亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用MNIST數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.

付費5元查看完整內容

相關內容

人工智能技術因其強大的學習和泛化能力已經被廣泛應用到各種真實場景中.然而,現有人工智能技術還面臨著三大挑戰.第一,現有AI技術使用門檻高,依賴于AI從業者選擇合適模型、設計合理參數、編寫程序,因此很難被廣泛應用到非計算機領域;第二,現有AI算法訓練效率低,造成了大量計算資源浪費,甚至延誤決策時機;第三、現有AI技術強依賴高質量數據,如果數據質量較低,可能造成計算結果的錯誤.數據庫技術可以有效解決這三個難題,因此目前面向AI的數據管理得到了廣泛關注.本文首先給出AI中數據管理的整體框架,然后詳細綜述基于聲明式語言模型的AI系統、面向AI優化的計算引擎、執行引擎和面向AI的數據治理引擎四個方面.最后展望未來的研究方向和挑戰.

付費5元查看完整內容

數據孤島以及模型訓練和應用過程中的隱私泄露是當下阻礙人工智能技術發展的主要難題。聯邦學習作為一種高效的隱私保護手段應運而生。聯邦學習是一種分布式的機器學習方法,以在不直接獲取數據源的基礎上,通過參與方的本地訓練與參數傳遞,訓練出一個無損的學習模型。但聯邦學習中也存在較多的安全隱患。本文著重分析了聯邦學習中的投毒攻擊、對抗攻擊以及隱私泄露三種主要的安全威脅,針對性地總結了最新的防御措施,并提出了相應的解決思路。

付費5元查看完整內容

目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。

付費5元查看完整內容

摘要:圖像分類的應用場景非常廣泛,很多場景下難以收集到足夠多的數據來訓練模型,利用小樣本學習進行圖像分類可解決訓練數據量小的問題.本文對近年來的小樣本圖像分類算法進行了詳細綜述,根據不同的建模方式,將現有算法分為卷積神經網絡模型和圖神經網絡模型兩大類,其中基于卷積神經網絡模型的算法包括四種學習范式:遷移學習、元學習、對偶學習和貝葉斯學習;基于圖神經網絡模型的算法原本適用于非歐幾里得結構數據,但有部分學者將其應用于解決小樣本下歐幾里得數據的圖像分類任務,有關的研究成果目前相對較少.此外,本文匯總了現有文獻中出現的數據集并通過實驗結果對現有算法的性能進行了比較.最后,討論了小樣本圖像分類技術的難點及未來研究趨勢.

付費5元查看完整內容

摘要: 三維重建在視覺方面具有很高的研究價值, 在機器人視覺導航、智能車環境感知系統以及虛擬現實中被廣泛應用.本文對近年來國內外基于視覺的三維重建方法的研究工作進行了總結和分析, 主要介紹了基于主動視覺下的激光掃描法、結構光法、陰影法以及TOF (Time of flight)技術、雷達技術、Kinect技術和被動視覺下的單目視覺、雙目視覺、多目視覺以及其他被動視覺法的三維重建技術, 并比較和分析這些方法的優點和不足.最后對三維重建的未來發展作了幾點展望。

付費5元查看完整內容

摘要: 線條畫作為一種簡單而有效的視覺傳達手段,通過突出主要的細節特征,使得人們可以快速地獲得主要信息;同時,風格線條畫作為一種藝術形式,讓人們能夠快速欣賞和理解其藝術特征。文中對線條畫的生成方法進行了綜述與分析。線條畫生成技術可以分為基于2D圖像的方法與基于3D模型的方法。其中,基于2D圖像的線條畫生成技術包括樣本學習方法、非樣本學習的數據驅動方法與非數據驅動方法;基于3D模型的線條畫生成技術包括圖像空間方法、對象空間方法以及兩者的混合方法。通過介紹與分析各種方法并對比分析其優缺點,總結了線條畫生成技術現階段存在的問題及其可能的解決方案,并在此基礎上對線條畫生成的未來發展趨勢進行了展望。

付費5元查看完整內容

深度學習的發明,使得人工智能技術迎來了新的機遇,再次進入了蓬勃發展期。其涉及到的隱私、安全、倫理等問題也日益受到了人們的廣泛關注。以對抗樣本生成為代表的新技術,直接將人工智能、特別是深度學習模型的脆弱性展示到了人們面前,使得人工智能技術在應用落地時,必須要重視此類問題。本文通過對抗樣本生成技術的回顧,從信號層、內容層以及語義層三個層面,白盒攻擊與黑盒攻擊兩個角度,簡要介紹了對抗樣本生成技術,目的是希望讀者能夠更好地發現對抗樣本的本質,對機器學習模型的健壯性、安全性和可解釋性研究有所啟發。

付費5元查看完整內容

【簡介】深度神經網絡(DNNs)在各項任務上都取得了不俗的表現。然而,最近的研究表明通過對輸入進行很小的擾動就可以輕易的騙過DNNs,這被稱作對抗式攻擊。作為DNNs在圖上的擴展,圖神經網絡(GNNs)也繼承了這一缺陷。對手通過修改圖中的一些邊等操作來改變圖的結構可以誤導GNNs作出錯誤的預測。這一漏洞已經引起了人們對在安全領域關鍵應用中采用GNNs的極大關注,并在近年來引起了越來越多的人的研究興趣。因此,對目前的圖對抗式攻擊和反制措施進行一個全面的梳理和回顧是相當有必要的。在這篇綜述中,我們對目前的攻擊和防御進行了分類,以及回顧了相關表現優異的模型。最后,我們開發了一個具有代表性算法的知識庫,該知識庫可以使我們進行相關的研究來加深我們對基于圖的攻擊和防御的理解。

付費5元查看完整內容

簡介:

如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人 工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有 樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時 也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的 基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用 MNIST 數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.

內容簡介:

本文重點對生成對抗樣本的已有研究工作進行綜述,主要選取了近年來有代表性的或取得比較顯著效果的方法進行詳細的原理介紹和優缺點分析.按照其生成方式和原理的不同,分為全像素添加擾動和部分像素添 加擾動兩類.在此基礎上,根據目標是否定向、是否黑盒和是否肉眼可見這 3 個標準進行細分,將各類方法中的 代表性算法在統一數據集(MNIST)上進行測試,驗證并分析其優缺點,終總結提出未來的發展前景. 本文第 1 節主要介紹對抗樣本的基本概念和基礎知識,包括對抗樣本本身的定義、其延伸有關的相關概念 以及基本操作流程.第 2 節則指出對抗樣本是從深度學習中衍生出來的概念,同時介紹了對抗樣本有效性的評估方法.第 3 節則介紹對抗樣本的起源,說明了對抗樣本的產生契機和原理解釋.第 4 節介紹生成對抗樣本的發展狀況,以全像素添加擾動和部分像素添加擾動兩大類進行算法說明,同時總結生成方法中常用的數據集.第 5 節是對第 4 節中代表方法的實驗,結合對同一數據集的效果測試來說明各類方法的優缺點.通過這些優缺點,在 第 6 節中討論對抗樣本生成技術面臨的挑戰和前景預測.

目錄:

  • 1 簡 介

    • 1.1 樣本的定義
    • 1.2 相關概念
    • 1.3 基本操作流程
  • 2 前 傳

    • 2.1機器學習在分類問題中的運用
    • 2.2 深度學習在分類問題中的運用
    • 2.3 評估方法
  • 3 起源

    • 3.1 首次發現
    • 3.2 基本原理
  • 4 發 展

    • 4.1 分類方式及代表模型
    • 4.2 常用數據集
  • 5 實驗結果對比

  • 6 面臨挑戰與前景預測

付費5元查看完整內容

摘要: 隨著機器學習技術在生產、生活等各個領域的廣泛應用,機器學習算法本身的安全問題也引起越來越多的 關注。基于對抗樣本的攻擊方法是機器學習算法普遍面臨的安全挑戰之一。以機器學習的安全性問題為出發點,介 紹了當前機器學習面臨的隱私攻擊、完整性攻擊等安全問題,歸納了目前常見對抗樣本生成方法的發展過程及各自 的特點,總結了目前已有的針對對抗樣本攻擊的防御技術,最后對提高機器學習算法魯棒性的方法做了進一步的展 望。

作者介紹:

朱清新:1982年1月四川師范大學數學系本科畢業獲學士學位。1984年7月北京理工大學應用數學專業畢業獲碩士學位。1984年8月起任西南技術物理研究所工程師、副研究員,作為技術骨干參加了國防科工委7712工程項目并獲科研成果三等獎。1993年5月渥太華大學應用數學和電子工程系控制論專業畢業獲博士學位。1993年5月至1996年3月在渥太華大學電子工程系和加拿大卡爾頓大學計算機學院從事博士后研究并獲計算機第二碩士學位。1996年3月至1997年11月任加拿大Nortel公司和OmniMark高級研究員。1998年3月應聘回國到電子科技大學計算機學院工作,1999年6月聘為教授、2001年6月聘為博士生導師。2002年9月至2003年3月赴加拿大蒙特利爾Concordia大學計算機系任高級訪問學者。現任電子科技大學計算機學院學術委員會主任,計算運籌學研究室主任。主要研究領域包括:生物信息學、信息檢索、計算運籌學與最優化。

張小松: 長江學者特聘教授,國家重點研發計劃網絡空間安全專項首席科學家, 2017年網絡安全優秀人才獎獲得者。長期致力于軟件安全、網絡安全和數據安全領域的研究,成果在應用中取得重要的社會和經濟效益,近年來多次獲國家和省部級成果獎勵,發表包括CCF A類期刊IT、TSE、TIFS在內的學術論文六十余篇,出版了《網絡安全協議》、《惡意軟件分析與檢測》、《軟件測試》等專著、教材和譯著5部,獲授權國際、國內發明專利22項,公開50多項,獲軟件著作權登記10項。

付費5元查看完整內容
北京阿比特科技有限公司