亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose EB-TC$\varepsilon$, a novel sampling rule for $\varepsilon$-best arm identification in stochastic bandits. It is the first instance of Top Two algorithm analyzed for approximate best arm identification. EB-TC$\varepsilon$ is an *anytime* sampling rule that can therefore be employed without modification for fixed confidence or fixed budget identification (without prior knowledge of the budget). We provide three types of theoretical guarantees for EB-TC$\varepsilon$. First, we prove bounds on its expected sample complexity in the fixed confidence setting, notably showing its asymptotic optimality in combination with an adaptive tuning of its exploration parameter. We complement these findings with upper bounds on its probability of error at any time and for any error parameter, which further yield upper bounds on its simple regret at any time. Finally, we show through numerical simulations that EB-TC$\varepsilon$ performs favorably compared to existing algorithms, in different settings.

相關內容

The widespread use of maximum Jeffreys'-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (2021, Biometrika), who show that the resulting estimates are also always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically linearly and slower than the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing $O(n)$ quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. We assess the procedures through a real-data application with millions of observations, and in high-dimensional logistic regression, where a large-scale simulation experiment produces concrete evidence for the existence of a simple adjustment to the maximum Jeffreys'-penalized likelihood estimates that delivers high accuracy in terms of signal recovery even in cases where estimates from ML and other recently-proposed corrective methods do not exist.

Residual bootstrap is a classical method for statistical inference in regression settings. With massive data sets becoming increasingly common, there is a demand for computationally efficient alternatives to residual bootstrap. We propose a simple and versatile scalable algorithm called subsampled residual bootstrap (SRB) for generalized linear models (GLMs), a large class of regression models that includes the classical linear regression model as well as other widely used models such as logistic, Poisson and probit regression. We prove consistency and distributional results that establish that the SRB has the same theoretical guarantees under the GLM framework as the classical residual bootstrap, while being computationally much faster. We demonstrate the empirical performance of SRB via simulation studies and a real data analysis of the Forest Covertype data from the UCI Machine Learning Repository.

In their seminal 1990 paper, Wasserman and Kadane establish an upper bound for the Bayes' posterior probability of a measurable set $A$, when the prior lies in a class of probability measures $\mathcal{P}$ and the likelihood is precise. They also give a sufficient condition for such upper bound to hold with equality. In this paper, we introduce a generalization of their result by additionally addressing uncertainty related to the likelihood. We give an upper bound for the posterior probability when both the prior and the likelihood belong to a set of probabilities. Furthermore, we give a sufficient condition for this upper bound to become an equality. This result is interesting on its own, and has the potential of being applied to various fields of engineering (e.g. model predictive control), machine learning, and artificial intelligence.

Selection bias is a common concern in epidemiologic studies. In the literature, selection bias is often viewed as a missing data problem. Popular approaches to adjust for bias due to missing data, such as inverse probability weighting, rely on the assumption that data are missing at random and can yield biased results if this assumption is violated. In observational studies with outcome data missing not at random, Heckman's sample selection model can be used to adjust for bias due to missing data. In this paper, we review Heckman's method and a similar approach proposed by Tchetgen Tchetgen and Wirth (2017). We then discuss how to apply these methods to Mendelian randomization analyses using individual-level data, with missing data for either the exposure or outcome or both. We explore whether genetic variants associated with participation can be used as instruments for selection. We then describe how to obtain missingness-adjusted Wald ratio, two-stage least squares and inverse variance weighted estimates. The two methods are evaluated and compared in simulations, with results suggesting that they can both mitigate selection bias but may yield parameter estimates with large standard errors in some settings. In an illustrative real-data application, we investigate the effects of body mass index on smoking using data from the Avon Longitudinal Study of Parents and Children.

I consider a class of statistical decision problems in which the policy maker must decide between two alternative policies to maximize social welfare based on a finite sample. The central assumption is that the underlying, possibly infinite-dimensional parameter, lies in a known convex set, potentially leading to partial identification of the welfare effect. An example of such restrictions is the smoothness of counterfactual outcome functions. As the main theoretical result, I derive a finite-sample, exact minimax regret decision rule within the class of all decision rules under normal errors with known variance. When the error distribution is unknown, I obtain a feasible decision rule that is asymptotically minimax regret. I apply my results to the problem of whether to change a policy eligibility cutoff in a regression discontinuity setup, and illustrate them in an empirical application to a school construction program in Burkina Faso.

Standard multiparameter eigenvalue problems (MEPs) are systems of $k\ge 2$ linear $k$-parameter square matrix pencils. Recently, a new form of multiparameter eigenvalue problems has emerged: a rectangular MEP (RMEP) with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters for which the rank of the pencil is not full. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time-invariant (LTI) dynamical system. For linear and polynomial RMEPs, we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. For the transformation we provide new linearizations for quadratic multivariate matrix polynomials with a specific structure of monomials and consider mixed systems of rectangular and square multivariate matrix polynomials. This numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.

We investigate the problem of fixed-budget best arm identification (BAI) for minimizing expected simple regret. In an adaptive experiment, a decision maker draws one of multiple treatment arms based on past observations and observes the outcome of the drawn arm. After the experiment, the decision maker recommends the treatment arm with the highest expected outcome. We evaluate the decision based on the expected simple regret, which is the difference between the expected outcomes of the best arm and the recommended arm. Due to inherent uncertainty, we evaluate the regret using the minimax criterion. First, we derive asymptotic lower bounds for the worst-case expected simple regret, which are characterized by the variances of potential outcomes (leading factor). Based on the lower bounds, we propose the Two-Stage (TS)-Hirano-Imbens-Ridder (HIR) strategy, which utilizes the HIR estimator (Hirano et al., 2003) in recommending the best arm. Our theoretical analysis shows that the TS-HIR strategy is asymptotically minimax optimal, meaning that the leading factor of its worst-case expected simple regret matches our derived worst-case lower bound. Additionally, we consider extensions of our method, such as the asymptotic optimality for the probability of misidentification. Finally, we validate the proposed method's effectiveness through simulations.

We consider a set reconciliation setting in which two parties hold similar sets which they would like to reconcile In particular, we focus on set reconciliation based on invertible Bloom lookup tables (IBLTs), a probabilistic data structure inspired by Bloom filters but allowing for more complex operations. IBLT-based set reconciliation schemes have the advantage of exhibiting a low complexity, however, the schemes available in literature are known to be far from optimal in terms of communication complexity (overhead). The inefficiency of IBLT-based set reconciliation can be attributed to two facts. First, it requires an estimate of the cardinality of the set difference between the sets, which implies an increase in overhead. Second, in order to cope with errors in the aforementioned estimation of the cardinality of the set difference, IBLT schemes in literature make a worst-case assumption and oversize the data structures, thus further increasing the overhead. In this work, we present a novel IBLT-based set reconciliation protocol that does not require estimating the cardinality of the set difference. The scheme we propose relies on what we term multi-edge-type (MET) IBLTs. The simulation results shown in this paper show that the novel scheme outperforms previous IBLT-based approaches to set reconciliation

We study the regret of reinforcement learning from offline data generated by a fixed behavior policy in an infinite-horizon discounted Markov decision process (MDP). While existing analyses of common approaches, such as fitted $Q$-iteration (FQI), suggest a $O(1/\sqrt{n})$ convergence for regret, empirical behavior exhibits \emph{much} faster convergence. In this paper, we present a finer regret analysis that exactly characterizes this phenomenon by providing fast rates for the regret convergence. First, we show that given any estimate for the optimal quality function $Q^*$, the regret of the policy it defines converges at a rate given by the exponentiation of the $Q^*$-estimate's pointwise convergence rate, thus speeding it up. The level of exponentiation depends on the level of noise in the \emph{decision-making} problem, rather than the estimation problem. We establish such noise levels for linear and tabular MDPs as examples. Second, we provide new analyses of FQI and Bellman residual minimization to establish the correct pointwise convergence guarantees. As specific cases, our results imply $O(1/n)$ regret rates in linear cases and $\exp(-\Omega(n))$ regret rates in tabular cases. We extend our findings to general function approximation by extending our results to regret guarantees based on $L_p$-convergence rates for estimating $Q^*$ rather than pointwise rates, where $L_2$ guarantees for nonparametric $Q^*$-estimation can be ensured under mild conditions.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司