本文件介紹了作者自2010年1月加入法國航空航天實驗室(ONERA)以來形成的研究貢獻。
作者的研究是在一個部門進行的,該部門的研究活動涉及大量的信息處理技術,從邏輯推理、作戰研究到多智能體系統。應用于三個主要領域:航空電子學、空間、國防和安全。關于現有的研究方向,其研究為國防和安全領域帶來了新的見解,重點是軟數據處理的方法和技術,也就是說,由人類提供的符號數據(作戰員,人類智能)或從互聯網上收集的數據(開放智能,社會智能)。研究涉及人類報告信息的質量評估、在線數據的特征、異質信息融合的語義互操作性的發展以及信息融合的不確定性分析。
本文件報告了從2010年初到2020年底,作為ONERA的研究科學家所取得的成果。雖然作者的工作是其部門新研究路線的一部分,但一些項目,如ROSARIO(開源研究:信息和意見檢索)和RIAD(人工智能和決策網絡)使其能夠與部門的同事合作,但其大部分貢獻是與外部合作的。
作者是兩個研究項目的科學協調人。FUTHANE(Fusion Technique de Haut Niveau et Evaluation),一個由法國國防采購局資助的研究異質信息融合項目,以及FLYER(Intelligence Artificielle pour Analyser les Contenus Extrémistes sur Internet),一個由法國研究局資助的項目。FLYER項目利用人工智能方法解決網上極端主義內容的檢測問題。作者的一些科學貢獻是在這些項目的框架和背景下進行的。
本文件是對作者研究項目的綜述,該項目題為 "為國防和安全應用增強態勢感知的語義框架"。第一章介紹了理解本文件其余部分的貢獻所需的理論背景和應用環境。其余各章描述了為提高各種安全和國防背景下的態勢感知而開發的三個語義框架:評估人類操作員提供的信息項目,為異質和動態環境中的信息融合開發基于語義的方法,以及在線數據的分析和定性。
語義框架包括知識模型和在此基礎上實現的處理算法,作者的研究處于知識工程和文本數據挖掘的交叉點。
這些貢獻不是按時間順序排列的,而是根據它們的連貫性重新分組的,因為有幾條研究線是在不同的時間和不同的應用中處理的。在討論每項貢獻時,都會說明研究背景、所開發的人工制品的成熟度、主要的合作、所獲得的經驗教訓以及相關出版物的選擇。
達爾豪斯大學大數據分析研究所、加拿大國防研究與發展部(DRDC)-大西洋研究中心和加拿大通用動力任務系統公司(GDMS-C)向加拿大自然科學與工程研究委員會(NSERC)成功申請了一項名為海軍信息空間自動監測(AMNIS)的三年期資助項目。AMNIS啟動會議于2020年10月14日舉行,許多教授、國防科學家和GDMS-C技術人員參加了會議。會議為這三個組織確定了許多行動。與DRDC和GDMS-C相關的一項行動是需要與任務相關的場景來幫助指導預期的研究。因此,DRDC率先描述了一個有代表性的海陸場景,使研究人員能夠更好地了解與AMNIS有關的潛在研究途徑。制定的方案涉及加拿大皇家海軍(RCN)和加拿大陸軍(CA)執行的一項加拿大人道主義任務。該任務是向一個最近遭受自然災害的國家分發食品和醫療用品。一支敵對勢力還試圖偷竊這些物資。該情景描述了通過更好的處理技術和決策來改善信息流、共享和使用的必要性。該方案旨在引起進一步的討論,并幫助鞏固AMNIS參與者的研究課題。
2015年,加拿大皇家海軍(RCN)的海上信息戰(MIW)概念[1]發布,概述了信息對RCN的影響。MIW的推出使人們非常需要關注信息,它既是皇家海軍使用的一種資源,也是為了更全面地使用和利用優勢而需要理解的一個概念。
該概念文件概述了信息的影響,包括其廣泛的可用性、皇家海軍對信息的依賴性以及信息的使用,特別是在戰爭中和作為戰爭倍增器的跨梯隊的使用。該概念文件還談到需要更好的處理技術來處理MIW功能領域內的數據量,如指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)、指揮和控制(C2)、情報、監視和偵察(ISR)以及態勢感知(SA)。
在MIW概念文件之后,2016年又發布了RCN信息戰戰略文件[2]。這里的重點是發展海戰MIW能力和能力,以支持國內活動(即加拿大的防御)和國際部署。盡管戰略文件指出了信息的更多傳統用途,如收集、利用和傳播,但它也認識到網絡武器領域是一個機動的地方,可以采取防御和進攻的行動。MIW的概念文件涉及物理、虛擬和認知領域,而戰略文件則談到了信息領域,從而表明了信息對于作戰人員的地位和重要性。
在概念和戰略文件之后,加拿大在2017年發布了新的國防政策[3]。該國防政策并沒有明確提到信息領域。然而,該政策確實催生了兩個最近的文件,繼續表明信息對RCN的重要性:2019年的DND數據戰略[4],以及2020年的RCN數字海軍[5]。
數字海軍[5]支持加拿大國防政策[3]的創新目標,特別是那些涉及適應和利用新技術的能力。數字海軍 "作為一個指南,將數字技術與人結合起來加以利用,以確保未來海軍的成功和可持續。這份文件提出的前進方向涉及自動化、大數據分析、云計算、人工智能(AI)和機器學習(ML)方面的創新,成功是指通過上述手段做出數據驅動的決策的RCN。
數字海軍的概念促進了企業和運營RCN社區在決策中對數據的使用。在操作方面,這是為了將海軍團隊和水兵從日常工作中更平凡的方面解放出來,通過自動化功能,如基于規則的重復性任務。從更廣泛的操作角度來看,使用這種數字技術和技巧是為了更好地進行操作。
上面提到的所有文件都指出,希望將RCN推向一個信息組織,在這個組織中,信息是用來使用的,但也被用作防御和安全的工具。由于其中一些方面對RCN來說是新的,因此顯然需要一個由信息科學、人工智能、ML以及將這些與認知科學相結合的專家組成的強大而明智的科學團體,以開發更好的人類決策模型來支持RCN的目標。
通過政府、學術界和工業界合作伙伴的參與,建立了一個強大而知情的科學界。這個群體完全有能力在與現代軍隊相關的科學和技術問題上取得進展,以幫助滿足國內和國外對加拿大武裝部隊(CAF)不斷增長的需求。
為了發展這個社區,在自然科學與工程研究委員會(NSERC)的聯盟計劃下,成立了一個DRDC(大西洋研究中心)、工業界(加拿大通用動力任務系統公司,GDMS-C)和學術界(達爾豪西大學)的伙伴關系。提交并被NSERC接受的提案名為《海軍信息空間自動監測》(AMNIS)。該提案概述了海上和陸地的信息問題,特別是數據整合、事件和警報的ML、信任和對抗性數據,以及信息的可視化和呈現供用戶使用。
為了給學術研究小組提供背景和指導,下面提供了一個大大簡化的行動的基于場景的描述。該方案包括許多問題,表明與AMNIS相關的可能研究途徑。這里的目的是培養研究人員對與DRDC和GDMS-C有關的問題的理解,使研究人員能夠發展自己的思路,幫助他們追求與他們的研究和AMNIS有關的創新方法、技術和發現。
這項工作的動機是基于兩個愿望,即:
1.描述一個現實但簡化的操作,其中存在與AMNIS相關的信息問題,以及。
2.強調在AMNIS項目下DRDC和GDMS-C感興趣的研究領域。
其余各節將提供一個現實場景的發揮、可視化部分、性能建模、決策和學習的概述。每一節都包含了一系列的問題,這些問題的提出有助于為研究工作提供思考點和指導。
第2節描述了一個聯合行動的場景,陸地和海洋部隊共同支持人道主義任務。通過可能被破壞并有相關安全風險的節點相互連接和共享信息資源來實現這一目的。第3節討論了可視化在該場景中的作用及其對決策的影響。這包括物理環境的可視化表示,以及額外信息源的聚合如何影響主題專家的決策。本節還考慮了與人工智能(AI)和多樣化技術合作的人類表現模型。第4節討論了如何利用數據檔案來開發和學習對抗性注入檢測方法。第5節以總結性意見完成了本文。
全球信息網絡架構(GINA)是一個語義建模框架,旨在促進特設傳感器資產和指揮與控制系統的整合,因為它們可以通過被稱為矢量關系數據建模的實施方式提供給戰斗空間中的操作人員。為了評估GINA的互操作性和推理能力,開發了一個概念驗證評估,并在真實世界的傳感器數據上進行測試。
正如美國陸軍的多域作戰(MDO)概念所指出的,美國的對手試圖通過在政治、軍事和經濟領域的分層對峙來實現他們的戰略目標,而不是通過沖突來對抗美國軍隊和聯盟伙伴。此外,MDO概念指出,對手可能采用多層跨域對峙--跨越陸地、海洋、空中、太空和網絡空間,在時間、空間和功能上威脅美國和聯盟部隊。反擊這些戰略的中心思想是快速和持續地整合所有領域的戰爭(即融合),跨越時間、空間和能力,以戰勝敵人。
為了實現MDO的執行,聯合軍種、政府機構和多國伙伴之間的互操作性是一個關鍵要求。戰術行動已經越來越依賴于信息網絡的傳感、通信、協調、情報和指揮與控制(C2)。因此,美國陸軍不斷尋求提高其整合網絡系統的能力,并在不同的作戰節奏水平上實現同步效果。從歷史上看,由于沒有足夠的能力來支持現有的和新興的技術和進程,這種整合在以無處不在的物聯網(IoT)和軍事C2系統為特征的不斷發展的網絡化戰斗空間中帶來了技術挑戰。這種限制因不同系統的孤島而進一步加劇,限制了戰術、技術和程序的跨系統使用,以及支持硬件和軟件組件。這些限制使作戰人員面臨不一致和缺失的關鍵任務數據,促使作戰功能在孤立中運作。例如,行動和情報之間的數據交換是有限的,范圍也受到限制,增加了指揮官決策過程中的風險和延誤。
為了實現陸軍網絡現代化,陸軍未來司令部網絡跨職能小組(N-CFT)正在調查通過創新、整體和適應性的信息技術解決方案來實現網絡互操作性的顛覆性方法,以滿足既定的C2互操作性挑戰。根據NCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的研究人員評估了一項名為全球信息網絡架構(GINA)的技術,作為多源傳感器數據融合的系統解決方案,以支持決策。 根據其軟件規格,GINA的目的是減少在互操作和集成方面存在的技術挑戰,并支持及時的共同情報/作戰圖景和決策的情報分析。
目前,語義互操作是一個活躍的研究領域;近十年來,已經開發了一些軍事技術解決方案。語義互操作提供了促進快速整合來自臨時傳感器資產和異質C2系統的信息的手段,因為它們為戰斗空間中的操作人員所了解。這項初步評估表明,GINA能夠整合不同的傳感器系統,并對數據進行同質化和協調,以便在本次評估的實驗場景下提供解釋、分析和推理。在這一評估的基礎上,在與MDO的規模和復雜性相匹配的實地演習或實驗中進行進一步的評估可能是有意義的。具體來說,進一步評估的能力是:1)來自多個部門的傳感器和通信設備之間及時的互操作性;2)連接來自不同結構和標準的盟國、合作伙伴或商業數據流系統;3)豐富、數據分析、推理或增強其他決策支持C2系統;以及4)與其他技術解決方案的比較。
這項評估的綜合分析已經在DEVCOM ARL技術報告ARL-TR-9100中記錄和公布。
《軍事中的人工智能和自主:北約成員國戰略和部署概述》報告以及相關文件《附錄A -國家概況》提供了人工智能和自主技術在北約盟國軍事中的作用的高層視圖。這是第一個專門針對北約國家軍事人工智能的學術研究。
該報告概述了每個北約國家在軍事人工智能方面的觀點和雄心,并概述了它們目前對人工智能技術的使用。在附錄A中,報告探討了每個國家在軍事和國防背景下與人工智能的接觸程度,審查了國家人工智能戰略和當前人工智能技術使用的公開來源。
本研究的策略含義如下:
鼓勵負責任的人工智能規范:作為一個基于共識的聯盟,北約在促進安全和軍事人工智能討論方面處于獨特地位,并有機會協調成員國之間的規范建設活動。
人工智能的采用:北約是一個有價值的機制,通過該機制,可以按需向成員國提供能力建設指導和更廣泛的援助。
協作增強抵御能力:加強聯盟合作可能使各國能夠利用能力建設努力,更好地應對與人工智能技術相關的安全挑戰。
維持集體防御:人工智能技術的能力差距不斷擴大,可能導致一些成員國在應對更快的沖突環境方面裝備相對不足,在這種環境中,對手越來越多地利用人工智能和自主系統。
關注未來的互操作性: 豎井式創新為聯盟提出了未來的互操作性挑戰,例如在跨國運營中共享數據和AI應用。
在加拿大國防研究與發展部(DRDC)05da聯合情報收集和分析能力(JICAC)項目下,本科學報告提出了創新貢獻,為作戰提供先進的情報收集任務支持,作為情報需求管理和收集管理(IRM/CM)能力的一部分。它報告了新型收集任務優化工具的設計,旨在支持收集管理人員處理復雜任務和支持收集資產設施。它總結了新的研究和開發情報收集概念和自動決策支持/規劃能力,以支持/建議收集經理有效和高效的資源分配。以多衛星收集調度用例問題為重點,簡要報告了導致快速、自動和優化收集任務的新技術解決方案概念,提供服務水平的改善和增強及時的態勢感知。從人工智能和運籌學中借用的基本概念,目的是在各種任務、機會、資源能力、時間和成本約束下實現收集價值最大化。報告總結了技術成果,描述了新的快速、自動和優化的收集任務解決方案和原型推薦器,以安排真實/虛擬的多衛星星座。它應對了一些缺陷和挑戰,如短視(以單一任務為重點)或臨時性的情報收集任務分配方法,不適合集中式/分布式的開放和閉環資源管理方法或框架,以確保靜態/動態規劃或處理約束的多樣性/差異性和不確定性管理。本報告還旨在向加拿大軍隊情報指揮部(CFINTCOM)、空間總督(DG SPACE)、加拿大聯合行動指揮部(CJOC)和主要的軍事聯合情報、監視和偵察(JISR)利益相關者提供信息。
本科學報告提出了適用于天基情報、監視和偵察的多衛星情報收集調度問題的新型收集任務技術概念和技術發現。這項工作與雷達衛星星座任務(RCM)項目的后續舉措和加拿大軍隊(CF)在北極和北方的持久性聯合情報、監視和偵察方面的一些優先事項相吻合,以便及時提出增強情報收集任務的解決方案和工具。它提出了新的科學和技術方法,為低密度、高需求的可部署收集資產提供近乎最佳的情報收集。
針對適當的情報、監視和偵察(ISR)應用領域的具有成本效益的天基情報收集任務,對發展適當的國防情報需求管理和收集管理(IRM/CM)能力至關重要。因此,收集管理,特別是收集任務分配,對于保持加拿大領土、空中和海上領域的準確、及時和持久的態勢感知至關重要。典型的收集管理要求包括在資源有限的情況下進行適應性和響應性收集(CFINTCOM);收集任務分配;規劃執行;傳感器組合優化;支持聯合ISR(JISR)資產的動態執行新任務(CJOC);實時收集規劃以及有效的傳感器提示(DG SPACE),等等。最終的目的是有效地彌補信息需求和信息收集之間的差距,最佳的資源管理主要是由人員短缺、有限的收集任務自動化、成本效益、資源限制和低密度高需求的收集資產(衛星)在一個時間限制的不確定環境中的發展。通過多衛星收集調度問題(m-SatCSP)開展北極情報和監視的基于空間的圖像情報(IMINT),代表了一個典型的相關使用案例。
為處理情報收集任務的缺陷和挑戰而提出的解決方案[1]有很多。最近關于收集任務,特別是多衛星圖像采集調度的公開文獻,在 "多異質衛星任務的收集規劃和調度:調查、優化問題和數學規劃公式"[2]和 "QUEST--多衛星調度問題的新二次決策模型,計算機與運籌學"[3]。以下是對擬議方法的主要局限性的簡要總結。讀者可以參考后面的出版物[2],[3]以了解更明確的細節。基于低密度高需求的集合資產為前提,一般的問題在計算上是困難的。大多數研究貢獻主要限于同質衛星和單一星座情景,主要處理簡單的觀測點目標("點 "區域)任務,并提出新的任務聚類和預處理策略以減輕計算復雜性。已呈現的工作大多忽略了大面積覆蓋的復雜性、及復雜的任務結構、聯合價值任務構成、觀測結果和成像機會質量的不確定性以及常見的操作約束。這些制約因素包括最小任務覆蓋閾值、相互任務排斥、任務優先級和成像成本。目前的采集資產任務分配方案大多提供基于短視啟發式的策略,以規劃或分配采集器任務。在實踐中,最好的資源往往是短視推薦或局部選擇,以完成一個特定的任務,而忽略了其他約束條件(例如,為其他采集請求服務的時間窗口和成像機會)、追求的全局目標和持續進行的部分規劃解決方案質量。因此,ISR資源分配和動態重新分配是臨時性的,因為它們是以單一任務為中心的,而不是采用更全面的任務觀,關注整體任務,更好地利用替代機會,更有效地滿足整體收集要求。擬議的基本收集任務的部分解決方案沒有提供一個健全的資源管理框架,以確保適應性動態規劃或處理約束的多重性/多樣性和不確定性管理。它們也未能展示有價值的分布式規劃和融合的協同作用或整合,同時對支持可重構的傳感器網絡提出很少的指導。一方面,減少感知或高級信息融合與資源分配(RA)任務之間的差距,另一方面,規劃(任務分配)和執行(收集)監測之間的差距,仍然難以實現。
這項工作提出了新的研究和發展情報收集概念和自動決策支持/規劃能力,以支持/建議收集人員有效和高效的資源分配。它旨在開發自動咨詢調度組件和概念驗證原型,以實現有效的收集任務分配。以多衛星圖像采集(IMINT)調度為重點,介紹了導致快速、自動和優化采集任務的新技術解決方案概念,改善提供的服務水平,并增強及時的態勢感知。所設想的問題包括許多新的附加功能和完善的元素,這些元素在公開的文獻中主要是被忽視或忽略的。假設在低密度、高需求的收集資產條件下的m-SatCSP,新的特征包括收集資產的多樣性和敏捷性、任務抽象化、更多的包容性目標和更多的約束多樣性。重新審視的表述涉及抽象的情報收集任務,將單一目標區域(點)的重點明確地包括在大面積覆蓋范圍內,同時考慮多個或虛擬的異質衛星星座,脫離了傳統的同質情景。新的空間和時間依賴性,反映更現實的任務復雜性,放松相互獨立和可分離的假設。它抓住了成像質量、部分任務執行和成功概率等概念,擺脫了對有序行動執行或確定性結果的不現實的假設。該方法還重新審視了任務優先級利用的概念。因此,優先權被用作沖突解決機制,而不是基于優先權的有偏見的短視策略,強加任意的任務部分排序來管理高復雜性需求。設想的問題目標是要捕捉到超越通常區域覆蓋范圍特定任務的性能措施,引入收集質量,考慮到探測成功率、跟蹤質量和識別的不確定性,以提高收集的信息價值。基于最近提出的一個問題陳述,即m-SatCSP的背景[3],將情報請求映射到收集資產成像機會,以實現收集價值最大化,這項工作簡要地擴展了標準確定性問題決策模型,使用常規的混合整數二次規劃優化問題表述[5]。針對基于空間的ISR應用領域,新的優化模型降低了計算復雜性,使得在某些情況下利用精確的問題解決方法成為可能,同時提供了對最優解的約束。在公開文獻中大量報道的傳統特征約束的基礎上,推廣的模型引入了額外的規范,如合適的任務覆蓋閾值、可選的任務互斥、任務優先級、聯合值任務組成、成像/服務時間窗口,以及單個和平均軌道的熱約束。報告了在集中式和分布式決策背景下各種靜態和動態情景下的主要貢獻和創新之處。簡要介紹了為支持收集任務而明確開發的創新模型、求解器和概念驗證原型(推薦器)。
本科學報告總結了技術成果,描述了新的快速、自動和優化的收集任務(改善服務水平,增強態勢感知)解決方案和原型推薦器,為規劃多衛星真實/虛擬星座。它還旨在向CFINTCOM、DG SPACE和CJOC軍事組織通報主要發現,并確定最有希望的收集管理性能要求、技術和工具,容易對正在進行的主要軍事舉措產生潛在影響。這項工作是在2015年12月至2020年3月的DRDC聯合部隊發展(JFD)05da聯合情報收集和分析能力(JICAC)項目下進行的。
本報告概述如下。第2節簡要介紹了m-SatCSP問題陳述。它描述了問題的基本特征,并強調了開環和閉環設定以及集中式和分布式的決策背景。第3節和第4節分別總結了各自的開環(靜態)和閉環(動態)建議的貢獻。簡要介紹和討論了所開發的概念、模型特征、算法或求解器以及主要結果。第5節介紹了在JICAC下明確開發的概念驗證集合任務原型,以檢驗靜態/動態問題。第6節總結了核心貢獻、發現及其潛在影響。最后,在第7節中提出了建議。提出了一些進一步的技術解決方案開發和未來工作擴展的方向。
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。
作為一個多國聯盟,當北約的成員國能夠在短時間內自信地將他們的部隊聚集在一起時,北約是最有效的。因此,一個關鍵的信息要求是了解其國家部隊的互操作性程度。為了有效地傳達這種理解,需要統一的、可重復的、可靠的和結構化的方法和框架。成立SAS-156的目的是為互操作性數據的測量、收集和評估制定一個北約標準。信息時代的要求對不同單位快速、方便、安全地連接和共享信息的能力提出了挑戰,但人和程序的因素仍然同樣重要。作者將介紹他們根據在加拿大聯合作戰司令部的工作經驗,對參與國的現有評估框架進行綜合和擴展的工作。加拿大武裝部隊的經驗特別相關,因為它是北約在拉脫維亞的多國增強型前沿存在戰斗小組的框架國家,并且輪流領導北約常設海上小組。
聯盟和伙伴關系一直是上個世紀成功的大規模作戰行動的一個關鍵組成部分。互操作性--為實現戰術、作戰和戰略目標而一致、有效和高效地共同行動的能力--是取得成功的關鍵。北約國家和合作伙伴了解互操作性的重要性,并且已經和正在收集關于行動和演習及活動的大量數據,以評估多國聯盟能夠實現互操作性的程度。然而,諸如缺乏標準術語等障礙仍然存在,而且可靠和有效的數據收集方法仍然難以找到。為了彌補這一缺陷,向系統分析和研究(SAS)小組提出的技術活動建議在2019年獲得批準,由此產生的后續活動,即北約任務組SAS-156 "制定評估多國互操作性的標準方法",正在追求這些明確的研究和利用目標:
幫助北約實現互操作性數據定義、收集和管理的標準。
讓軍事規劃人員更好地了解他們與合作伙伴的互操作性狀況,并在他們之間以共同的方式討論這些評估。
為追求自身互操作性目標的各個國家的資源配置決策提供依據。
達爾豪西大學大數據分析研究所、加拿大國防研究與發展研究所 (DRDC) – 大西洋研究中心和加拿大通用動力任務系統 (GDMS-C) 成功向加拿大自然科學與工程研究委員會 (NSERC) 提出申請, 促成了一個為期三年的資助項目,名為自動監控海軍信息空間 (AMNIS)。 AMNIS 啟動會議于 2020 年 10 月 14 日舉行,眾多教授、國防科學家和 GDMS-C 技術人員參加了會議。會議確定了三個組織的多項行動。與 DRDC 和 GDMS-C 相關的一項行動是需要與任務相關的情景來幫助指導預期的研究。因此,DRDC 率先描述了一個具有代表性的海陸情景,這將使研究人員能夠更好地了解與 AMNIS 相關的潛在研究途徑。開發的場景涉及由加拿大皇家海軍 (RCN) 和加拿大陸軍 (CA) 執行的加拿大人道主義任務。任務是向最近遭受自然災害襲擊的國家分發食品和醫療用品。敵對勢力也試圖竊取物資。該場景描述了通過更好的處理技術和決策來改進信息流、共享和使用的需求。該方案旨在引發進一步的討論并幫助鞏固 AMNIS 參與者的研究主題。
AMNIS 項目將推動國防界在機器學習、深度學習、人工智能、可視化的許多方面、弱勢網絡上的信息共享、基于場景的決策以及人類績效建模和團隊合作方面的知識。這里描述的海洋/陸地情景旨在激發支持這些主題的研究途徑。
本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。