亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本研究開展了兩個與無人機自組織網絡的通信和安全挑戰有關的項目,目標是處理這些網絡的高度動態特性。首先,提出了無人機自組織網絡中的路由機制,該機制除了考慮傳統的距離度量外,還考慮了鏈路壽命和負載平衡,從而開發出一種路由框架,在考慮智能體未來位置的情況下找到最優路徑。然后,研究了大規模自組織無人機網絡中的一個關鍵挑戰,即開發分布式安全解決方案,并開發了一種密鑰預分配機制。因此,將在單獨的章節中介紹每個項目。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本文探討了人工智能(AI)技術在生成無人機(UAV)機群軌跡中的應用。所面臨的兩大挑戰包括準確預測無人飛行器的路徑和有效避免它們之間的碰撞。

首先,本文在單隱層前饋神經網絡(FFNN)中系統地應用了多種激活函數,與之前的研究相比,提高了預測路徑的準確性。

其次,引入了一種新穎的激活函數 AdaptoSwelliGauss,它是 Swish 和 Elliott 激活函數的復雜融合,并與縮放和移動高斯分量無縫集成。斯維什能促進平穩過渡,埃利奧特能捕捉突然的軌跡變化,而縮放和位移高斯能增強對噪聲的魯棒性。這種動態組合專為捕捉無人機軌跡預測的復雜性而設計。與所有現有的激活函數相比,這種新激活函數的精度要高得多。

第三,提出了一種新穎的綜合碰撞檢測、規避和批處理(ICDAB)策略,它融合了兩種互補的無人機碰撞規避技術:改變無人機軌跡和改變其起始時間,也稱為批處理。這種融合有助于克服兩種技術的缺點:第一種技術是減少軌跡操作次數,避免路徑過于迂回;第二種技術是減少批次規模,減少整體起飛時間。

近年來,無人機因其多功能性和廣泛的應用潛力而越來越受歡迎,從監視和監測到交付和運輸,無所不包。然而,無人機在復雜環境中的安全高效運行仍然是一項重大挑戰,尤其是在涉及多個無人機的情況下。一個關鍵問題是需要優化無人飛行器的軌跡,以實現各種目標,如盡量縮短飛行時間、避免碰撞和擴大覆蓋范圍。傳統的軌跡規劃和控制方法在處理現實世界場景的復雜性和不確定性方面往往能力有限,而且可能無法擴展到大型無人機群。

之前的研究(如 Lai (2020)、Xue (2017) 以及 Qiu 和 Duan (2020))已經證明了利用非線性優化技術的功效。最近,Xu 等人(2024 年)將多目標優化用于軌跡生成。當需要快速改變軌跡時,優化程序太慢且不具有自適應能力,因此人工智能技術成為首選。人工智能技術,尤其是基于機器學習和神經網絡的技術,使無人機能夠從數據中學習并適應不斷變化的條件,從而在應對這些挑戰方面展現出巨大的前景 Lai(2020)。

這些研究涉及利用雙曲切線函數(Tanh)、Sigmoid 等激活函數訓練單隱層的 FFNN。所使用的激活函數對路徑的預測精度不高,因此我們首先要改進這方面的問題。我們在單隱層 FFNN 中系統地應用了多種激活函數,并進行了綜合比較分析。除了 Sigmoid 和 Tanh 外,我們還使用了整流線性單元(ReLU)、泄漏 ReLU、Swish、Elliot 和 Maxout。

其次,為了追求更高的軌跡精度,我們引入了一種新型激活函數 AdaptoSwelliGauss,它超越了相同神經網絡架構中常用的同類激活函數。該函數結合了能捕捉平滑過渡并保持軌跡連續性的 Swish 激活函數和能捕捉方向和速度突然變化的 Elliot 激活函數,以及能使激活函數對噪聲數據具有魯棒性的縮放和位移高斯。

在自主無人機中,碰撞檢測和規避的關鍵部分對確保其運行的安全性和效率起著至關重要的作用,這也是我們的第三個重點。當考慮到多架無人機同時起飛時,這些功能的重要性就更加突出了。無人飛行器之間的碰撞檢測非常簡單,但是有很多方法可以通過改變飛行軌跡來避免碰撞。Guo 等人(2021 年)介紹了一種流行的方法--圓弧軌跡幾何法(CTGA)。假設兩架無人飛行器在路徑上的某一點發生碰撞,該技術會對其中一架無人飛行器的路徑添加一個小擾動。這種算法的缺點是容易陷入操縱循環。對一個無人飛行器軌跡的任何改變都可能無意中造成與其他無人飛行器的碰撞,從而導致棘手的情況。此外,對無人飛行器軌跡的頻繁操作可能會導致飛行路徑錯綜復雜,從而影響無人飛行器群的整體效率。

另一種避免無人機碰撞的輔助技術是改變它們的起始時間。Sastre 等人(2022a)和 Sastre 等人(2022b)提出了這樣一種流行的方法。他們采用了一種分批機制,創建具有非碰撞軌跡的無人飛行器群,以促進安全飛行。然而,多批次的創建引入了一個時間密集的過程,延遲了無人機群的整體發射。

在本文中,我們介紹了一種先進的碰撞檢測和規避算法,稱為 ICDAB 算法。在這里,我們首先改進了 Guo 等人(2021 年)提出的 CTGA 算法,然后將這種規避算法與批處理機制相結合,最終形成了我們的算法。

本文的其余部分安排如下: 第 2 節回顧了相關文獻,第 3 節介紹了我們提出的算法和方法,第 4 節展示了結果,第 5 節總結了本文并提出了未來的工作方向。

付費5元查看完整內容

本論文深入探討了軍用衛星通信系統為抵御敵方干擾威脅而可采用的各種現行和新型措施。特別是,本論文試圖通過重點改進受保護戰術波形標準的各種規格,探索提高受保護戰術衛星通信性能的技術。由于 "受保護戰術波形 "與 DVB-S2 相似,這些抗干擾技術首先在現有的 DVB-S2 平臺上進行測試,然后再移植到以 "受保護戰術波形 "為模型的平臺上。

具體來說,用戶首次嘗試訪問受保護戰術衛星通信系統的初始登錄過程是改進的重點。論文分析了登錄過程的各個方面,包括系統采用的同步序列、到達方向估計方案、波束成形方案以及跳頻背景下的自適應天線陣列。

本論文表明,在與使用跳頻模式和波束成形算法的自適應天線陣列搭配時,可以采用更好的優化同步序列和方案來提高接收性能。本論文對提出的各種解決方案進行了比較和對比,以便為受保護戰術波形標準提出一整套改進建議。

付費5元查看完整內容

本報告概述了自適應自主系統以及對這些系統的分析和評估所面臨的挑戰。報告回顧了自適應系統的定義、目前正在開發的系統、早期的分類嘗試以及分析指標定義。為便于分析,對傳感器、融合/邏輯和執行器子系統進行了定義,并提出了一些子系統分析方法。討論了分析面臨的直接和間接挑戰。還討論了與條令相關的重要考慮因素,以及影響分析和評估的戰術、技術和程序。

圖:無人系統的自主性級別(ALFUS)

自主國防系統對美陸軍的重要性與日俱增;國防部副部長已將自主性確定為國防部第三次抵消戰略中的關鍵技術(Ahner 和 Parson,2016 年)。這些系統可以極大地幫助作戰人員,但也給系統開發人員和系統分析人員帶來了挑戰。在開發完整的性能本體和測試方法以定義和評估自主系統的性能方面存在許多挑戰。其中最主要的是自主系統預期運行的動態環境。自主系統環境的變化預計會影響系統性能。測試方法必須包括這種動態環境的所有方面。

表1正在進行的自主性項目

付費5元查看完整內容

本文的主要重點是開發一種低成本、魯棒性和高效的合作定位解決方案,以幫助無人自主飛行器在全球定位系統缺失或性能下降的條件下進行導航

首先,推導出固定翼無人機(UAV)和多旋翼無人機的完全可觀測性條件。創建了一個相對位置測量圖(RPMG),圖中的節點是車輛或已知特征(地標),它們之間的邊代表測量結果。利用圖論和線性代數概念,得出了可觀測矩陣最大秩的條件,并建立了可觀測矩陣秩與系統中可用測量值之間的關系。該分析條件的缺點之一是必須在所有時間時刻保持一個連通的 RPMG。因此,我們提出了一種離散時間可觀測性條件,即一個時間間隔內的 RPMG 的聯合必須是相連的。

接下來,將討論無人飛行器 (UV) 緊密協調和控制的一個基本問題。在各種應用中,飛行器的慣性位置并不重要。在這種情況下,車輛之間的相對姿態和方位對開發控制器非常有用。眾所周知,擴展卡爾曼濾波器(EKF)的性能非常出色,前提是它的初始化接近真實位置并能接收到測量結果。對于沒有任何全球定位系統(GPS)測量數據或網絡延遲嚴重(需要重新初始化濾波器)的長距離行駛車輛,已知先驗信息的假設是無效的。為了規避這些問題,我們開發了一種多假設卡爾曼濾波器(MHEKF),該濾波器在初始化過程中沒有先驗信息,這意味著相關的不確定性非常大。

最后,解決了地面車輛的分布式合作定位問題。集中式合作定位需要大量計算。我們開發了一種分布式合作定位算法,使組內的每輛車都能估計自己的慣性狀態。該算法是為自主地面車輛開發的,在仿真中僅使用測距數據。

圖 1.1:合作定位的相對位置測量圖,其中塔作為地標(已知興趣點),不同的 UV 相互合作。

付費5元查看完整內容

本論文探討了支持分布式海上作戰(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。為本研究開發場景模型的目的是幫助讀者更好地理解緊密結合的數據類型、數據速率和所需網絡功能對網絡設計的影響。本研究針對需要視頻、語音和數據鏈路組合的場景中的各種資產,對每種架構進行了評估。它深入分析了每種設計所固有的信息傳遞延遲,并評估了每種網絡的可靠性。研究發現,利用機載路由功能的低地球軌道衛星星形和網狀網絡可提供最低的定時延遲。研究還發現,通過專用通道提供視頻饋送時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且缺少一個可能易受攻擊的中心樞紐。因此,利用特設無線網狀通信網絡將支持在分布式海上作戰進行有限的進攻性聯合火力打擊期間部署自適應部隊包。

圖 1. 星形網絡拓撲(左)和全網狀拓撲(右)。

在任何戰斗環境中,良好的通信都是取得勝利的關鍵。即使是在擁有堅實通信基礎設施的地理位置,如果戰地指揮官不能及時收到來自戰地資產的正確信息報告,也會造成混亂。在海戰中,尤其是在近海,通信基礎設施充其量也是微乎其微。

為響應美國防部長關于改進聯合火力(JF)行動的號召,本畢業設計探討了支持分布式海上行動(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。

為本研究開發情景模式的目的是幫助讀者更好地理解緊密耦合的數據類型、數據速率和所需網絡功能對網絡設計的影響。這有助于突出已實施網絡的設計限制。模擬結果用于定義基準參考和可追溯數據要求,以支持為 JF DMO 設計的戰術網絡。

A. 戰術通信網絡拓撲結構

網絡設置通常用拓撲結構來描述,拓撲結構是網絡內節點排列和通信的物理方式(美國陸軍工程部,1984 年,7)。本研究評估了圖 1 左側所示的傳統星形網絡和圖 1 右側所示的多層網狀通信網絡,并量化了這些鏈路的排列可能對操作產生的影響。

1.星形網絡

最廣泛使用的無線網絡拓撲結構是星形幾何模式。星形拓撲結構包括一個中心節點,所有信息都通過該節點流動。在星形格式中,所有信息都必須從每個參與資產發送和接收,并通過中心樞紐路由。這種配置中的中心節點是單點故障。如果中央節點離線,整個網絡就會癱瘓。

2.無線網狀網絡

多層戰術無線網狀網絡是指在網絡內共享信息的過程。網狀網絡描述了一種配置,其中每個節點都具有通信能力,可以相互發送和接收信息。在網狀網絡中,節點是自組織的,可根據需要通過路由算法自動建立(Shillington 和 Tong,2011 年)。

B. 結論

本研究的設計要求側重于網絡配置、對信息定時延遲的影響、網絡抖動和可靠性。研究發現,使用具有機載路由功能的低地球軌道(LEO)衛星的星形和網狀網絡可提供最低的定時延遲。研究還發現,在提供視頻饋送專用通道時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且沒有潛在的易受攻擊的中心樞紐。因此,在分布式海上行動的有限進攻性聯合火力打擊中,利用特設無線網狀通信網絡將支持部署自適應部隊包。

付費5元查看完整內容

在本項目中,我們從多個方面研究了無人機自組織網絡的通信和安全挑戰:i) 我們為特設無人機網絡開發了一種新的路由協議,以處理此類網絡的高度動態性。我們的研究表明,所提出的路由算法在流量成功率、吞吐量和流量完成時間方面都優于所有知名基準;ii) 我們研究了自組織無人機網絡的安全挑戰,并表明現有的基于預分配的密鑰管理協議容易受到合作攻擊。我們設計了一種基于區塊鏈的密鑰交換算法,以提高網絡抵御此類攻擊的能力。

付費5元查看完整內容

本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:

  • 將DL模型實施到片上系統(SoC)硬件中
  • 高光譜圖像(HSI)數據的DL
    • 1.在HSI上建立DL,以獲得水的特性和底層深度
    • 2.在HSI上使用開放集識別方法
  • 框架內融合方法的消融研究
  • 使用DL和模糊聚合的HSI和LiDAR多模態傳感器融合的新框架
  • 探討神經模糊邏輯在遙感數據中復雜場景的不確定性下自動推理的作用和實用性

出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。

付費5元查看完整內容

在這項工作中,我們解決了雷達波形優化和目標跟蹤的問題。提出了一種基于控制論方法的優化波形設計和目標跟蹤算法,其中波形參數是通過最小化跟蹤均方誤差(MSE)而自適應設計的。在這項工作中,采取了幾種方法來提高雷達跟蹤性能。首先,卡爾曼濾波器被用來估計目標位置,用它來優化波形參數。實驗結果表明,所提出的算法有能力在笛卡爾空間內跟蹤飛行目標,它提供了對目標位置和目標速度笛卡爾矢量以及徑向速度的準確估計。該算法根據估計矢量在飛行中調整波形參數。在文獻中,多普勒效應理論被大量用于估計目標速度。在某些條件下,如跟蹤高速目標或惡劣的海洋和天氣條件下,多普勒效應就不那么有效。因此,在這第一個方法中,引入了一種依賴于卡爾曼濾波估計的算法,而不依賴于多普勒效應。一個具有實時自適應參數的低通濾波器被應用于估計的速度矢量,并提取準確的速度估計。此外,從一個現實的角度來解決雷達跟蹤問題,承認目標運動不能像我們提出的使用卡爾曼濾波器那樣用矩陣來描述,因此引入了交互式多模型算法來估計目標位置。通過模擬,我們證明了所提算法的良好性能,并證明波形優化可以提高雷達的跟蹤性能。最后,考慮從兩個天線而不是一個天線收集信息,并使用其中一個數據融合算法,以及IMM算法,我們能夠減少跟蹤誤差,并為跟蹤問題提供一個更穩健可靠的解決方案。

圖 1. 大腦/認知雷達感知-行動周期。

認知被定義為參與認識、學習和理解事物的心理過程。這個定義介紹了定義CR的三個主要成分:

  • 系統與環境持續互動并感知其地標的能力,包括潛在的目標和障礙物;這使得相控陣天線成為CR的主要組成部分,因為它們能夠快速掃描環境。

  • 智能地處理接收到的回波,并提取有關目標和周圍環境的測量值的能力。

  • 能夠提取有關目標和環境的信息,并相應地使用它來做出有關波形和目標運動估計的決定。

認知型雷達在某種程度上模仿了大腦的學習方式,并根據感官采取行動,遵循一個類似的循環:感知、學習、調整、行動。它們不斷地從環境中學習,并作出決定以提高跟蹤性能。類似的循環,即眾所周知的感知-行動循環(PAC),在解釋大腦如何工作或描述一些智能系統的文獻中被多次提及([2][3][4])。引用[2],神經科學家Joaquin Fuster將感知-行動循環描述為 "在處理目標導向行為的過程中,信息從環境到感覺結構,再到運動結構,再次回到環境,再到感覺結構,如此循環往復"。圖1解釋了與認知雷達相關的大腦的運行周期。在這項工作中,我們討論了這個閉環循環的所有步驟,這些步驟制約著CR的性能。提出了一個系統模型,并進一步討論了以估計和波形優化過程為重點的內容。

在文獻中,討論了兩種主要的波形選擇方法:控制論和信息論。在這項工作中,考慮了控制理論方法中的波形選擇標準。雷達波形參數主要通過最小化跟蹤均方誤差(MSE)來確定。

CR有一個閉環的工作循環。該系統依靠接收器的反饋來收集關于目標和環境的知識。這些知識然后被用來優化發射波形,并改進對目標的探測、跟蹤、估計和識別。這個概念在2006年由S.Haykin[1]在文獻中首次提出,他寫道,我們引用[1]"整個雷達系統構成了一個動態的封閉反饋回路,包括發射器、環境和接收器。

CR的運行周期(即上述閉環)從發射器對環境的照射開始。然后,從環境中反彈出來的傳輸波形(即目標回波、雜波等)被接收器截獲。關于目標和環境的有用信息從接收到的回波中提取出來,然后更新一個信息庫(記憶塊),在下一個周期由目標估計器(TE)作為一組關于環境的先驗知識使用。根據TE提供的估計結果,波形被優化。通常考慮用貝葉斯方法來實現目標估計器。

在CR中,提取的信息不僅在接收機層面發揮作用,而且在發射機層面通過改變波形和一些相關參數,如脈沖重復頻率(PRF)、脈沖寬度、脈沖數N和雷達發射時間表來發揮作用。這方面是CR與經典的自適應雷達的區別,后者只能在接收層面使用提取的信息。

波形優化設計作為一個重要的研究課題出現在信號處理界,因為它在許多領域都有廣泛的應用,如通信系統、聲納,以及在我們感興趣的情況下,改善雷達系統的性能。文獻中討論了許多設計標準,其中我們提到了最大信噪比(SINR)標準[9]、最大探測概率標準[14]、最大互感信息(MI)[8]標準和最小化均方誤差標準(MMSE)[10]、[11]。這些設計標準方法可以分為兩類:控制理論方法,其目的是為連續運行的動態系統開發一個控制模型;信息理論方法,更側重于研究信息流和從接收的測量數據中提取更多的目標信息。本文采用了控制理論方法,通過最小化跟蹤MSE來確定最佳波形選擇/設計。

付費5元查看完整內容

本文介紹了在卡勒獎學金第一年內進行的研究,研究如何自主控制檢查平臺向故障平臺行駛以完成檢查相關任務。這項研究的目的是開發一個有限時間的相對位置控制框架,使檢查衛星能夠安全地接近發生故障的平臺,因為平臺的通信能力受到阻礙,導致其在接近過程中根本無法通信。故障平臺導致獨特的挑戰,即平臺的狀態被認為是先驗未知的,檢查器可能無法從故障平臺提供的準確和連續的信息中受益;故障平臺也可能受到機動和干擾。

在該獎學金的第一期內,使用 MATLAB 和 Simulink 開發了仿真軟件,以演示檢查平臺與故障平臺執行會合操作。首先引入基于視線的相對運動模型,直接使用導航信息,然后以自適應非奇異終端滑模控制器的形式開發魯棒控制框架,以確保閉環系統穩定并保證有限時間收斂到所需的狀態。然后在最終討論未來的工作和目標之前展示和討論模擬結果。

付費5元查看完整內容
北京阿比特科技有限公司