C2 和 ISTAR 平臺仍可能成為攜帶小型任務系統人員的選項,以實現機載 PED 和空戰管理。
然而,幾個主要的空軍強國已經在探索分布式軌道設施和無人機 (UAV) 的組合,這將取代 PED 和 C2到遠程地面站的功能。
由于存在一系列競爭趨勢,作為分布式 C2 和 ISTAR 架構一部分的軌道域的未來形態目前尚不清楚。一方面,飛速發展傳感器功能、對空間/重量/電力有要求的設備、通信帶寬和通信魯棒性,MIMO-type數組和軌道設施發射成本下降,都將大幅增加軌道資產在未來分布式ISTAR和C2網絡的角色。然而軟殺傷反衛星能力的激增,能夠進行交會的軌道設施,進攻性近距離作戰和越來越有爭議的電磁波譜,使得軌道資產和利用它們所需的上行/下行鏈路能力越來越有可能被拒絕,或至少在未來的任何戰爭中受到高度競爭。
提供按需的ISTAR和空中火力支援能力是一個必要的先決條件
與依賴人類飛行和任務系統工作人員的資產設施相比,無人機在空間站上提供了更長的續航時間,不像在軌衛星那樣具有可預測和潛在易受攻擊的軌跡。美國空軍 RQ-4 全球鷹和中國神鷹等大型無人機已經展示了一次在非常大的高度飛行超過 24 小時的能力——對于任何分布式的機載 C2 或 ISTAR 節點來說,這是一個非常理想的屬性。為了使它們在面對同行威脅時能夠更好地堅持下去,具有極低可觀測 (VLO) 形狀和材料的高空長航時 (HALE) 型無人機提供了新的潛力。 VLO UAV 在分散系統內執行 C2 和 ISTAR 任務的適用性將取決于尖端數據鏈、傳感器和 SATCOM 的發展,這些數據鏈、傳感器和 SATCOM 可以在不將機身暴露給敵方無源傳感器的情況下執行其任務功能。為了完成這些任務,出現了一些很有前途的技術,這些技術以不同程度的成熟度存在,但仍然很昂貴,并且部署這些技術的國家保持高機密性和安全敏感性。這意味著大規模部署將具有挑戰性,尤其是在靠近敵方領土的無人平臺上。
與當前這一代客機衍生解決方案相比,盡管無人 VLO、HALE 機身可以部署并更接近敵方部隊,但它們取代傳統機載 C2 和 ISTAR 節點的能力取決于自動化數據共享和邊緣處理技術。現代 ISTAR 資產設施,尤其是那些在 F-35 上配備多光譜傳感器套件的設施,在構建周圍戰場的廣域圖像時會產生大量數據。在此過程中,他們將收集可能對其他廣泛資產設施具有較高價值甚至關鍵價值的信息。然而,基于物理的帶寬限制了卸載或共享所有收集的數據,即使在非競爭性電磁環境中也是如此(Watling,2020 年)。在國與國之間的沖突場景中,ISTAR和 C2平臺將競爭有限頻譜資源,并可能在排放控制條件下運行以減少其對檢測和攻擊的脆弱性,應用邊緣處理技術來減少需要共享的數據量將至關重要。
任務工作人員(根據心智能力和工作量)可以對哪些信息可能值得或不值得傳遞給其他資產設施做出必要的主觀和視情況而定的優先級和相關性判斷。然而,至關重要的是,自動化系統目前無法做到這一點,除非在特定的、嚴格定義的情況下。
空戰管理經常是被動反應,依賴判斷的任務也是如此。如果沒有合適的解決方案,用安裝在 HALE 型無人機和作戰資產設施上的數據鏈和分散網絡節點架構,取代空中集中式 C2 和 ISTAR 節點是不可能的。
高度自動化、分布式去中心化的機載 C2 和數據共享網絡的組件(例如美國聯合全域指揮與控制 (JADC2) 計劃所追求的組件),都在機身設計人員的能力范圍內(美國會研究處,2021 年)。
然而,這一雄心超出了目前可行的人工智能和自主技術能力。對這樣一個系統的要求是明確的,因為至少在 2030 年代中期之前,世界各地空軍的大部分戰斗仍將依賴先進的第四代戰斗機和彈藥。
如果沒有來自整個戰場空間的實時態勢感知、目標和武器提示,這些武器系統將無法在高強度沖突中發揮它們所需的作用。然而,如果沒有主觀判斷和優先級排序能力,使得自動化邊緣處理真正取代空戰管理和ISTAR PED任務中的工作人員,空軍很可能仍然依賴于基于過時的寬體遺留系統的集中式機載架構。
Justin Bronk 是英國皇家國防安全聯合軍種研究所(RUSI)軍事科學團隊技術研究員。他還是 RUSI Defense Systems 在線期刊的編輯。他的專業領域包括現代作戰空中環境、無人作戰飛行器和新型武器技術。他為 RUSI 和各種外部出版物撰寫了大量文章。