亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

傳統的計算機視覺通常通過專門的模型獨立解決每個單一任務,任務指示隱式地設計在模型架構中,這引起了兩個限制:(1) 它導致了特定于任務的模型,需要多個模型來處理不同的任務,限制了來自不同任務的潛在協同作用;(2) 它導致了一個預定義的且固定的模型接口,該接口在遵循用戶的任務指示時具有有限的交互性和適應性。為了解決這些問題,最近積極研究了視覺指令微調(VIT)它通過將語言作為任務指示來微調一個大型視覺模型,旨在通過語言指示描述的各種視覺任務來學習一個通用的多模態模型,該模型可以遵循任意指示,從而解決用戶指定的任意任務。這項工作旨在提供視覺指令微調的系統綜述,涵蓋:(1) 呈現計算機視覺任務范式和VIT發展的背景;(2) 介紹VIT的基礎,包括常用的網絡架構、視覺指令微調框架和目標,以及評估設置和任務;(3) 視覺指令微調和評估中常用的數據集;(4) 對現有VIT方法的回顧,根據所研究的視覺任務和方法設計對它們進行分類,并強調它們的主要貢獻、優勢和不足;(5) 對各種指令遵循基準上的VIT方法進行比較和討論;(6) 視覺指令微調研究中的幾個挑戰、開放方向和可能的未來工作。****

1 引言

計算機視覺長期以來一直是人工智能領域的一大挑戰,旨在使計算機、機器或系統能夠像人類一樣感知、分析、理解并與視覺世界互動【1】、【2】。隨著深度神經網絡【3】、【4】、【5】的發展,計算機視覺研究在一系列任務中取得了巨大的成功,如判別性視覺任務(例如,圖像分類和分割,目標檢測等)和生成性視覺任務(例如,圖像生成、圖像編輯等)。 盡管如此,在這一研究領域中,每個視覺任務通常由一個專門的視覺模型獨立解決,其中任務指令被隱含地考慮并設計在模型架構中,例如用于掩碼預測的分割頭、用于框預測的檢測頭、用于描述性文本生成的圖像字幕頭和用于生成RGB圖像的圖像生成解碼器。這引起了兩個固有的限制:(1) 它導致視覺模型是特定于任務的,這需要訓練和使用多個模型來處理不同的任務,限制了不同任務間的潛在協同效應;(2) 它導致視覺模型通常具有預定義和固定的接口,導致在遵循用戶任務指令時的交互性和適應性有限。 最近,指令調優在微調大型語言模型(LLMs)以構建通用語言模型方面顯示出了巨大的有效性。在指令調優中,自然語言被用來顯式表示各種任務指令,并指導端到端可訓練的模型理解并轉換到感興趣的任務。通過這種方式,模型可以通過自然語言指令描述的廣泛任務范圍進行微調,最終構建出一個能夠遵循任意指令并解決用戶指定的任意任務的通用模型【6】、【7】、【8】。 受到自然語言處理成功的啟發,提出了視覺指令調優,它通過將語言作為任務指令來微調大型視覺模型,旨在構建一個通用的多模態模型(或稱為通用視覺-語言模型)。具體來說,視覺指令調優構建了一個通用接口,接受視覺和語言輸入,其中語言輸入作為任務指令,指導模型理解感興趣的任務,相應處理視覺輸入并返回預期輸出。通過這個通用接口,模型可以通過視覺指令調優數據(即由視覺輸入、語言指令輸入和相應輸出組成的三元組)對廣泛的視覺任務進行微調,從而構建出一個可以接受任意語言指令輸入和視覺輸入的通用多模態模型,因此可以解決任意視覺任務。例如,給定一個自然圖像作為視覺輸入,如果語言指令輸入要求“描述圖像”、“定位圖像中的物體”或“修改圖像風格”,則通用多模態模型的輸出可能是詳細的圖像描述、一組邊界框或修改后的圖像。 視覺指令調優的好處有三個方面:(1) 它構建了一個以語言為任務指令的通用視覺任務接口,使模型能夠學習并解決廣泛的視覺任務,從不同任務的協同效應中獲益;(2) 它使模型能夠接受用戶的任意任務指令,最終形成一個具有強大交互性和適應性的智能模型,以遵循用戶的意圖;(3) 它在計算上高效,因為它可以利用現成的預訓練大型視覺模型和大型語言模型,并將它們結合并微調,最終構建一個通用多模態模型。 盡管在構建通用多模態模型方面對視覺指令調優的興趣顯著,如圖1所示的大量近期論文證明了這一點,研究界缺乏一項綜合性調查,可以幫助整理現有的視覺指令調優方法、面臨的挑戰以及未來的研究方向。盡管如圖1所示的眾多近期出版物表明,研究界對構建通用多模態模型的視覺指令調優表現出了顯著興趣,但仍缺乏一項系統性的調查,可以幫助全面組織當前的視覺指令調優方法、現有的研究挑戰和未來研究的潛在方向。我們通過對視覺指令調優研究進行全面調查,努力填補這一空白,調查范圍涵蓋從判別性圖像任務(例如,圖像分類和分割)到生成性圖像任務(例如,圖像生成和編輯)、復雜圖像推理任務(例如,視覺問題回答和視覺助理)、視頻任務、醫療視覺任務、3D視覺任務等。該調查從不同的角度進行,包括背景、基礎、數據集、方法論、基準測試以及當前的研究挑戰和開放研究方向。我們希望這項工作能夠提供一個全面的概述,展示我們已經取得了哪些成就,目前面臨哪些挑戰,以及在視覺指令調優研究中我們還能進一步取得什么成就。 我們將這項工作的主要貢獻總結為三個方面。首先,它提供了對視覺指令調優的系統性回顧。我們根據所研究的視覺任務和方法設計開發了一個分類法,并突出了現有視覺指令調優方法的主要貢獻、優勢和不足。與其他主要集中在NLP領域或深入研究視覺-語言預訓練的文獻回顧不同,我們的調查聚焦于新興的視覺指令調優研究方向,并系統地組織了最近的方法,根據調查的視覺任務和指令調優設計進行分類,提供了這一有前途研究方向的全面概述。其次,它調查并分析了視覺指令調優的最新進展,包括對現有方法在各種指令遵循評估數據集上的全面基準測試和討論。第三,它識別并討論了視覺指令調優研究中的幾個挑戰,以及未來研究的潛在方向。 本工作的其余部分組織如下。第2節介紹計算機視覺中的任務范式、視覺指令調優的發展以及幾項相關調查。第3節調查視覺指令調優的基礎,包括常用的網絡架構、視覺指令調優框架和目標,以及針對指令調優的通用多模態模型的評估設置和任務。第4節提供了在視覺指令調優和指令調優模型評估中廣泛采用的數據集概述。第5節分類和回顧了各種視覺指令調優方法。 ** 視覺指令調優基礎**

視覺指令調優【9】旨在利用視覺指令跟隨數據對大型視覺模型進行微調,以構建通用多模態模型(GPMM)。視覺指令調優的流程通常包括兩個階段,即視覺指令跟隨數據的構建和視覺指令調優,如圖3所示。本節介紹視覺指令調優的基礎,包括構建視覺指令跟隨數據的常見方法、用于編碼圖像和文本數據的網絡架構、視覺指令調優框架、目標以及用于評估的下游任務。

廣泛采用的視覺指令調優框架如圖5所示,通常包括視覺編碼器、大型語言模型(LLM)和適配器。在這個框架中,視覺編碼器用于從圖像中提取特征。然后適配器作為橋梁,將這些圖像特征轉換到詞嵌入空間,從而促進LLM對視覺編碼器輸出的解讀。適配器通常被設計為輕量級且成本效益高,例如一些線性層【9】,以確保高效的多模態整合。隨后,LLM處理結合了文本和圖像嵌入的數據,以生成預期的語言響應。

針對通用多模態模型的視覺指令調優已經被用于探索各種視覺任務,包括判別性任務、生成性任務、復雜圖像推理任務、視頻任務、醫療視覺任務、文檔視覺任務和3D視覺任務,如表6所示。本節將根據表2和表3中列出的上述任務進行回顧。

結論

視覺指令調優通過將語言作為任務指令來微調大型視覺模型,最終從由語言指令描述的廣泛視覺任務中學習,構建出一個能夠遵循任意指令并因此解決用戶指定的任意任務的通用多模態模型。在這項調查中,我們從不同的角度對視覺指令調優研究進行了廣泛的回顧,范圍從背景到基礎、數據集、方法論、基準測試,以及當前的研究挑戰和開放的研究方向。我們以表格形式總結了視覺指令調優的數據集、方法和表現,旨在提供一個全面的概述,展示我們已經取得了哪些成就,目前面臨哪些挑戰,以及在視覺指令調優研究中我們還能進一步取得什么成就。

付費5元查看完整內容

相關內容

近期在基礎模型上的發展,如大型語言模型(LLMs)和視覺-語言模型(VLMs),它們基于大量數據訓練,促進了跨不同任務和模態的靈活應用。它們的影響覆蓋了多個領域,包括健康護理、教育和機器人技術。本文提供了基礎模型在現實世界機器人應用中的概覽,主要強調在現有機器人系統中替換特定組件。總結包括了基礎模型中輸入輸出關系的視角,以及它們在機器人技術領域內的感知、運動規劃和控制中的作用。本文最后討論了實際機器人應用面臨的未來挑戰和含義。

近期在人工智能領域的進步顯著擴展了機器人的操作能力,使它們能夠承擔多種多樣的活動【1-5】。雖然最初機器人的部署主要限于大規模生產環境【6-11】,但現在工業機器人的適用性已經擴展到小批量和高多樣性生產領域,包括室內空間和災難現場【12-15】。這種擴散不僅僅限于環境多樣性的增加;它還擴展到了任務范圍的擴大,包括日常活動,如整理【16-18】、洗滌【19,20】、擦拭【21,22】和烹飪【23,24】。機器學習為滿足這些機器人系統的需求提供了一種方式。然而,僅僅在特定領域數據上訓練每個模型對于多樣的機器人、任務和環境來說是不夠的。越來越多地需要開發可以使用單一的、預訓練的系統或模塊應用于各種機體、任務和環境的機器人。 解決這一挑戰的一個方案是引入基礎模型【25】。基礎模型是在大量數據上訓練的模型,可以通過上下文學習、微調或甚至零樣本的方式輕松應用于廣泛的下游任務【26,27】。顯著的例子包括大型語言模型(LLMs)如GPT【27】和視覺-語言模型(VLMs)如CLIP【28】,其中語言是結合各種類型模態的粘合劑。這些基礎模型的影響是顯著的,有幾篇綜述文章討論了它們在不同領域的影響【29-32】。Wang等人【29】和Zeng等人【30】進行了關于大型語言模型在機器人學中應用的綜述,而Firoozi等人【31】和Hu等人【32】進行了更廣泛的綜述,關注于基礎模型在機器人學中的應用。在本文中,我們總結了基礎模型對現實世界機器人的適用性,旨在加速它們在實際機器人應用中的采用。與其他綜述文章相比,我們提供了如何從基礎模型的輸入輸出關系以及機器人學中的感知、運動規劃和控制的角度,用基礎模型替換現有機器人系統中的特定組件的總結。 本研究的結構如圖1所示。在第2節中,我們將描述基礎模型本身。特別地,我們將根據它們使用的模態類型,例如視覺【33,34】、語言【35-41】等,以及它們可以應用的下游任務類型進行分類。在第3節中,我們將基于當前應用【2,3,42】描述如何將基礎模型應用于機器人學。一般來說,機器人需要配備感知模塊、規劃模塊和控制模塊。從這個角度,我們分類了可以將基礎模型應用于現實世界機器人學的方式,包括低級感知、高級感知、高級規劃和低級規劃。此外,我們還將解釋在訓練直接連接低級感知和低級規劃的映射時,對機器人學的數據增強。在第4節中,我們將描述包括機器人實體在內的基礎模型,即機器人基礎模型,包括關于如何就模型架構、數據集和學習目標制作這些機器人基礎模型的討論。在第5節中,我們將描述使用基礎模型的機器人、任務和環境。我們將任務分類為導航、操縱、帶有操縱的導航、運動和交流。最后,我們將討論未來的挑戰并提出我們的結論。

“基礎模型”一詞最初在【25】中被引入。在這項綜述中,我們將簡單描述在機器人應用中使用的基礎模型的類型,以及下游任務,將關于基礎模型本身的討論推遲到【25】。在2012年,深度學習因ILSVRC-2012比賽的獲勝模型而獲得機器學習社區的主流關注【43】。2017年,由【44】介紹的Transformer模型,促進了自然語言處理(NLP)【45】和計算機視覺【46】領域的重大進步。到2021年,一個經過大量數據訓練、能夠輕松應用于廣泛下游任務的模型被稱為“基礎模型”【25】。基礎模型的特點主要有三個:

上下文學習 * 規模定律 * 同質化

上下文學習使得僅用幾個例子就能完成新任務成為可能,無需重新訓練或微調。規模定律允許隨著數據、計算資源和模型大小的增加而持續提升性能。同質化允許某些基礎模型架構以統一的方式處理多種模態。 在這一章中,我們從在機器人學中的適用性的角度對基礎模型進行分類。機器人利用基礎模型的最關鍵標準是選擇使用哪些模態。本章從語言、視覺、音頻、3D表示和各種其他模態的角度討論了基礎模型的類型和它們可以執行的下游任務。在利用每種模態的背景下,我們進一步從網絡輸入和輸出的角度對基礎模型進行分類。概覽顯示在圖2中。請注意,我們的目標不是在這里全面覆蓋基礎模型;我們的重點仍然在于解決模態差異和基礎模型的分類。

通常,機器人的行為由感知、規劃和控制組成。在本研究中,我們將感知分為兩個類別:低級感知和高級感知。同時,我們將規劃和控制分別稱為高級規劃和低級規劃。加上對學習這些組成部分的數據增強,我們將機器人對基礎模型的利用分為以下五個類別。 * 低級感知 * 高級感知 * 高級規劃 * 低級規劃 * 數據增強

這些類別之間的關系如圖3所示。用于低級感知的基礎模型包括在圖像或3D表示中的語義分割和邊界框提取,以及在各種模態中的特征提取。用于高級感知的基礎模型涉及將從低級感知獲得的結果轉換和利用成如地圖、獎勵和運動約束等形式。用于高級規劃的基礎模型執行更高級別的抽象任務規劃,不包括直接控制。用于低級規劃的基礎模型執行較低級別的運動控制,包括關節和末端執行器控制。用于數據增強的基礎模型在執行連接低級感知和低級規劃的學習時,通過數據增強增強魯棒性。 在實踐中,通過組合這五種利用方法創建了各種應用。主要分為四種類型,如圖4所示。 (i) 進行低級感知,然后用高級規劃規劃行為。 (ii) 通過低級感知和高級感知提取獎勵和運動約束,并用于強化學習和軌跡優化。 (iii) 通過低級感知和高級感知生成地圖、場景圖等,并將它們作為任務規劃的基礎。 (iv) 使用數據增強,穩健地進行直接關聯低級感知的特征提取和控制輸入的端到端學習。 值得注意的是,也有一些研究方法不適用于這一框架。 從這些角度出發,我們選取了幾篇具有代表性的論文并在表1中進行了總結。

付費5元查看完整內容

多模態(視覺-語言)模型,如CLIP,正逐漸取代傳統的監督預訓練模型(例如,基于ImageNet的預訓練)成為新一代的視覺基礎模型。這些模型通過從數十億個互聯網圖像-文本對中學習,形成了強大且一致的語義表示,并可以在零樣本的情況下應用于各種下游任務。然而,在醫學成像和遙感等一些細粒度領域,多模態基礎模型的性能往往不盡人意。因此,許多研究者開始探索這些模型的少樣本適應方法,逐漸衍生出三種主要技術途徑:1)基于提示的方法;2)基于適配器的方法;3)基于外部知識的方法。盡管如此,這一迅速發展的領域產生了大量結果,但尚無全面的綜述來系統地整理研究進展**。因此,在這篇綜述中,我們介紹并分析了多模態模型少樣本適應方法的研究進展,總結了常用的數據集和實驗設置,并比較了不同方法的結果**。此外,由于現有方法缺乏可靠的理論支持,我們推導了多模態模型的少樣本適應泛化誤差界限。該定理揭示了多模態基礎模型的泛化誤差受三個因素的約束:域間差異、模型容量和樣本大小。基于此,我們從以下幾個方面提出了三種可能的解決方案:1)自適應領域泛化;2)自適應模型選擇;3)自適應知識利用

人工智能正在越來越多地應用于廣泛的關鍵行業,包括語音識別、圖像識別、自動駕駛、智能制造、醫學診斷、金融風險控制等。在用人工智能技術賦能各個領域的過程中,經常會遇到與碎片化和多樣化需求相關的挑戰。過去,模型通常具有較小的參數規模和有限的泛化能力。一個模型只能應對單一場景,導致成本高昂和泛化性能差。近年來,越來越多的研究者開始關注具有更強泛化能力的預訓練基礎模型。

自2018年以來,如BERT [1]、盤古 [2]、PaLM [3]、GPT4 [4]等基礎模型的訓練數據和參數規模呈指數級增長,導致在各種自然語言理解任務中的性能顯著提高。與此同時,基礎模型的發展也逐漸從單一模態(如文本、語音、視覺等)演變為多模態融合。越來越多的研究機構開始關注多模態預訓練基礎模型,如ViLBERT [5]、CLIP [6]、DeCLIP [7]、FILIP [8]、PyramidCLIP [9]、OFA [10]、BEiT-3 [11]、ERNIE-ViL [12]和Data2vec [13]。

2021年初,OpenAI發布了CLIP,這是一個大規模的多模態模型,用于對齊圖像和文本,它使用數十億互聯網數據進行預訓練,通過對比學習獲得豐富的視覺語言知識。雖然預訓練的CLIP模型可以在推理階段通過使用文本特征作為分類權重來實現零樣本預測,但這種方法通常只在諸如ImageNet之類的通用領域中表現出色,在處理某些細粒度領域的數據時表現不佳。這是因為這些模型在預訓練階段主要使用通用領域的數據,而在面對特定的下游任務時,數據分布往往與預訓練數據不同。因此,有必要使用下游任務的特定數據對模型進行微調。為了通過微調提高模型的泛化性能,研究人員首先提出了基于提示的微調適應方法(例如,CoOp [14]),該方法將CLIP文本端的固定文本輸入視為可學習的向量,然后使用少量樣本進行微調,以適應下游任務。另一種常用于增強少樣本適應能力的方法是基于適配器的微調,如CLIP-Adapter [15]。這種方法涉及在預訓練模型中添加簡單的適配器結構,然后使用少量樣本數據微調適配器參數,使基礎模型適應下游任務。此外,引入基礎語言模型或外部知識(如知識圖譜,例如,CuPL [16])的方法可以幫助模型更好地處理未見樣本,增強其語義理解和魯棒性,從而提高其在少樣本適應任務中的性能。上述三種方法已廣泛用于各種下游適應任務,但缺乏一個全面的綜述來系統地整理這些方法。因此,我們詳細闡述并比較這些方法,并探索它們的未來發展方向,以進一步提高預訓練模型的性能和泛化能力。

本文的貢獻如下:

? 我們全面回顧和整理了多模態少樣本適應方法,并將現有方法分類為基于提示的微調適應方法、基于適配器的微調適應方法、基于外部知識的適應方法以及其他方法。在基于提示的微調適應方法中,我們進一步將其細分為文本提示微調、視覺提示微調、多模態提示和多任務提示方法。關于基于適配器的微調適應方法,我們將其分類為單模態適配器微調和多模態適配器微調。在使用外部知識的方法中,我們區分了帶有外部知識的預訓練方法和利用外部知識的下游適應方法。

? 我們回顧了11個常用數據集,用于評估多模態基礎模型的下游泛化性能。我們提供了四種實驗設置的詳細描述,以驗證多模態基礎模型在少樣本條件下的適應性能。展示了四種不同設置的實驗結果,并對這些結果進行了比較分析。我們強調了不同類型方法能有效提高多模態基礎模型泛化性能的原因。

? 我們討論了現有多模態基礎模型的少樣本適應方法的共同缺點,并分析了域適應問題。從統計機器學習理論中跨域泛化的誤差界限出發,我們推導了多模態基礎模型的少樣本適應誤差界限,揭示了現有方法面臨的主要挑戰是上游和下游域分布的無效適應、模型選擇的適應性不足以及數據和知識利用不足。

II. 多模態基礎模型的預訓練

近年來,大規模預訓練模型已受到學術界和工業界的廣泛關注。最初,基礎模型預訓練的相關工作主要集中在自然語言處理領域,在這個領域,如BERT [1]和GPT [17]這樣的自監著學習語言模型展現出比傳統方法更好的自然語言理解和生成能力。在計算機視覺領域,范式也從監督預訓練轉變為自監督預訓練。自監督預訓練的視覺模型性能顯著提高,從最初基于數據增強的模型(如SimCLR [18]和MoCo [19])演變到最近基于隨機掩蔽方法的模型(如MAE [20]和BEiT [21])。然而,預訓練的語言模型無法接收視覺輸入,導致它們無法將語言理解的優勢擴展到多模態下游任務(如視覺問答VQA)。另一方面,用于視覺預訓練的監督信號通常僅限于數據增強和隨機掩蔽,這阻止了它們在開放世界中學習更豐富的語義表征。因此,我們最近見證了大規模預訓練多模態模型的迅速發展,這些模型結合了視覺和語言模態,如表I所示。

III. 多模態基礎模型的少樣本適應方法

為了有效提高模型在特定領域的泛化性能,有必要使用有限的樣本對多模態基礎模型進行微調,使其具有更廣泛的應用。這些方法可以定義為多模態基礎模型的少樣本適應方法。本章將分為四個部分,提供現有多模態基礎模型方法的詳細概述,即:基于提示的微調適應方法、基于適配器的微調適應方法、基于外部知識的適應方法,以及其他方法

A. 基于提示的微調適應方法

  1. 文本提示基微調適應:在自然語言處理領域,基于提示的微調適應[34]–[38]是解決大型語言模型少樣本泛化問題的經典方法。它涉及將文本輸入的一部分作為可學習向量,并使用下游任務數據對其參數進行微調,使模型能夠適應特定的下游任務。這種方法的優勢在于它避免了文本提示的手動設計,有效地通過僅對模型輸入的特定部分進行微調來減輕過擬合風險。受此啟發,一些研究人員也開始為多模態基礎模型設計基于提示的微調適應方法。CoOp [14]首次將提示學習的思想納入多模態預訓練基礎模型的下游任務適應中。它使用可學習的詞嵌入來自動構建上下文提示,而不是為每個任務手動設計提示模板。如圖1所示,單個類別標簽{object}被轉換為綜合文本提示“[V]1, [V]2, ..., [V]m, {object}”。其中,[V]i代表可調整的詞向量。然后計算分類損失以使用下游任務數據微調這些詞向量,使模型能夠自主獲取適應下游任務的文本輸入。隨后,Zhou等人[39]引入了條件性上下文優化(CoCoOp),該方法構建了一個元網絡來學習圖像的特征。這些特征然后與提示向量結合以增強CoOp在新類別數據上的泛化性能。為了有效利用預訓練模型的零樣本能力,Huang等人[40]提出了無監督提示學習(UPL)。它選擇高置信度的零樣本預測結果作為偽標簽來監督提示向量的學習。類似地,Prompt-aligned Gradient(ProGrad)[41]使用零樣本預測結果來約束模型梯度更新的方向,從而避免少樣本模型與泛化知識之間的沖突,并減輕過擬合問題。然而,由于視覺信息的豐富多樣性,學習僅一個文本提示難以匹配復雜的視覺數據。為解決這一問題,Chen等人[42]提出了使用最優傳輸的提示學習(PLOT)。它用于學習多個不同的文本提示,其中不同的文本提示被視為圖像位置的描述,使用最優傳輸理論來匹配文本提示與局部圖像特征。Lu等人[43]引入了提示分布學習(ProDA),以學習提示分布并從這些分布中采樣不同的文本提示。此外,為了充分利用多任務數據之間的相關性,Ding等人[44]提出了用于提示調整的軟上下文共享(SoftCPT),該方法設計了一個任務共享元網絡,將預定義任務名稱和可學習的元提示作為輸入,以借助多任務數據微調提示。

  2. 視覺提示基微調適應:上述所有方法僅微調CLIP的文本部分,而CLIP作為多模態模型,視覺和文本兩方面同等重要。僅微調文本提示無法改善視覺編碼器提取特征的能力,提取的視覺特征可能與下游任務的目標特征不匹配。因此,受到文本提示微調適應的啟發,一系列視覺提示微調適應方法應運而生。現有的視覺提示微調適應方法主要包括令牌級微調適應和像素級微調適應。視覺提示調整(VPT)[45]引入了以令牌形式的可學習視覺提示。類感知視覺提示調整(CAVPT)[46]在此基礎上進一步包括一個交叉注意模塊,使視覺提示更加關注下游任務的目標。與基于令牌的方法相反,Bahng等人[47]建議直接在圖像周圍以填充格式添加像素級視覺提示,以增強視覺提示。Wu等人[48]進一步提出了增強視覺提示(EVP),通過縮放和填充而不是直接在原始圖像周圍填充。

  3. 多模態提示基微調適應:除了單獨學習文本和視覺提示外,還可以同時學習多模態提示,以更好地對齊文本和視覺特征。文本和視覺特征具有固有的差異,為了在學習多模態提示時加強它們之間的聯系,多模態提示學習(MAPLE)[49]使用copula函數將文本提示轉換為視覺提示。統一提示調整(UPT)[50]首先學習一個通用提示,然后將其分解為文本和視覺提示。另一方面,多任務視覺語言提示調整(MVLPT)[51]引入了多任務學習的概念,使用跨任務知識微調文本和視覺提示。

B. 基于適配器的微調適應方法

1. 單模態適配器基微調適應:在自然語言處理(NLP)領域,適配器的概念最初由谷歌團隊于2019年引入,用于微調大型語言模型[52]。在下游任務訓練中,該方法凍結原始語言模型的參數,僅更新作為適配器模塊添加的少量參數。由于其參數效率高、設計靈活性和高魯棒性等優點,這種方法近年來在NLP領域受到了廣泛的研究關注[53]。最近,基于適配器的方法也被應用于計算機視覺領域的視覺變換器(ViTs)中。Jie等人[54]通過引入卷積旁路(Convpass)解決了ViTs中適配器結構缺乏歸納偏置的問題。此外,他們提出了因子調整(FacT,引用為[55]),以進一步提高參數效率的遷移學習效率,以滿足實際應用中的存儲約束。

2. 多模態適配器基微調適應:上述基于適配器的方法都適用于自然語言處理或計算機視覺中的單模態基礎模型。近年來,基于適配器的方法也被擴展到多模態基礎模型中,以增強下游泛化能力。Gao等人[15]引入了CLIP-Adapter,該適配器在凍結骨干網絡后添加了一個全連接層適配器來學習額外知識。然后,它基于殘差連接將這些知識與零樣本預測結果合并,如圖2所示。基于這些發展,張等人引入了Tip-Adapter[56]。該方法基于下游少樣本訓練數據構建分類器,并以線性加權方式將其預測與原始零樣本分類器的結果結合,以增強模型的預測性能。SVL-Adapter[57]在適配器之前融合了一個預訓練的自監督視覺編碼器,以提取更魯棒的視覺特征。然而,上述方法僅使用跨模態對比損失,沒有考慮少樣本數據集的視覺特定對比損失。為解決這一問題,彭等人[58]提出了語義引導的視覺適應(SgVA-CLIP),通過隱式知識蒸餾引導視覺適配器的參數更新,以確保圖像-文本關系的一致性。為了增強適配器的跨模態交互能力,CALIP[59]利用注意力圖融合文本和圖像特征,并在融合前后插入兩個可微調的線性層。此外,跨模態適配器(CMA)[60]和多模態視頻適配器(MV-Adapter)[61]通過在兩種模態之間共享適配器權重實現跨模態交互。這些方法考慮了單模態和多模態場景,但沒有充分整合每種模態的優勢。為解決這一問題,陸等人[62]提出了UniAdapter,以統一單模態和多模態適配器。

C. 基于外部知識的適應方法

1. 基于外部知識的預訓練方法:預訓練基礎模型通過從互聯網上大量數據中挖掘相關信息,具有學習通用表征的能力。然而,在這些數據驅動的模型中,知識通常是隱性的,沒有明確鏈接到人類對世界的理解或常識性知識。近年來,數據和知識驅動的預訓練方法不斷涌現,研究人員開始探索將更全面的外部知識,如知識圖譜,融入基礎模型中。這種整合旨在使這些模型更加魯棒、可靠和可解釋。ERNIE[63]融合了一個知識編碼器,用于實體知識提取和異構信息融合。K-BERT[64]檢索與模型輸入相關的外部知識,并構建具有豐富上下文知識的句子樹作為模型輸入。近年來,一些工作也開始為多模態基礎模型的預訓練注入知識。例如,ERNIE-ViL[65]整合了來自場景圖的知識,KM-BART[66]通過創建額外的預訓練任務來模擬一般視覺知識,K-LITE[67]融合了包括WordNet和維基百科定義在內的各種外部知識源。

2. 基于外部知識的下游適應方法:上述方法在預訓練階段引入外部知識。然而,在數據樣本有限的下游少樣本適應場景中,也有必要增強外部知識以確保模型的性能。最常見的方法之一是通過查詢大型語言模型為每個類別生成更豐富的文本描述。圖3展示了這種方法的示例。通過語言模型定制提示(CuPL)[16]是第一個將外部知識融入多模態基礎模型下游泛化過程的方法。CuPL通過向GPT-3提問生成每個類別的多個描述性陳述,豐富類別的語義,從而提高零樣本分類性能。然而,CuPL使用GPT-3生成的句子可能存在描述性差和可靠性問題。為解決這些問題,Menon等人[68]進一步完善了基于GPT-3的知識增強過程。他們提示GPT-3以短語形式生成語義屬性描述,增強了模型的可解釋性。為了在可解釋性和性能之間取得平衡,語言引導瓶頸(LaBo)[69]使用GPT-3生成大量候選特征描述符空間,同時考慮特征相對于其他類別的區分性和當前類別的覆蓋率。它篩選出最佳子描述符空間以進行分類決策,從而揭示模型的決策邏輯。ELEVATER[70]還融合了來自GPT-3、WordNet和維基詞典等來源的定義。實驗結果表明,外部知識可以增強多模態基礎模型的下游泛化性能。然而,不同知識來源有不同的側重點和特性。例如,WordNet具有相對豐富和準確的知識,但覆蓋率較低,而GPT-3具有更廣泛的知識覆蓋范圍,但可能缺乏可靠性。此外,與上述使用外部知識增強文本語義的方法不同,SuS-X[71]專注于增強多模態模型的視覺樣本。

付費5元查看完整內容

開放領域生成系統在會話人工智能領域(例如生成式搜索引擎)引起了廣泛關注。本文對這些系統,特別是大型語言模型所采用的歸因機制進行了全面回顧。盡管歸因或引用可以提高事實性和可驗證性,但模糊的知識庫、固有偏見以及過度歸因的缺點等問題可能會妨礙這些系統的有效性。本綜述的目標是為研究人員提供有價值的見解,幫助改進歸因方法,以增強開放領域生成系統生成的響應的可靠性和真實性。我們認為這個領域仍處于初級階段,因此我們維護了一個倉庫,以跟蹤正在進行的研究,網址為

//github.com/HITsz-TMG/awesome-llm-attributions。

自從由大型語言模型(LLMs)驅動的開放領域生成系統出現以來(Anil等人,2023;OpenAI,2022,2023),解決潛在不準確或虛構內容的連貫生成一直是一個持續存在的挑戰(Rawte等人,2023;葉等人,2023;張等人,2023b)。社區通常將這種問題稱為“幻覺”問題,其中生成的內容呈現出扭曲或虛構的事實,缺乏可信的信息來源(Peskoff和Stewart,2023)。這在信息搜索和知識問答場景中尤為明顯,用戶依賴大型語言模型獲取專業知識(Malaviya等人,2023)。

幻覺問題的實質可能源于事先訓練的模型是從廣泛、未經過濾的現實世界文本中獲取的(Penedo等人,2023)。這些人類生成的文本固有地包含不一致性和虛假信息。事先訓練的目標僅僅是預測下一個單詞,而不是明確建模生成內容的真實性。即使在利用人類反饋的強化學習之后(Ouyang等人,2022),模型仍然可能出現外部幻覺(Bai等人,2022)。為了解決外部幻覺的問題,研究人員已經開始采用外部參考文獻等措施來增強聊天機器人的真實性和可靠性(Thoppilan等人,2022;Menick等人,2022;Nakano等人,2021)。顯式歸因和強化學習之間的區別不僅在于需要人工驗證和遵從,還在于認識到生成的內容可能隨著時間變化而變得過時或無效。歸因可以利用實時信息來確保相關性和準確性。然而,歸因的基本挑戰圍繞著兩個基本要求(Liu等人,2023):

考慮到這些要求,我們可以將模型處理歸因的主要方式分為三種類型

  1. 直接模型驅動的歸因:大型模型本身為其回答提供歸因。然而,這種類型經常面臨挑戰,因為回答可能不僅是虛構的,而且歸因本身也可能是虛構的(Agrawal等人,2023)。雖然ChatGPT在大約50.6%的時間里提供正確或部分正確的答案,但建議的參考文獻僅在14%的時間內存在(Zuccon等人,2023)。
  2. 檢索后回答:這種方法根植于明確檢索信息然后讓模型基于這些檢索到的數據進行回答的思想。但檢索并不本質上等同于歸因(Gao等人,2023b)。當模型的內部知識和外部檢索的信息之間的邊界變得模糊時,可能會出現潛在的知識沖突問題(Xie等人,2023)。檢索也可以被用作一種專門的工具,允許模型獨立觸發它,類似于ChatGPT 1中的“使用必應進行瀏覽”。
  3. 生成后歸因:系統首先提供答案,然后使用問題和答案進行歸因搜索。如果需要,答案然后會進行修改并得到適當的歸因。現代搜索引擎,如Bing Chat 2,已經包含了這種歸因方式。然而,研究顯示,從四個生成式搜索引擎生成的內容中,只有51.5%完全得到了引用文獻的支持(Liu等人,2023)。這種歸因方式在高風險專業領域,如醫學和法律中尤其缺乏,研究發現有大量不完整的歸因(分別為35%和31%);而且,許多歸因來自不可靠的來源,51%的歸因被專家評估為不可靠(Malaviya等人,2023)。

超越對文本幻覺的一般討論(Zhang等人,2023b;葉等人,2023;Rawte等人,2023),我們的研究深入探討了大型語言模型的歸因問題。我們探討了它的起源、支撐技術以及評估標準。此外,我們也涉及了諸如偏見和過度引用的挑戰。我們相信,通過關注這些歸因問題,我們可以使模型更加可信賴和容易理解。我們這項研究的目標是以一種更加清晰的方式來闡述歸因問題,鼓勵對這一主題進行更深入的思考。

歸因是指一個實體(如文本模型)生成并提供證據的能力,這些證據通常以引用或參考文獻的形式出現,用以支撐它所產生的聲明或陳述。這些證據來源于可識別的源頭,確保這些聲明可以從一個基礎語料庫中邏輯推斷出來,使得它們對于普通受眾而言是可以理解和驗證的。歸因本身與搜索任務相關(Brin 和 Page, 1998;Page 等人, 1999;Tay 等人, 2022),在這種任務中只有幾個網頁會被返回。然而,歸因的主要目的包括使用戶能夠驗證模型所做的聲明,促進生成與引用源高度一致的文本以提高準確性和減少錯誤信息或幻覺,以及建立一個結構化的框架來評估支持證據的完整性和相關性,與所提出的聲明相比較。歸因的準確性核心在于所產生的陳述是否完全由引用源支持。Rashkin 等人(2021)還提出了歸因于已識別來源(AIS)的評估框架,以評估特定陳述是否由所提供的證據支持。Bohnet 等人(2022)提出了歸因問答,模型在這里接受一個問題,并產生一對配對的回答,即答案字符串及其從特定語料庫,如段落中得到的支持證據。

直接生成的歸因 來自參數化知識的直接生成歸因可以幫助減少幻覺現象并提高生成文本的真實性。通過要求模型進行自我檢測和自我歸因,一些研究發現生成的文本更加基于事實,并且在下游任務中的表現也有所提升。最近,研究人員發現,大型語言模型在回答特定領域的知識性問題時,不能清楚地提供知識來源或證據(Peskoff 和 Stewart, 2023; Zuccon 等人, 2023)。在大多數情況下,模型只能提供一個與問題中的關鍵詞松散相關或與當前主題無關的知識來源。即使模型正確回答了問題,它提供的證據仍然可能存在錯誤。Weller 等人(2023)嘗試通過提出根據提示方法,將模型生成的文本基于其預訓練數據,發現這種方法可以影響模型的根據性,從而影響信息尋求任務的表現。Anonymous(2023)引入了一個中間規劃模塊,要求模型生成一系列問題作為當前問題的藍圖。模型首先提出一個藍圖,然后結合基于藍圖問題生成的文本作為最終答案。藍圖模型允許在每個回答問題的步驟中采用不同形式的歸因,可以期望更具解釋性。

**檢索后回答 **

多篇研究論文已經調查了歸因的檢索后回答方法(Chen 等人,2017年;Lee 等人,2019年;Khattab 和 Zaharia,2020年)。SmartBook 框架(Reddy 等人,2023年)提出了一種方法,該方法利用大量新聞數據自動生成結構化的情況報告。SmartBook 確定了情況分析的關鍵問題,并從新聞文章中檢索相關信息。報告按時間線組織,每個時間線包括重大事件、戰略問題和由事實證據支持的概括性總結。為了解決用戶查詢和存儲知識之間的不一致問題,MixAlign(張等人,2023a)提出了一個框架,該框架結合了自動問題知識對齊和用戶澄清,增強了檢索增強生成模型的性能,并減輕了語言模型的幻覺。此外,SearChain(徐等人,2023年)引入了一個新穎的框架,它將大型語言模型(LLMs)與信息檢索(IR)結合起來,提高了復雜知識密集型任務的準確性、可信度和可追溯性。SearChain 采用檢索然后回答的方法,通過生成全球推理鏈(CoQ)并利用 IR 來驗證答案和提供缺失的知識。

生成后歸因

為了在不損害最新一代模型所提供的強大優勢的情況下促進準確的歸因,一些研究致力于生成后的歸因,這些研究使用搜索引擎或文檔檢索系統,基于輸入問題和生成的答案來搜索證據。這種方法允許研究人員評估或提高答案的事實性,而無需直接訪問模型的參數。生成后歸因的工作流程如圖3所示。RARR(高等,2023a)自主識別任何文本生成模型輸出的歸因,并執行后期編輯以糾正不支持的內容,同時努力在最大程度上保留原始輸出。在霍等人(2023)的工作中,材料是基于粗粒度的句子或細粒度的事實陳述從語料庫中檢索的。然后利用這些檢索到的材料提示LLM,以驗證生成的回應與檢索到的材料之間的一致性,并進行必要的編輯以減少幻覺。陳等人(2023b)介紹了一個全自動化的管道,旨在驗證復雜的政治聲明,這是通過從網上檢索原始證據、生成聚焦聲明的摘要并利用它們進行聲明驗證來實現的。

付費5元查看完整內容

深度模型融合/合并是一種新興的技術,它將多個深度學習模型的參數或預測合并成一個。它結合了不同模型的能力,以補償單一模型的偏差和錯誤,以實現更好的性能。然而,對于大規模深度學習模型(例如,LLMs 和基礎模型)的深度模型融合面臨著幾個挑戰,包括高計算成本、高維參數空間、不同異構模型之間的干擾等。盡管模型融合由于其解決復雜實際任務的潛力而引起了廣泛關注,但關于這種技術的完整和詳細的調查研究仍然缺乏。因此,為了更好地理解模型融合方法并推動其發展,我們提出了一項全面的調查以總結最近的進展。具體來說,我們將現有的深度模型融合方法分類為四種:(1)“模式連接”,通過非遞增損失的路徑連接權重空間中的解,以獲得模型融合的更好初始化;(2)“對齊”匹配神經網絡之間的單元以為融合創造更好的條件;(3)“權重平均”,一種經典的模型融合方法,對多個模型的權重進行平均,以獲得更接近最優解的精確結果。 (4)**“集成學習”**結合了多種模型的輸出,這是一種改善最終模型的準確性和魯棒性的基礎技術。另外,我們分析了深度模型融合面臨的挑戰,并提出了未來模型融合的可能研究方向。我們的評論對于深入理解不同模型融合方法之間的關系和實際應用方法是有幫助的,這可以啟發深度模型融合領域的研究。

//www.zhuanzhi.ai/paper/43bab5b376b2213134e1f99b305d4deb

近年來,深度神經網絡(DNNs)[129] 取得了顯著的發展,廣泛應用于計算機視覺(CV)[175]、自然語言處理(NLP)[30] 等領域。一般來說,單一深度學習模型通常具有一定的局限性,不能完全捕獲復雜網絡背后的所有潛在信息[195]。因此,經典的集成學習[15, 193, 198] 合并多個模型的輸出,以改善深度學習(DL)中模型的最終性能。但在測試時存儲和運行多個模型的成本很高[65, 204],尤其是模型的復雜性和大小增加時。例如,GPT-3[172] 有數十億參數,PaLM[31] 甚至達到5400億參數和7800億令牌。此外,從深度神經網絡[134, 196] 的損失景觀的角度來看,梯度優化的解通常聚集在寬平區域的邊界附近的點,而不是中心點[99]。這意味著經過訓練的網絡并不完全接近具有最小測試錯誤的最優解。需要融合相對最優點附近的解,以得到更好的結果。這激發了研究人員不僅將融合范圍限制于預測(例如,logits等),而且還包括模型參數的融合,而無需訪問訓練數據或保持所有單獨模型[110]。因此,深度模型融合[111, 159] 旨在將多個DNNs融合成一個網絡,保留其原始功能,甚至超越多任務訓練[3, 135]。此外,深度模型融合可以減少單一模型過度擬合特定樣本或噪聲的傾向,從而提高預測的準確性、多樣性和穩健性[207, 223]。由于數據隱私和實際節約資源的問題,深度模型融合引起了越來越多的關注。盡管深度模型融合的發展帶來了許多技術突破,但它也產生了一系列的挑戰,例如高計算負荷、模型異構性和通過組合優化對齊的速度慢[133, 204]等

有些方法僅限于特定場景[227, 254],這激發了研究人員研究不同案例中模型融合的原理。然而,目前缺乏綜合評論來總結方法,以指示深度模型融合的內部機制。一些工作只關注從單一視角(例如,特征融合等)[45, 195] 和特定場景[213] 的模型融合,或者不同方式的信息融合(多模態融合[1, 103])而不是參數的融合。為了給開發者深入了解深度模型融合,我們分析了深度模型融合的原理和方法。此外,我們回顧了最近的進展和代表性應用,例如聯邦學習(FL)[160] 和微調[29] 等。我們的調查旨在說明深度模型融合的最新趨勢和潛在方向,并為研究人員提供指南,以提高性能和降低成本。因此,我們根據內部機制和目的將方法分為四類,如圖1所示。對于相互之間不在附近的獨立訓練的模型,“模式連接”和“對齊”使解更加接近,以獲得更好的平均原始條件。對于權重空間中存在某些差異的類似模型,“權重平均(WA)”傾向于直接平均模型,并在損失函數值較低的參數空間區域獲得更接近最優點的解[118]。此外,對于現有模型的預測,“集成學習”集成了模型的不同形式的預測,以獲得更好的結果。具體來說,這四個類別如下

模式連接性

模式連接性指的是通過基于梯度的優化得到的解可以在權重空間中通過一條無障礙的路徑(連接器)進行連接。我們可以沿著低損失路徑獲得更適合模型融合的其他模型。根據路徑的數學形式和連接器所在的空間,我們將此部分劃分為“線性模式連接性”,“非線性模式連接性”和“子空間中的模式連接性”。模式連接性可以在訓練過程中解決局部優化問題。模式連接性的路徑的幾何關系也可以用來加速優化過程,如隨機梯度下降(SGD)的收斂、穩定性和準確性。簡而言之,模式連接性為解釋和理解模型融合的行為提供了一個新的視角。但是,特別是在大數據集上訓練模型時,應解決計算復雜性和參數調整的困難。

對齊

對齊是將多個模型的單元進行匹配,并對模型進行平均以獲得最終模型。對齊后,不同模型之間的特定數學度量(例如,歐幾里得距離)可以更為接近,從而減小模型之間的差異,進而增強深度模型融合的效果。對齊可分為“激活匹配”和“權重匹配”,取決于是否需要考慮數據分布。此外,Re-basin基于對齊引入,探討解決方案可以通過排列不變性被傳輸到一個單一的盆地(即,參數空間中相對低損失的區域)。然而,對齊通常面臨著計算量大、組合優化速度慢和架構差異的障礙,使得它不易擴展到具有不同目標的其他場景。例如,伴隨圖匹配而來的記憶負擔限制了深度模型融合的應用。

權重平均

權重平均是將幾個母網絡融合成一個單一網絡的最直接和高效的方式。與模式連接性和對齊相比,權重平均不需要額外的計算復雜性或訓練來找到一個優越的起點,在模型包含一定程度的相似性時表現良好。根據聚合空間,權重平均可分為“權重平均”和“子空間中的平均”。此外,典型的方法“模型湯”,“模型算術”和“隨機權重平均”也對現有方法進行了顯著改進。然而,當參數被規范化和合并時,可能會在模型結構或參數數量存在較大差異的情況下引入一些偏差。盡管如此,權重平均仍然是深度模型融合的主流方法,因為它簡單且高效。

集成學習

集成學習結合了幾種不同模型的輸出,以改善預測性能和魯棒性。我們專注于深度學習中的集成學習。基于集成學習,“模型重用”為每個模型提供了規格,這樣在給定新的學習任務時,有用的模型可以從模型池中被識別和合并。集成學習具有各種框架和便捷的界面,經常用于實際領域,例如物體檢測等。盡管集成學習需要維護多個訓練過的模型并在測試時運行每個模型,但它仍然是在深度學習中被廣泛采用的強大技術之一。

模型融合的應用

作為一項提高深度模型的準確性和魯棒性的技術,模型融合促進了許多應用領域的改進。聯邦學習,一種在中央服務器上聚合客戶端模型的應用,使得各方可以貢獻數據到功能的計算中(例如,各種統計、分類器),而無需泄露隱私。微調對預訓練模型進行小的調整,結合模型融合以減少訓練成本并適應特定任務或領域的需求。模型融合還涉及到“蒸餾”。即,將來自多個復雜模型的軟目標知識結合起來,為特定要求訓練一個小模型。模型融合在foundation/LLMs上的應用包括在大型基礎模型或大型語言模型(LLMs)上的工作,例如視覺變壓器(ViT)和GPT等。模型融合的應用幫助開發人員適應各種任務和領域的需求,并促進深度學習的發展。簡而言之,我們的調查回顧了深度模型融合技術。在前三節“模式連接性”,“對齊”和“權重平均”中,我們主要從模型參數融合的角度進行全面研究。在“集成學習”中,我們主要從模型輸出聚合的角度探討了這個問題。

本工作的主要貢獻總結如下

? 我們從“模式連接性”,“對齊”,“權重平均”和“集成學習”的角度提出了一種新的深度模型融合分類方法,該方法涵蓋了模型融合的理論綜合方法,并為實現DNNs的高泛化和準確訓練提供了指導。

? 我們比較了融合方法的優缺點,并解釋了它們之間的機制和關系,為未來設計先進的模型融合方法提供了靈感。

? 我們總結了深度模型融合的廣泛應用。我們還討論了當前的研究趨勢,以便在未來引起更多的關注和反思。此外,本文的其余部分組織如下:在第2節到第5節,我們根據“模式連接性”、“對齊”、“權重平均”和“集成學習”的四個角度介紹深度模型融合的方法。第6節介紹了深度模型融合的應用:“聯邦學習”、“微調”、“蒸餾”和“在foundation/LLMs上的模型融合”。最后,在第7節中,我們總結了深度模型融合,并討論了未來的挑戰和潛在方向。另外,我們在全文中說明了符號及其相應的定義。Wi是第i個具有權重Wi ∈ R^d(i = 1, 2, ...k)和偏置項b的神經網絡。λ表示加權參數。σ表示非線性神經元激活函數。L是損失函數,用于量化預測值和實際值之間的差異。

付費5元查看完整內容

擴散模型(DMs)在不需要對抗訓練的情況下展示了最先進的內容生成性能。這些模型使用兩步過程進行訓練。首先,前向擴散過程逐漸向數據(通常是圖像)添加噪聲。然后,反向擴散過程逐步去除噪聲,將其轉化為被建模目標分布的樣本。DMs的靈感來源于非平衡態熱力學,具有固有的高計算復雜度。由于在高維空間中頻繁的函數計算和梯度計算,這些模型在訓練和推理階段都會產生大量的計算開銷。這不僅阻礙了擴散模型的民主化,而且阻礙了擴散模型在實際應用中的適應性。更不用說,由于過度的能源消耗和對環境的擔憂,計算模型的效率正在迅速成為一個重要的問題。這些因素導致了文獻中對設計計算高效的DM的多項貢獻。在這篇綜述中,我們介紹了視覺擴散模型的最新進展,特別關注影響DMs計算效率的重要設計方面。我們特別強調最近提出的設計選擇,這些設計選擇導致了更高效的DM。不像最近的其他評論,從廣泛的角度討論擴散模型,本綜述旨在通過強調文獻中的設計策略,推動這一研究方向向前發展,為更廣泛的研究社區帶來了可實施的模型。從計算效率的角度展望了視覺中擴散模型的發展前景。深度生成模型(DGMs)——已經成為人工智能中最令人興奮的模型之一,它挑戰了人類的創造力[1]。變分自編碼器、生成對抗神經網絡、歸一化流和擴散模型的發展在人工創造力方面引起了轟動,特別是在圖像嵌入任務方面。圖像合成和文本到圖像的生成。由于生成對抗網絡(GANs)輸出的高質量,近年來受到了廣泛關注。然而,擴散模型最近成為最強大的生成模型,在生成質量[2]、[3]、[4]方面挑戰了GANs的統治地位。擴散模型正變得越來越受歡迎,因為它們提供訓練穩定性以及高質量的圖像和音頻生成結果。這些模型試圖解決GANs的固有局限性,如由于梯度消失而導致的生成器訓練可能失敗、對抗性學習的開銷以及其收斂失敗[5]。另一方面,擴散模型使用了一種不同的策略,它涉及到用高斯噪聲污染訓練數據,然后學習通過反轉這個噪聲過程來恢復數據。擴散模型提供了額外的可伸縮性和并行性的特性,這增加了它們的吸引力。此外,隨著討論模型經過去噪的迭代和迭代,偏離現實太遠的可能性也就更小。生成步驟經過每個檢查點,在每個步驟中,可以向圖像添加越來越多的細節。因此,最近所有超級強大的圖像模型,如DALLE、Imagen或Midjourney和stable Diffusion都是基于擴散模型[6]、[7]的。

擴散模型有各種各樣的應用,包括圖像去噪、圖像生成、時間序列生成、語義分割、圖像超分辨率、大工作臺機器學習、圖像嵌入、決策和圖像間翻譯[4]。因此,自降噪擴散概率模型[8]引入以來,關于該主題的研究論文數量持續上升,每天都有新的模型被提出。然而,最近的熱潮是在穩定擴散(Diffusion)引入后興起的,這是一種機器學習、文本到圖像模型,可以從自然語言描述生成數字圖像。圖1提供了關于擴散模型的文獻的統計數據和時間軸概述,以顯示它們最近在視覺界的流行程度。DMs屬于概率模型的范疇,需要過多的計算資源來建模未觀察到的數據細節。他們訓練和評估模型,需要迭代估計(和梯度計算)的RGB圖像在高維空間[9]。例如,最強大的DM訓練通常需要數百個GPU天(例如150-1000 V100天),重新估計輸入空間的噪聲版本可能導致昂貴的推斷,因此每個模型生成50,000個樣本大約需要5天A100 GPU。這對研究界和一般用戶有兩個影響:第一,訓練這樣的模型需要大量的計算資源,只適用于領域的一小部分,并留下巨大的碳足跡。其次,評估一個已經訓練好的模型在時間和內存方面也很昂貴,因為相同的模型架構需要連續運行大量的步驟(例如25 - 1000步)[10]。早期關于擴散模型的工作只關注于高質量的樣本生成,而不考慮計算成本[8],[11],[12]。然而,在達到這一里程碑后,最近的工作集中在效率上。因此,為了解決生成過程緩慢的真正缺點,新的趨勢是許多增強的工作集中于效率的提高。我們稱這些模型的增強類別為有效擴散模型。在這篇綜述文章中,我們基于效率的標準來評價現有的方法,而不犧牲樣本的高質量。此外,我們討論了模型速度和采樣質量之間的權衡。擴散模型依賴于擴散步驟的長馬爾可夫鏈來生成樣本,因此在時間和計算方面可能相當昂貴。已經提出了新的方法,使該過程大大加快,但采樣速度仍慢于GAN[13],[14]。

為什么模型效率如此重要?人工智能是能量密集型的,對人工智能的需求越高,我們使用的能源就越多。訓練一個復雜的AI模型需要時間、金錢和高質量的數據[15],[16]。它也消耗能量。當我們使用能源時,它會產生二氧化碳。二氧化碳等溫室氣體將地球表面附近的熱量困在大氣中,導致全球氣溫升高,破壞脆弱的生態系統。OpenAI在45 tb的數據上訓練了GPT-3模型[17]。英偉達使用512 V100 gpu對MegatronLM的最終版本進行了9天的訓練,MegatronLM是一種與GPT-3相當但小于GPT-3的語言模型。單個V100 GPU的功耗可能高達300瓦。如果我們估計功耗為250瓦,512 V100 gpu使用128000瓦或128千瓦[18]。對MegatronLM來說,9天的跑步訓練是27648千瓦時。根據美國能源情報署(US Energy Information Administration)的數據,普通家庭每年的耗電量為10649千瓦時。因此,訓練最終版本的MegatronLM所需的能源幾乎相當于三個房子一年的消耗。數據中心對環境的影響是最大的。

這篇綜述的動機是深入探索擴散方法的設計,并強調設計選擇可以提供對修正模型效率的洞察。與以往對擴散模型進行一般分類的工作不同,本文將對導致有效擴散模型和無效擴散模型的設計選擇進行精確分類。這將指導未來計算機視覺任務計算效率擴散模型的研究。論文的其余部分組織如下:第二節提供了擴散模型的概述,簡要說明了三個代表性的架構,第三節提供了設計選擇的描述,并討論了這些選擇如何導致計算效率的設計,第四節比較了代表性的作品w.r.t質量和效率權衡。第五部分討論了未來的工作方向,然后是結論和參考文獻。

**擴散模型概述 **概率擴散模型的原始思想是從隨機噪聲中模擬特定的分布。因此,生成的樣本的分布應該接近原始樣本的分布。它包括一個正向過程(或擴散過程),其中復雜數據(通常是圖像)被逐步噪聲化,和一個反向過程(或反向擴散過程),其中噪聲從目標分布轉換回樣本。在這里,由于它們對有效擴散體系結構的影響,我們特別描述了三個模型。它包括去噪擴散概率模型(DDPM)[8]、潛在擴散模型(LDM)[10]和特征金字塔潛在擴散模型[19]。

有效擴散模型的有效策略

擴散模型需要重構需要采樣的數據分布。有效擴散模型的主要障礙是采樣過程的低效,因為從DDPM生成樣本非常慢。擴散模型依賴于擴散步驟的長馬爾可夫鏈來生成樣本,因此在時間和計算方面可能相當昂貴。近年來,為加快抽樣程序作出了重大努力。我們將這些影響策略分為兩類:有效設計策略(EDS)和有效過程策略(EPS),前者建議對基線擴散模型的設計進行修改,后者建議如何提高擴散模型的效率或加快采樣過程。然而,這些策略是通過修改文獻推斷出來的,未來的工作可能會包括一些下文未提及的新策略。

付費5元查看完整內容

圖分析用于深入挖掘圖數據的內在特征,然而圖作為非歐幾里德數據,傳統的數據分析方法普遍存在較高的計算量和空間開銷。圖嵌入是一種解決圖分析問題的有效方法,其將原始圖數據轉換到低維空間并保留關鍵信息,從而提升節點分類、鏈接預測、節點聚類等下游任務的性能。與以往的研究不同,同時對靜態圖和動態圖嵌入文獻進行全面回顧,我們提出一種靜態圖嵌入和動態圖嵌入通用分類方法, 即基于矩陣分解的圖嵌入、基于隨機游走的圖嵌入、基于自編碼器的圖嵌入、基于圖神經網絡(GNN)的圖嵌入和基于其他方法的圖嵌入。其次,對靜態圖和動態圖方法的理論相關性進行分析,對模型核心策略、下游任務和數據集進行全面總結。最后,提出了四個圖嵌入的潛在研究方向。

//fcst.ceaj.org/article/2022/1673-9418/1673-9418-16-1-59.shtml

圖是復雜系統中常用的信息載體,可以表示現實中許多復雜關系,如社交網絡[1]、犯罪網絡[2]、交通網絡[3]等。圖結構作為一種非歐幾里德數據,很難直接應用卷積神經網絡(convolutional neural network,CNN)[4]和循環神經網絡(recurrent neural network,RNN)[5]等深度學習方法[6]。為了構造用于圖數據挖掘的特征表示,圖嵌入將節點映射到低維空間,生成保留原始圖中某些重要信息的低維向量。目前,圖嵌入不僅在節點分類[7]、鏈接預測[8]、節點聚類[9]、可視化[10]等復雜網絡上的機器學習任務中獲得成功,還廣泛用于社交影響力建模[11]、內容推薦[12]等現實任務。

早期的圖嵌入算法主要用于數據降維,通過鄰域關系構建相似度圖,將節點嵌入低維向量空間,并保持相連節點向量的相似性。這類方法通常時間復雜度高,很難擴展到大型圖上。近年來,圖嵌入算法轉向擴展性強的方法。例如,矩陣分解方法[13]使用鄰接矩陣的近似分解作為嵌入;隨機游走法[14]將游走序列輸入到Skip-Gram[15]生成嵌入。這些方法利用圖的稀疏性降低了時間復雜度。當前,很多綜述[16,17,18,19,20,21]對圖嵌入方法進行了歸納與總結,但存在兩大局限:一是部分綜述僅涉及傳統方法介紹,許多新模型沒有納入研究;二是這些綜述只關注靜態圖嵌入或動態圖嵌入,忽略了二者之間的關聯性。

本文對圖嵌入方法進行全面系統性綜述,有以下三方面的貢獻:(1)提出一種新的圖嵌入分類法,同時對靜態圖和動態圖方法進行分類;(2)對現有模型進行系統性分析,為理解現有方法提供新視角;(3)提出了四個圖嵌入的潛在研究方向。

付費5元查看完整內容

機器學習(ML)最近的快速進展提出了一些科學問題,挑戰了該領域長期存在的教條。最重要的謎題之一是過度參數化模型的良好經驗泛化。過度參數化的模型對于訓練數據集的大小來說過于復雜,這導致它們完美地擬合(即插值)訓練數據,而訓練數據通常是有噪聲的。這種對噪聲數據的插值傳統上與有害的過擬合有關,但最近觀察到,從簡單的線性模型到深度神經網絡的各種插值模型在新測試數據上都能很好地泛化。事實上,最近發現的雙下降現象表明,在測試性能上,高度過度參數化的模型往往比最好的欠參數化模型更好。理解這種過度參數化的學習需要新的理論和基礎的實證研究,即使是最簡單的線性模型。這種理解的基礎已經在最近對過度參數化線性回歸和相關統計學習任務的分析中奠定,這導致了雙下降的精確分析特征。本文簡要概述了這一新興的過度參數化ML理論(以下簡稱為TOPML),并從統計信號處理的角度解釋了這些最新發現。我們強調將TOPML研究領域定義為現代ML理論的一個子領域的獨特方面,并概述了仍然存在的有趣的未決問題。

//www.zhuanzhi.ai/paper/182ad6c4b994aa517d10319504e9bb3a

引言

深度學習技術已經徹底改變了許多工程和科學問題的解決方式,使數據驅動方法成為實踐成功的主要選擇。當前的深度學習方法是經典機器學習(ML)設置的極限開發版本,以前這些設置受到有限的計算資源和訓練數據可用性不足的限制。目前已建立的實踐是從一組訓練示例中學習高度復雜的深度神經網絡(DNN),這些示例雖然本身很大,但相對于DNN中的參數數量來說相當小。雖然這種過度參數化的DNN在ML實踐中是最先進的,但這種實際成功的根本原因仍不清楚。特別神秘的是兩個經驗觀察結果: 1) 模型中添加更多參數的明顯益處(在泛化方面),2) 這些模型即使完美地擬合了噪聲訓練數據,也能很好地泛化。這些觀察結果在現代ML的不同結構中都得到了體現——當它們首次被用于復雜的、最先進的DNN時(Neyshabur et al., 2014; Zhang et al., 2017)),它們已經在更簡單的模型家族中出土,包括寬神經網絡、核方法,甚至線性模型(Belkin et al., 2018b; Spigler et al., 2019; Geiger et al., 2020; Belkin et al., 2019a)。

在本文中,我們綜述了最近發展起來的過度參數化機器學習理論(簡稱TOPML),該理論建立了與訓練數據插值(即完美擬合)相關的現象相關的基本數學原理。我們很快將提供一個過度參數化ML的正式定義,但在這里描述一些模型必須滿足的顯著屬性,以合格為過度參數化。首先,這樣的模型必須是高度復雜的,因為它的獨立可調參數的數量要遠遠高于訓練數據集中的示例數量。其次,這樣的模型絕不能以任何方式被明確地規范化。DNN是過度參數化模型的常見實例,這些模型通常沒有明確的正則化訓練(參見,例如,Neyshabur et al., 2014; Zhang et al., 2017)。這種過度參數化和缺乏顯式正則化的組合產生了一個可插值訓練示例的學習模型,因此在任何訓練數據集上都實現了零訓練誤差。訓練數據通常被認為是來自底層數據類(即噪聲數據模型)的噪聲實現。因此,插值模型完美地擬合了基礎數據和訓練示例中的噪聲。傳統的統計學習總是將噪聲的完美擬合與較差的泛化性能聯系在一起(例如,Friedman et al., 2001, p. 194);因此,值得注意的是,這些插值解決方案通常能很好地泛化到訓練數據集以外的新測試數據。

在本文中,我們回顧了TOPML研究的新興領域,主要關注在過去幾年發展的基本原理。與最近的其他綜述相比(Bartlett et al., 2021; Belkin, 2021),我們從更基本的信號處理角度來闡明這些原則。形式上,我們將TOPML研究領域定義為ML理論的子領域,其中1. 明確考慮訓練數據的精確或近似插值 2. 相對于訓練數據集的大小,學習模型的復雜性較高。

本文組織如下。在第2節中,我們介紹了過度參數化學習中插值解的基礎知識,作為一個機器學習領域,它超出了經典偏方差權衡的范圍。在第3節中,我們概述了最近關于過度參數化回歸的結果。在這里,我們從信號處理的角度直觀地解釋了過度參數化學習的基本原理。在第4節中,我們回顧了關于過度參數化分類的最新發現。在第5節中,我們概述了最近關于過度參數化子空間學習的工作。在第6節中,我們考察了最近關于回歸和分類以外的過度參數化學習問題的研究。在第7節中,我們討論了過度參數化ML理論中的主要開放問題。

付費5元查看完整內容

遷移學習從根本上改變了自然語言處理(NLP)的處理范式。許多最先進的模型首先在大型文本語料庫上進行預先訓練,然后在下游任務上進行微調。然而,當我們對下游任務的監督有限且薄弱時,由于預訓練模型的復雜度極高,過度微調往往會導致微調后的模型對下游任務的訓練數據進行過擬合,而不能泛化到看不到的數據。

為了解決這一問題,我們提出了一種新的方法來微調預先訓練的模型,以獲得更好的泛化性能。我們提出的方法采用了三個重要成分: (1)平滑誘導正則化,有效地管理了大量模型的復雜性; (2) Bregman近端點優化,它是信任域方法的一個實例,可以防止惡意更新;(3)自訓練,可以逐步改進模型擬合,有效抑制誤差傳播。我們的實驗表明,在有限或弱監督的情況下,該方法明顯優于現有的NLP任務。

付費5元查看完整內容

線性模型預測控制的工業部署需要一個凸二次規劃(QP)的實時解。QP的顯式解刻畫了MPC控制律的特征,即狀態的分段仿射函數和一些無偏移量控制的穩態目標的計算。眾所周知,顯式控制律的復雜性隨著問題規模的增加呈指數級增長,使得離線描述和在線部署使用顯式控制律對任何合理規模的工業工廠都是難以處理的。最近的觀察表明,以修正線性單元(ReLU)為激活函數的深度神經網絡也代表一個分段仿射函數,這使得它們成為獲得精確逼近顯式MPC控制律的有吸引力的候選對象。通過大型化工實例的數值實驗,驗證了該方法的可擴展性。

付費5元查看完整內容

盡管有很多嘗試[1-6],深度學習的有效性到目前為止還沒有明確的解釋。考慮到神經網絡是一個非常簡單且定義良好的數學對象,這相當令人驚訝[7-9]。使分析變得困難的是深度神經網絡通常是用大量的參數來描述的,例如權重矩陣、偏差向量、訓練數據等。對于這樣的系統,大多數分析技術不是很有用,必須依賴于數字。這種情況與物理中發生的情況非常相似。物理系統(包括經典系統和量子系統)通常可以在自由度很小的時候被精確地解決,但是當自由度很大的時候,這個問題就變得棘手了。幸運的是,有一組思想被證明對于分析具有多個自由度的物理系統非常有用。它是統計力學。本文的重點是將統計力學的方法應用于機器學習。在本節的其余部分,我們將總結主要結果,因為它可能有助于讀者瀏覽本文。

付費5元查看完整內容
北京阿比特科技有限公司